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ABSTRACT

Solar system planets move on almost circular orbits. In strong contrast, many massive gas giant exoplanets travel
on highly elliptical orbits, whereas the shape of the orbits of smaller, more terrestrial, exoplanets remained largely
elusive. Knowing the eccentricity distribution in systems of small planets would be important as it holds
information about the planetʼs formation and evolution, and influences its habitability. We make these
measurements using photometry from the Kepler satellite and utilizing a method relying on Keplerʼs second law,
which relates the duration of a planetary transit to its orbital eccentricity, if the stellar density is known. Our sample
consists of 28 bright stars with precise asteroseismic density measurements. These stars host 74 planets with an
average radius of 2.6 R⊕. We find that the eccentricity of planets in Kepler multi-planet systems is low and can be
described by a Rayleigh distribution with σ = 0.049 ± 0.013. This is in full agreement with solar system
eccentricities, but in contrast to the eccentricity distributions previously derived for exoplanets from radial velocity
studies. Our findings are helpful in identifying which planets are habitable because the location of the habitable
zone depends on eccentricity, and to determine occurrence rates inferred for these planets because planets on
circular orbits are less likely to transit. For measuring eccentricity it is crucial to detect and remove Transit Timing
Variations (TTVs), and we present some previously unreported TTVs. Finally transit durations help distinguish
between false positives and true planets and we use our measurements to confirm six new exoplanets.

Key words: planetary systems – stars: fundamental parameters – stars: oscillations (including pulsations)
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1. INTRODUCTION

In the solar system, the orbit of Mercury has the highest

ellipticity with an eccentricity (e) of 0.21, where an eccentricity
of 0 indicates a circular orbit, whereas the mean orbital

eccentricity of the other seven planets is 0.04. In contrast,

Radial Velocity (RV) measurements revealed a wide range of

eccentricities for gas giant planets (Butler et al. 2006), where
HD 80606b is the current record holder with an eccentricity of

0.927 (Naef et al. 2001). RV surveys also found evidence that

orbital eccentricities for sub-Jovian planets reach up to 0.45

(Wright et al. 2009; Mayor et al. 2011). For Earth-sized planets

and super-Earths, RV detections of eccentricities are typically

not feasible, even with modern instruments, because of the

small orbital RV signal amplitude K (Marcy et al. 2014), and
the fact that the amplitude of the eccentricity scales with e × K

(see, e.g., Lucy 2005). One alternative way to measure orbital

eccentricities relies on the timing of secondary transits

(eclipses), but this method is limited to the hottest and

closest-in exoplanets. In some systems with multiple transiting

planets, Transit Timing Variations (TTVs) can be used to infer

planetary mass ratios and orbital eccentricities. While these two

parameters are often correlated, sometimes eccentricity infor-

mation can nevertheless be inferred using statistical arguments

(e.g., Lithwick et al. 2012; Wu & Lithwick 2013), or from the

“chopping” effect (e.g., Deck & Agol 2015). Low-eccentricity
as well as some higher eccentricity systems have been found

(Hadden & Lithwick 2014). Unfortunately, TTVs are only

detected in a subset of all transiting multiple systems, and the

interpretation, of the results is complex as systems with TTVs

are typically found near resonances, and it is unclear if such

systems have undergone the same evolution as systems without
such resonances.
Here we determine orbital eccentricities of planets making

use of Keplerʼs second law, which states that eccentric planets

vary their velocity throughout their orbit. This results in a
different duration for their transits relative to the circular case:

transits can last longer or shorter depending on the orientation
of the orbit in its own plane, the argument of periastron (ω).
This is illustrated in Figure 1. Transit durations for circular
orbits are governed by the mean stellar density (Seager &

Mallén-Ornelas 2003). Therefore, if the stellar density is
known from an independent source then a comparison between

these two values constrains the orbital eccentricity of a
transiting planet independently of its mass (Ford et al. 2008;

Tingley et al. 2011).
Using this technique, individual measurements of eccentric

orbits were made successfully, making use of high-quality

Kepler transit observations. For highly eccentric Jupiters, the
technique is powerful even when only loose constraints on the

“true” stellar density are available, as shown for Kepler-419
(Dawson & Johnson 2012) and later confirmed by RV

observations (Dawson et al. 2014). Kipping et al. (2012)
suggested that multiple planets in the same system can be

compared to constrain the sum of eccentricities in cases where
the stellar density is not known. For close-in hot Jupiters where

the orbits are assumed to be circular due to tidal forces, the
technique provides stellar densities that rival the accuracy

provided by other methods such as asteroseismology, and
good agreement is typically found (e.g., HAT-P-7b, Van Eylen

et al. 2013). For Kepler-410b, a super-Earth, a small but

significantly non-zero eccentricity (0.17 0.06
0.07

-
+ ) was measured,
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thanks to an accurately determined stellar density from
asteroseismology and the brightness of the star (Kepler
magnitude 9.4, Van Eylen et al. 2014). The orbits of both
Kepler-10b (1.4 R⊕) and Kepler-10c (2.4 R⊕) were found to be
consistent with circularity (Fogtmann-Schulz et al. 2014).

An ensemble study, based on early Kepler catalog data and
averaging over impact parameters, found the eccentricity
distribution of large planet candidates (⩾8 R⊕) to be consistent
with the RV eccentricity distribution, with some evidence that
sub-Neptune planets had lower average eccentricities (Kane
et al. 2012). However, subsequent ensemble studies have
revealed a range of complications, such as a correlation with
the transit impact parameter (Huber et al. 2013), the influence
of planetary false positives (Sliski & Kipping 2014) and
uncertainties or biases in stellar parameters (Plavchan et al.
2014; Rowe et al. 2014). Price et al. (2015) recently
investigated the feasibility of such studies for the smallest
planets.3 Kipping (2014b) identified a number of other
mechanisms that influence transit durations, e.g., TTVs. We
approach these complications in two ways.

First, we design a data analysis pipeline that allows us to
identify and remove TTVs, measure transit parameters and
their correlations, and insert and recover artificial transits to test
our methods. Second, we focus on a sample of 28 bright stars
observed by Kepler (Borucki et al. 2010): the brightest host
star has a Kepler magnitude 8.7 and all but one are brighter
than magnitude 13. They have all been observed in short-
cadence mode with a one-minute integration time. Their mean
stellar density is constrained through asteroseismology. The 17
brightest of these stars were analyzed in Silva Aguirre et al.
(2015) and the average accuracy of their mean density
measurements is 1.7%. The other 11 stars were previously
modeled by Huber et al. (2013) and the average uncertainty on
the mean stellar density of these objects is 6.7%. All 28 stars

also have separate mass and radius measurements, while the
detailed modeling of individual frequencies by Silva Aguirre
et al. (2015) also provides stellar ages with a median
uncertainty of 14%. They all contain multiple planets (74 in
total) and all but 3 contain confirmed planets. The planets are
small with an average radius of 2.8 R⊕ and have orbital periods
ranging from 0.8 to 180 days.
In Section 2 we describe our analysis methods. We present

the pipeline developed to model the planetary transits and
discuss several important parameter correlations. Our main
results are presented in Section 3. We present the eccentricity
distribution of our sample of planets, as well as homogeneous
planetary parameters and several previously unreported TTVs.
We also validate several previously unconfirmed exoplanets. In
Section 4 we discuss the implications of our findings in the
context of planetary habitability and planetary occurrence rates.
Our conclusions are presented in Section 5. In Appendix A we
present the eccentricities of individual exoplanet systems.

2. METHODS

We built a customary data reduction and analysis pipeline to
measure all transit parameters and their correlations. This also
allows us to do transit insertion and recovery tests. In
Section 2.1 we describe the pipeline and how we extract the
relevant parameters. In Section 2.2 we discuss parameter
correlations. In Section 2.3, we present the results of modeling
artificial transits that we inserted in the data.

2.1. Pipeline

The pipeline performed the following main steps.

1. Kepler data reduction and normalization.
2. Period determination and TTV assessment; data folding.
3. Markov Chain Monte Carlo (MCMC) transit fit module.

We now describe each step in more detail.

Figure 1. Left top panel (a) pictures an orbit with e = 0.6 and an argument of periastron of 120°. The observer is located below the figure. Panel (b) shows the same
orbit, now with ω = 300°. The pies outlined with blue and red lines in the two panels encompass the same surface areas and the corresponding arcs are traveled by the
planet during 1/36 of its orbital period. These times are centered around the time of planetary transit. The gray filled pies correspond to the surface areas covered by a
planet traveling on a circular orbit with the same apparent a/R

å
ratio. According to Keplerʼs second law the transit in the eccentric system in panel (a) lasts longer than

in the system with the circular orbit. The reverse is true for panel (b). Corresponding schematic light curves are shown in panels (c) and (d).

3
We note that the authors made use of Kepler 30 minutes integration time

data in their study, while the data used in this work has a one-minute (short
cadence) sampling, which complicates a direct comparison (see also
Section 2.2.2).
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2.1.1. Data Reduction

The first part of our pipeline is responsible for reducing and
normalizing Kepler light curves. For a given Kepler object of
interest (KOI), the pipeline searches for observations in any
quarter (Q), between Q0–Q17. Only the quarters that contain
short cadence observations are downloaded (in fits-file format),
because the one minute sampling is required to resolve the
planetary ingress and egress (see Section 2.2.2). Our analysis
starts with the Presearch Data Conditioning version of the data
(Smith et al. 2012).

In the following, we only focus on data directly before,
during, or after the transits (typically encompassing about
5–10 hr before and 5–10 hr after a given transit). An initial
estimate of the transit times is calculated with the ephemeris
available at the Kepler database.4 From the same source a value
for the transit duration is obtained and used to determine the in-
transit data points. By default the transit duration is increased
by three hours to make sure no in-transit data points are
erroneously used for the data normalization. In case of
(previously known or subsequently detected) TTVs, the transit
duration is further increased to catch all in-transit data points.
The data before and after the transits are then fitted by a second
order polynomial, which is used to normalize the data.

In a final step, all transits are visually inspected. In some
cases, (instrumental or astrophysical) data jumps or gaps can
cause the transit fits to fail or the true transit to be poorly
determined. These transits are manually removed. Similarly,
when multiple transits happen simultaneously, these data points
are removed to avoid biasing the transit measurement.

2.1.2. Period and TTV Determination

This part of the pipeline measures times of individual transits
and uses them to find the orbital period, as well as detect any
TTVs. The measurement of an individual transit time is done
by fitting the best transit model to the individual transits,
keeping all transit parameters fixed except for the transit mid-
time. During the first iteration, the model is based on the
parameters extracted from the Kepler database, afterward the
best model from the MCMC analysis in Step 3 (transit fit
module) is used, a procedure that is repeated until convergence
is reached. The uncertainty of each transit-mid time is
calculated by first subtracting the best fitting transit model
from the original light curve, bootstrapping the residuals with
replacement, injecting the best fitting transit model and fitting
this new light curve. The steps after and including the
permutation of the residuals are repeated 200 times for each
transit, to calculate the mid-time uncertainty from the spread in
these fits.

Now the planetary period is obtained by (weighted) fitting
for a linear ephemeris to the individual transit times. From this
we calculate the observed minus calculated (O C- ) transit
times. Next we refit, this time ignoring 3σ outliers (as
determined by the standard deviation around the linear
ephemeris), and repeat until convergence is reached (no more
outliers are removed).

Once the linear ephemeris has been determined we perform a
search for TTVs as these might cause biases in the eccentricity
calculations, as explained below. For this a sinusoidal model is
fitted to the O C- diagram. A list of the systems where TTVs

were included is given in Table 2. The transits are subsequently
folded based on their period and TTVs if present. The folded
transit curve is binned to contain a maximum of 6000 data
points, which even for the longest transits implies more than 10
data points per minute, which is an oversampling compared to
the original one minute Kepler sampling.

2.1.3. Transit Fit Module

This part of the pipeline consists of a transit fitting module,
which makes use of an MCMC algorithm. We choose to
employ an Affine-Invariant Ensemble Sampler (Goodman &
Weare 2010) as implemented in the Python module emcee
(Foreman-Mackey et al. 2013). Planetary transits are modeled
analytically (Mandel & Agol 2002).5

For each planet in the system, we sample five parameters: the
impact parameter b, relative planetary radius Rp/Rå

, e cos w,
e sin w, mid-transit time T0, and flux offset F. In addition,

two stellar limb darkening parameters are adjusted. These are
common for all planets in one system, leading to 6n + 2
parameters per planetary system, where n is the amount of
planets in the system. The MCMC chains were run using 200
walkers, each producing a chain of 500,000 steps, after a burn-
in phase of 150,000 steps was completed.
We sample uniformly in Rp/Rå

and place a uniform prior on
T0 and b, where the latter is sampled between −2 and 2 to allow
grazing orbits and avoid border effects around 0. We do not
sample directly in e and ω, as this biases the eccentricity results
for nearly circular orbits due to the boundary at zero (Lucy &
Sweeney 1971; Eastman et al. 2013). Instead, we sample
uniformly in e cos w and e sin w (both between −1 and 1),
which corresponds to a uniform sampling in e [0, 1]Î and

[0, 360]w Î  after conversion and rejection of values
corresponding to e > 1. The conversion between e and ω and
the stellar density ratio is given by (Kipping 2010; Moorhead
et al. 2011; Tingley et al. 2011; Dawson & Johnson 2012)

( )e
e

1

(1 sin )
, (1)

,transit

2
3 2

3





r
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=
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+

and this can be further converted into the ratio of semimajor

axis to stellar radius R
å
/a using (Seager & Mallén-Ornelas

2003)
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Here G represents the gravitational constant. It is R
å
/a that is

used in the analytical transit model (Mandel & Agol 2002). For
circular orbits, R

å
/a directly constrains the stellar density (ρ

å,

transit = ρ
å
). In general, when ρ

å
is known (e.g., from

asteroseismology (Huber et al. 2013; Silva Aguirre et al.
2015)), R

å
/a constrains the combination of e and ω given by

the right-hand side of Equation (1). We note that it is possible
to sample directly from the stellar density ratio (or from R

å
/a)

(Dawson & Johnson 2012; Van Eylen et al. 2014), since the
data always constrains a combination of e and ω simulta-
neously, but doing so makes it more complicated to achieve an
uninformative flat prior in e and ω.

4
http://exoplanetarchive.ipac.caltech.edu/

5
We gratefully acknowledge the implementation of planetary transit

equations into Python by Ian J. M. Crossfield, upon which our code was
based; see http://www.lpl.arizona.edu/~ianc/python/transit.html.
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Multiple planets around the same star are modeled
simultaneously using the same limb darkening parameters.
We use a quadratic limb darkening law with parameters u1 and

u2 (I I u u( ) (1) 1 (1 ) (1 )1 2
2m m m= - - + - , where I(1)

represents the specific intensity at the center of the disk and
μ the cosine of the angle between the line of sight and the
emergent intensity) and place a Gaussian prior with a standard
deviation of 0.1 on each parameter, centered on predicted
values interpolated for a Kurucz atmosphere (Claret &
Bloemen 2011). This is a compromise to avoid fixing the
parameters entirely, while still making use of the detailed
stellar parameters available for the stars in our sample.

The final part of this module of the pipeline consists of the
processing of the MCMC chains. Convergence is checked by
visually inspecting traceplots, checking that an increase in
burn-in time does not influence the posteriors, and confirming
that MCMC chains initialized with different starting conditions
give equivalent results. Transit fits for the final parameters are
produced. All parameter distributions and their mutual
correlations are plotted and visually inspected. A range of
statistics, such as the mean, median, mode, and confidence
intervals are calculated for each parameter.

The results for our combined sample are presented in terms
of the stellar density ratio in Section 3.1. The results for
all individual systems and parameters are presented in Table 1
and the eccentricity posterior distributions are shown in
Appendix A.

2.2. Parameter Correlations

There are several correlations between eccentricity and other
parameters that are addressed here. The most important
correlation occurs between eccentricity and angle of periastron
ω and was already reported above (Equation (1)). We explain
how this complication can be overcome for a sample of
systems, by directly using the relative density instead, as well
as its influence on eccentricity estimates for individual systems.
Another important correlation occurs with impact parameter b.
The influence of TTVs is also discussed. The effect of ω, b, and
TTVs on the eccentricity is summarized in Figure 2. We briefly
discuss other commonly anticipated complications.

2.2.1. Correlation with Angle of Periastron

When measuring transits, a combination of eccentricity and
angle of periastron is constrained, as given by Equation (1).
The combined influence of e and ω is illustrated in Figure 3.
For [0, 180]w Î , eccentric orbits lead to shorter transits,
while for [180, 360]w Î , eccentricity increases the transit
duration (see Figure 2). The left-hand side of the equation (the
relative density ρcirc./ρtransit) is the observable property, i.e., it is
used to fit transits. Each relative density corresponds to a given
eccentricity but also depends on the angle ω, which is
illustrated in Figure 3.

When looking at an ensemble of systems, this complication
can be avoided by reporting the measured relative densities,
which is what we do in Section 3.1. This is the true observable
(i.e., it influences the transit model), and it holds information
on both e and ω in a way that is defined by Equation (1). For an
ensemble of systems, ω is expected to be randomly distributed6

so that the distribution of relative densities can be directly
compared to any anticipated eccentricity distributions.
Note that for individual systems information on e and ω can

still be separately extracted, although the incomplete knowl-
edge of ω increases the uncertainty of e. We discuss individual
systems in Appendix A and report eccentricity modal values
and highest probability density intervals which represent 68%
confidence in Table 1. We also show full posterior distributions
of eccentricity (see Appendix A).

2.2.2. Correlation with Impact Parameter

Eccentricity can be correlated with the transit impact
parameter b. This can be understood by looking at Figure 4,
in which the effect of changing impact parameters and
eccentricities is plotted for two analytically generated transit
curves. While eccentric orbits change transit durations
(increasing or decreasing it depending on the angle of
periastron), increasing the impact parameters also shortens
transits since a smaller part of the stellar disk is being crossed.
Fortunately, changing the impact parameter also has the effect
of deforming the planetary transit. This is caused by the ingress
and egress taking up more of the total transit time and leads to
the typical V-shaped transits for high impact parameters.
However, for smaller planets, ingress/egress times are intrinsi-
cally very short and the deformation of the transit shape is
therefore far more limited, causing b and e to be more
degenerate for smaller planets than for larger planets (see also
Ford et al. 2008, and Figure 5 therein). This is why the
availability of short cadence observations with a one minute
sampling is crucial. Long cadence data, with an integration
time of 30 minutes, smears out the ingress and egress of the
planet. Therefore, measuring eccentricities for small planets is
more complicated for two reasons: transits of smaller planets
require higher accuracy light curves to obtain the same signal-
to-noise ratio in the light curve than needed for larger planets,
and for small planets eccentricity and impact parameter are
more degenerate. The effect of b and e on the transit duration is
illustrated in Figure 2. Therefore, apart from reporting
eccentricity confidence intervals we also present two-dimen-
sional histograms that show the posterior distribution in the
e b- plane (see Appendix A). In a few cases (see Table 1) the
correlation between b and e caused the eccentricity range to be
uninformative (here defined as an 1σ interval larger than 0.4).
These 8 systems were excluded from the sample presented in
Section 3.1 as they do not present any additional information
(see, e.g., Price et al. 2015).

2.2.3. The Influence of TTVs

TTVs have the potential to influence eccentricity measure-
ments. Contrary to what one might expect, the major issue with
TTVs is not that they cause the total transit duration to be
mismeasured, but rather that TTVs can cause the impact
parameter to be measured incorrectly (Kipping 2014b). When
combining multiple transits that are not correctly aligned, the
best-fit model transit will be more V-shaped (higher impact
parameter) than the original transit. As high impact parameters
typically have shorter transit durations, this bias in b can then
be “compensated” by a higher eccentricity (and an angle of
periastron within [180, 360]°). Consequently, when TTVs are
not properly taken into account, a bias occurs toward the top
right on the illustration in Figure 2. This bias due to TTVs can

6
In general, the transit probability itself depends on ω for eccentric orbits, but

given the low eccentricity orbits we find in our sample ω can be assumed to be
randomly distributed.
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Table 1

Planetary and Stellar Parameters for All Planets Analyzed

e (Mode) e (68%) Rp [R⊕] Period (days) References M
å
[Me] R

å
[Re] Density (g cm−3)

Kepler-10b KOI-72.01 0.06 [0, 0.22] 1.473 ± 0.026 0.83749026 (29) (2) 0.9200.010
0.020-

1.06620.0069
0.0075- 1.06790.0072

0.012-

Kepler-10c KOI-72.02 0.05 [0, 0.25] 2.323 ± 0.028 45.294292 (97) (2) 0.9200.010
0.020-

1.06620.0069
0.0075- 1.06790.0072

0.012-

Kepler-23b KOI-168.03 0.06 [0, 0.32] 1.694 ± 0.076 7.106995 (73) (1) 1.0780.077
0.077- 1.5480.048

0.048- 0.4100.023
0.023-

Kepler-23c KOI-168.01 0.02 [0, 0.41] 3.12 ± 0.10 10.742434 (39) (1) 1.0780.077
0.077- 1.5480.048

0.048- 0.4100.023
0.023-

Kepler-23d KOI-168.02 0.08 [0, 0.32] 2.235 ± 0.088 15.27429 (17) (1) 1.0780.077
0.077- 1.5480.048

0.048- 0.4100.023
0.023-

Kepler-25b KOI-244.02 0.05 [0, 0.16] 2.702 ± 0.037 6.2385369 (33) (2) 1.1600.040
0.050- 1.2990.015

0.016-
0.74540.0093

0.0098-

Kepler-25c KOI-244.01 0.01 [0, 0.08] 5.154 ± 0.060 12.7203678 (35) (2) 1.1600.040
0.050- 1.2990.015

0.016-
0.74540.0093

0.0098-

Kepler-37b KOI-245.03 0.08 [0, 0.29] 0.354 ± 0.014 13.36805 (38) (2) 0.8100.020
0.010- 0.77250.0051

0.0063- 2.4860.022
0.025-

Kepler-37c KOI-245.02 0.09 [0, 0.27] 0.705 ± 0.012 21.302071 (92) (2) 0.8100.020
0.010- 0.77250.0051

0.0063- 2.4860.022
0.025-

Kepler-37d KOI-245.01 0.15 [0.05, 0.22] 1.922 ± 0.024 39.792232 (54) (2) 0.8100.020
0.010- 0.77250.0051

0.0063- 2.4860.022
0.025-

Kepler-65b KOI-85.02 0.02 [0, 0.19] 1.409 ± 0.017 2.1549156 (25) (2) 1.1990.030
0.030- 1.4010.013

0.014- 0.61580.0071
0.0079-

Kepler-65c KOI-85.01 0.08 [0, 0.2] 2.571 ± 0.033 5.8599408 (23) (2) 1.1990.030
0.030- 1.4010.013

0.014- 0.61580.0071
0.0079-

Kepler-65d KOI-85.03 0.10 [0, 0.33] 1.506 ± 0.040 8.131231 (21) (2) 1.1990.030
0.030- 1.4010.013

0.014- 0.61580.0071
0.0079-

Kepler-68b KOI-246.01 0.02 [0, 0.15] 2.354 ± 0.020 5.3987533 (13) (2) 1.0700.010
0.020- 1.23790.0067

0.0051- 0.79490.0052
0.011-

Kepler-68c KOI-246.02 0.42 [0.32, 0.83] 0.927 ± 0.025 9.604979 (45) (2) 1.0700.010
0.020- 1.23790.0067

0.0051- 0.79490.0052
0.011-

Kepler-92b KOI-285.01 0.17 [0, 0.27] 3.65 ± 0.13 13.748933 (75) (2) 1.2090.020
0.030- 1.7190.011

0.013- 0.33550.0044
0.0040-

Kepler-92c KOI-285.02 0.04 [0, 0.26] 2.455 ± 0.053 26.72311 (19) (2) 1.2090.020
0.030- 1.7190.011

0.013- 0.33550.0044
0.0040-

Kepler-92d KOI-285.03 0.07 [0.03, 0.41] 2.067 ± 0.056 49.3568 (24) (2) 1.2090.020
0.030- 1.7190.011

0.013- 0.33550.0044
0.0040-

Kepler-100b KOI-41.02 0.13 [0, 0.40] 1.305 ± 0.030 6.887037 (47) (2) 1.1090.020
0.020-

1.51310.0093
0.011- 0.45420.0043

0.0058-

Kepler-100c KOI-41.01 0.02 [0.01, 0.17] 2.221 ± 0.022 12.815909 (26) (2) 1.1090.020
0.020-

1.51310.0093
0.011- 0.45420.0043

0.0058-

Kepler-100d KOI-41.03 0.38 [0.22, 0.50] 1.514 ± 0.034 35.33313 (43) (2) 1.1090.020
0.020-

1.51310.0093
0.011- 0.45420.00431

0.00579-

Kepler-103b KOI-108.01 0.03 [0, 0.23] 3.476 ± 0.039 15.965316 (18) (2) 1.0990.019
0.030- 1.4550.024

0.013- 0.50700.0050
0.0050-

Kepler-103c KOI-108.02 0.02 [0, 0.21] 5.319 ± 0.052 179.6133 (47) (2) 1.0990.019
0.030- 1.4500.009

0.009- 0.50700.0050
0.0050-

Kepler-107b KOI-117.03 0.02 [0, 0.22] 1.581 ± 0.056 3.180026 (12) (1) 1.1420.068
0.068- 1.4110.047

0.047-
0.5810.049

0.049-

Kepler-107c KOI-117.02 0.02 [0, 0.28] 1.664 ± 0.065 4.901441 (30) (1) 1.1420.068
0.068- 1.4110.047

0.047-
0.5810.049

0.049-

Kepler-107d KOI-117.04 0.14 [0, 0.39] 1.064 ± 0.062 7.95825 (11) (1) 1.1420.068
0.068- 1.4110.047

0.047-
0.5810.049

0.049-

Kepler-107e KOI-117.01 0.02 [0, 0.20] 2.92 ± 0.10 14.749176 (34) (1) 1.1420.068
0.068- 1.4110.047

0.047-
0.5810.049

0.049-

Kepler-108b KOI-119.01 0.22 [0.10, 0.41] 9.56 ± 0.53 49.18354 (18) (1) 1.3770.089
0.089- 2.190.12

0.12- 0.1880.024
0.024-

Kepler-108c KOI-119.02 0.04 [0, 0.23] 8.23 ± 0.47 190.3214 (n/a) (1) 1.3770.089
0.089- 2.190.12

0.12- 0.1880.024
0.024-

Kepler-109b KOI-123.01 0.21 [0, 0.30] 2.338 ± 0.034 6.4816370 (80) (2) 1.0690.040
0.040- 1.3390.017

0.015- 0.62780.0076
0.0068-

Kepler-109c KOI-123.02 0.03 [0, 0.22] 2.634 ± 0.043 21.222620 (30) (2) 1.0690.040
0.040- 1.3390.017

0.015- 0.62780.0076
0.0068-

Kepler-126b KOI-260.01 0.07 [0, 0.17] 1.439 ± 0.020 10.495634 (30) (2) 1.1480.051
0.049- 1.3450.015

0.018- 0.6660.010
0.010-

Kepler-126c KOI-260.03 0.19 [0, 0.37] 1.498 ± 0.062 21.86964 (10) (2) 1.1480.051
0.049- 1.3450.015

0.018- 0.6660.010
0.010-

Kepler-126d KOI-260.02 0.02 [0, 0.11] 2.513 ± 0.031 100.28208 (41) (2) 1.1480.051
0.049- 1.3450.015

0.018- 0.6660.010
0.010-

Kepler-127b KOI-271.03 0.47 [0.08, 0.51] 1.52 ± 0.13 14.43577 (10) (1) 1.2400.086
0.086- 1.3590.035

0.035- 0.6970.023
0.023-

Kepler-127c KOI-271.02 0.03 [0, 0.17] 2.389 ± 0.067 29.39344 (17) (1) 1.2400.086
0.086- 1.3590.035

0.035- 0.6970.023
0.023-

Kepler-127d KOI-271.01 0.03 [0, 0.31] 2.668 ± 0.084 48.62997 (57) (1) 1.2400.086
0.086- 1.3590.035

0.035- 0.6970.023
0.023-

Kepler-129b KOI-275.01 0.01 [0, 0.25] 2.409 ± 0.040 15.791619 (53) (2) 1.1590.030
0.030- 1.6490.012

0.014- 0.36590.0042
0.0037-

Kepler-129c KOI-275.02 0.20 [0, 0.35] 2.522 ± 0.066 82.1908 (n/a) (2) 1.1590.030
0.030- 1.6490.012

0.014- 0.36590.0042
0.0037-

Kepler-130b KOI-282.02 0.15 [0, 0.29] 0.976 ± 0.045 8.45725 (11) (1) 0.9340.059
0.059- 1.1270.033

0.033- 0.9270.053
0.053-

Kepler-130c KOI-282.01 0.08 [0, 0.23] 2.811 ± 0.084 27.508686 (37) (1) 0.9340.059
0.059- 1.1270.033

0.033- 0.9270.053
0.053-

Kepler-130d KOI-282.03 0.80 [0.40, 0.89] 1.31 ± 0.13 87.5211 (24) (1) 0.9340.059
0.059- 1.1270.033

0.033- 0.9270.053
0.053-
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Table 1

(Continued)

e (Mode) e (68%) Rp [R⊕] Period (days) References M
å
[Me] R

å
[Re] Density (g cm−3)

Kepler-145b KOI-370.02 0.43 [0.18, 0.61] 2.56 ± 0.28 22.95102 (23) (2) 1.4190.030
0.030- 1.8870.012

0.014- 0.29760.0045
0.0038-

Kepler-145c KOI-370.01 0.11 [0, 0.22] 3.92 ± 0.11 42.88254 (15) (2) 1.4190.030
0.030- 1.8870.012

0.014- 0.29760.0045
0.0038-

Kepler-197b KOI-623.03 0.02 [0, 0.25] 1.064 ± 0.038 5.599293 (39) (1) 0.9220.059
0.059- 1.1200.033

0.033- 0.9070.052
0.052-

Kepler-197c KOI-623.01 0.08 [0, 0.29] 1.208 ± 0.048 10.349711 (54) (1) 0.9220.059
0.059- 1.1200.033

0.033- 0.9070.052
0.052-

Kepler-197d KOI-623.02 0.03 [0, 0.23] 1.244 ± 0.049 15.67787 (13) (1) 0.9220.059
0.059- 1.1200.033

0.033- 0.9070.052
0.052-

Kepler-197e KOI-623.04 0.38 [0.21, 0.63] 0.983 ± 0.048 25.2097 (14) (1) 0.9220.059
0.059- 1.1200.033

0.033- 0.9070.052
0.052-

Kepler-278b KOI-1221.01 0.04 [0, 0.37] 4.59 ± 0.26 30.15856 (91) (1) 1.2980.076
0.076- 2.9350.066

0.066-
0.072400.00094

0.00094-

Kepler-278c KOI-1221.02 0.51 [0.39, 0.70] 3.31 ± 0.12 51.0851 (35) (1) 1.2980.076
0.076- 2.9350.066

0.066-
0.072400.00094

0.00094-

Kepler-338b KOI-1930.01 0.04 [0, 0.31] 2.58 ± 0.13 13.72699 (47) (1) 1.1420.084
0.084- 1.7350.082

0.082- 0.3090.034
0.034-

Kepler-338c KOI-1930.02 0.03 [0, 0.27] 2.48 ± 0.14 24.31168 (87) (1) 1.1420.084
0.084- 1.7350.082

0.082- 0.3090.034
0.034-

Kepler-338d KOI-1930.03 0.03 [0, 0.25] 2.66 ± 0.15 44.4287 (16) (1) 1.1420.084
0.084- 1.7350.082

0.082- 0.3090.034
0.034-

Kepler-338e KOI-1930.04 0.05 [0, 0.28] 1.587 ± 0.083 9.34149 (40) (1) 1.1420.084
0.084- 1.7350.082

0.082- 0.3090.034
0.034-

Kepler-444b KOI-3158.01 0.08 [0, 0.30] 0.381 ± 0.021 3.600125 (28) (2) 0.7400.010
0.010- 0.74920.0046

0.0040- 2.4980.018
0.025-

Kepler-444c KOI-3158.02 0.12 [0, 0.29] 0.490 ± 0.024 4.545817 (44) (2) 0.7400.010
0.010- 0.74920.0046

0.0040- 2.4980.018
0.025-

Kepler-444d KOI-3158.03 0.18 [0, 0.34] 0.530 ± 0.025 6.189512 (54) (2) 0.7400.010
0.010- 0.74920.0046

0.0040- 2.4980.018
0.025-

Kepler-444e KOI-3158.04 0.02 [0, 0.29] 0.533 ± 0.019 7.74350 (10) (2) 0.7400.010
0.010- 0.74920.0046

0.0040- 2.4980.018
0.025-

Kepler-444 f KOI-3158.05 0.58 [0.21, 0.70] 0.679 ± 0.008 9.740529 (36) (2) 0.7400.010
0.010- 0.74920.0046

0.0040- 2.4980.018
0.025-

Kepler-449b KOI-270.01 0.03 [0, 0.31] 2.056 ± 0.069 12.58242 (27) (1) 0.9690.053
0.053- 1.4670.033

0.033- 0.4390.016
0.016-

Kepler-449c KOI-270.02 0.05 [0, 0.29] 2.764 ± 0.086 33.6727 (10) (1) 0.9690.053
0.053- 1.4670.033

0.033- 0.4390.016
0.016-

Kepler-450b KOI-279.01 0.02 [0, 0.16] 6.14 ± 0.33 28.454851 (25) (1) 1.3460.084
0.084- 1.5700.085

0.085- 0.4780.064
0.064-

Kepler-450c KOI-279.02 0.02 [0, 0.19] 2.62 ± 0.14 15.413135 (85) (1) 1.3460.084
0.084- 1.5700.085

0.085- 0.4780.064
0.064-

Kepler-450d KOI-279.03 0.14 [0, 0.38] 0.837 ± 0.068 7.51464 (23) (1) 1.3460.084
0.084- 1.5700.085

0.085- 0.4780.064
0.064-

KOI-5.01 0.09 [0, 0.27] 7.87 ± 0.14 4.78032767 (84) (2) 1.1990.020
0.030- 1.7950.015

0.014- 0.29200.0027
0.0034-

KOI-5.02 0.10 [0, 0.40] 0.642 ± 0.061 7.05174 (13) (2) 1.1990.020
0.030- 1.7950.015

0.014- 0.29200.0027
0.0034-

Note. The source of the stellar parameters is indicated in the Reference column: (1) Huber et al. (2013), (2) Silva Aguirre et al. (2015). Individual systems are discussed in Appendix A.
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be quite large. For example, we inserted an artificial planet on a
circular orbit into the Kepler observations and added a
sinusoidal TTV signal with an amplitude of 20 minutes and a
period of 250 days. An eccentricity of 0.7 was recovered (with
small formal uncertainty), while for the same case without
TTVs the correct circular orbit was recovered. However, these
clear cases of TTVs can easily be measured and removed,
which we do in our pipeline.

Smaller TTV signals can be more difficult to detect and
adequately remove. With smaller planetary radii (smaller
transit depths), the ability to measure individual transit times
decreases and therefore also our ability to detect a TTV signal.
On the other hand, for the smallest planets, the impact
parameter is typically poorly constrained, making (small)
TTVs less important relative to other sources of uncertainties
(see Section 2.3). It is not always straightforward to determine
whether TTVs should be included in the modeling. We found
that classic tests such as the likelihood ratio tests or the

Bayesian Information Criterium sometimes favor the inclusion
of a TTV signal for the smallest planets, on artificial transits
inserted without TTVs into real Kepler observations. This
could be caused by an underestimate of the errors on the transit
times for very small planets, or the influence of light curve
inperfections (instrumental or astrophysical, e.g., star spots).
In our final analysis we include only clearly detectable

sinusoidal TTV signals, after confirming that in cases where
there was doubt, the decision to include TTVs or not did not
influence the eccentricity measurement (see also Section 2.3).
A list of systems with included TTVs is given in Table 2 and
for Kepler-103, Kepler-126, Kepler-130, and Kepler-278, these
TTVs have not been previously reported. Four systems were
excluded from our initial sample because their TTVs could not
be adequately removed using a sinusoidal model; they are
discussed in Appendix B.

2.2.4. Other Potential Complications

We briefly discuss several other issues that have been
previously identified as potential sources of error for measure-
ments of eccentricities from transit photometry.
False positives can complicate eccentricity measurements.

When a planetary transitʼs host star is misidentified, the true
stellar density can differ significantly from the one used to
calculate the eccentricity (Sliski & Kipping 2014). In our
sample, all but three systems (KOI-5, KOI-270, and KOI-279)
contain planets that were previously confirmed or validated as
true exoplanets. Kepler-92 contains two confirmed planets and
one additional candidate. We discuss the planetary nature of

Figure 2. Illustration showing the influence of impact parameter b and
eccentricity e on the transit duration. Misidentified periods or inadequately
removed TTV signals cause a bias in b and e.

Figure 3. Influence of e and ω on the relative density measured. The colored
lines indicate different eccentricities ranging from 0 (inner) to 0.9 (outer).
Different combinations of e and ω can correspond to the same relative density.

Figure 4. Top: Earth-sized planet. Bottom: Jupiter-sized planet. Solid lines
show transits for different impact parameter b and e = 0, dotted lines show
transits for different e and b = 0.8. All angle of periastron ω are taken to be
270°. In the Earth-size–planet case, high b and medium eccentricity look very
similar to zero b and zero e, while in the Jupiter-size case, there is much less
degeneracy.
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these planet candidates in Section 3.3. Therefore, our sample is
not biased due to false positives.

Similar to planetary false positives is the issue of light curve
dilution. Here, the planet orbits around its host star, but third
light dilutes the light curve, causing the transit depth to be
reduced. This results not only in a biased planet–radius (Ciardi
et al. 2015), but also in a biased impact parameter, which in
turn can cause the eccentricity to be incorrectly measured.
However, most of the targets from our selected sample of
bright stars have been followed up with adaptive optics
(Adams et al. 2012) and Speckle images (Howell et al. 2011).
No significant sources of dilution have been found for any of
our confirmed planets. The reported light curve contamination
for KOI-5, KOI-270, and KOI-279 is taken into account prior
to the modeling. Quarter to quarter variations in the light curve
owing to pixel sensitivity are of the percentage order (Van
Eylen et al. 2013) and do not affect our eccentricity
measurement.

Stellar limb darkening is another potential source of
complication. Visual inspection yields no evidence of a
correlation with eccentricity (see also Ford et al. 2008). We
use a prior on the limb darkening based on stellar atmosphere
models (Claret & Bloemen 2011) to speed up MCMC
convergeance, but nevertheless allow the limb darkening
parameters to vary to avoid this source of complications.

Another potential influence on eccentricity measurements
would be a bias in the stellar densities determined from
asteroseismology. Part of the values from our sample are taken
from Silva Aguirre et al. (2015), and are based on individual
frequency modeling using several different stellar evolution
codes. The remaining densities are taken from (Huber et al.
2013) and are based on scaling relations. Such relations have
been proven accurate and unbiased for dwarfs and subdwarfs,
such as the stars considered in this study (Huber et al. 2012;
Silva Aguirre et al. 2012, 2015).

Finally, we note that the uncertainty in the folded light curve
could be of potential concern. Ideally, all individual transits
would be normalized and modeled simultaneously, while also
fitting for the period and any potential TTVs and modeling the
correlated noise. However, such an approach is computation-
ally unfeasible. Consequentially, these errors are not fully
propogated and the resulting uncertainties could be under-
estimated. In most cases many transits are available, causing
the period to be very well determined. Of bigger concern are
TTVs, but tests with artificial planetary transits (see Sec-
tion 2.3) show no evidence of any bias or underestimated
error bars.

2.3. Transit Insertion Tests

We have inserted artificial transits into the data to test the
performance of our pipeline. The procedure we used is as
follows. First, an artificial planetary transit was generated, and
inserted into the light curve that has been observed for one of
the stars analyzed in our sample. The lightcurves in which we
inserted artificial transits were chosen randomly from our
sample of stars with two or three transiting planets (stars with
more planets were not chosen to avoid “crowding” due to the
pre-existing planets). Subsequently, the procedure described in
Section 2.1.2 was followed to find the orbital period and
potential TTVs and fold the data. The period and ephemeris
information of the (genuine) planets already present in the light
curve was used to remove overlapping transits, as is done for
genuine planets. Finally the folded light curve is modeled as
described in Section 2.1.3.
The aim of these tests is not to be complete in covering the

full parameter space, which is indeed challenging as it spans
different stellar and planetary parameters, periods, and
eccentricities, as well as amplitudes and periods of TTVs,
while transit insertion tests are computationally expensive.
Rather, the purpose is to evaluate representative cases to
understand the performance of our pipeline and judge any
potential limitations. A total of 141 artificial transits have been
generated, inserted in real Kepler data, and modeled. We now
describe a few cases in more detail.
In a first number of tests, we generated planets with radii and

periods representative for our sample, and assigned a random
eccentricity, uniform between 0 and 1, and a random angle of
periastron ω. We were able to recover the correct eccentricities
within the uncertainties. In another set of tests, we attempted to
reproduce our sample of planets more closely. The light curves
in which the transits were inserted were drawn randomly from
the light curves in our sample. The periods and planetary radii
were drawn randomly from our sample of planets (Table 1).
The impact parameters were chosen uniformly between 0 and 1
for outer planets, and uniformly within a 1◦. 6 spread for inner
planets (Fabrycky et al. 2014). The eccentricities were
typically recovered within the uncertainties.
We have also tested the influence of TTVs by adding

sinusoidal TTV signals to the inserted transits. The influence of
TTVs depends not only on the TTV amplitude, but also on the
size of the planet. For example, for a 3.5 R⊕ planet on a 15 days
orbit, a 20 minutes TTV signal can have a large influence on
the derived eccentricity (see Section 2.2.3), but the TTV signal
is easily recovered and after removal, the correct eccentricity is
determined within the uncertainty (and without bias). For
smaller planets, it can be difficult to adequately remove the
TTV signal, and it can escape detection entirely. However, we

Table 2

Overview of the Period and Amplitude of Sinusoidal Transit Timing Variations
Which Were Included in the Modeling

TTV Period (days) TTV Amplitude (minutes)

Kepler-23b 433 21.8

Kepler-23c 472 23.0

Kepler-23d 362 22.3

Kepler-25b 327 3.8

Kepler-25c 348 1.1

Kepler-36b 449 166.5

Kepler-36c 446 116.2

Kepler-50b 2127 61.0

Kepler-50c 739 8.7

Kepler-103b 264 2.7

Kepler-103c 514 22.2

Kepler-126b 2052 9.4

Kepler-126c 372 8.0

Kepler-126d 1052 6.4

Kepler-128b 413 55.2

Kepler-128c 355 103.7

Kepler-130b 2043 53.8

Kepler-130c 491 2.8

Kepler-278c 464 88.5

KOI-279.01 1008 2.0

Note. The transit times and the best model fits are shown in Figure 9.
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find that in these cases, the influence of TTVs on the
eccentricity determination is small because other uncertainties
dominate. For example, when inserting a TTV signal with an
amplitude of 15 minutes, for a planet of 1.5 R⊕ with an orbital
period of 8 days, we did not recover the TTV signal but were
nevertheless able to retrieve the correct eccentricities. Other,
similar TTV tests revealed similar results, and we also obtained
a similar result when modeling genuine planets: when there
was significant doubt about the TTV signal, the decision to
include it or not did not influence the outcome of our
eccentricity measurement.

3. RESULTS

Here we present the results of our analysis. In Section 3.1
we report the distribution of eccentricities for the planets in
our sample (eccentricities for individual planets are discussed
in Appendix A). In Section 3.2 we present the other
parameters that result from our analysis, such as homegeneous
planetary parameters, a distribution in impact parameters and
new and updated TTVs. Finally, in Section 3.3 we discuss the
systems with unconfirmed planetary candidates and validate
six new planets.

3.1. Multi-planet Systems with Small Planets
Have Low Eccentricities

The stellar density encompasses the combined influence of
the orbital eccentricity and angle of periastron on the transit
duration as described in Section 2.2. In Figure 5 we show a
histogram of the ratio of the densities derived from aster-
oseismology to the densities derived from the transit fits. In this
figure large eccentricities would be revealed as very large or
small density ratios, depending on the argument of periastron.
The absence of such ratios already indicates that low
eccentricities are common.

To quantitatively constrain the eccentricity distribution we
now assume a Rayleigh distribution for the eccentricities,

which provides a best fit to the data for σ = 0.049 ± 0.013. The
resulting distribution of density ratios is shown in Figure 5. The
Rayleigh distribution has the additional advantage that it can be
directly compared to some other eccentricity determinations,
such as σ = 0.018 found for some TTV systems (Hadden &
Lithwick 2014). Kipping (2013) suggests the use of a Beta
distribution, which has the advantage of being convenient to
use as a prior for transit fits. Using this distribution to model
our results we find a good fit to our data with Beta parameters
α = 1.03 ± 0.15 and β = 13.6 ± 2.1. The best-fit values are
calculated by drawing random eccentricity values from the
chosen distribution (Rayleigh distribution or Beta distribution)
and assigning a random angle of periastron to calculate the
corresponding density ratio. The distribution of density ratios is
then compared to the observed density ratio distribution, by
minimizing the χ2 when comparing the cumulative density
functions, to avoid a dependency of the fit on binning of the
data (see, e.g., Kipping 2013). The uncertainty on the
parameters is calculating by bootstrapping the observed density
ratios (with replacement) and repeating the procedure, and
calculating the scatter in the best-fit parameters. Individual
systems are discussed in Appendix A.
The distribution is similar to that of the solar system that is

plotted in the same figure for comparison (integrated over
different angles). In contrast we also plot the relative densities
that would have been observed if our sample had the same
eccentricity distribution as measured for RV planets (Shen &
Turner 2008) in Figure 5. Figure 6 compares the eccentricities
in our sample with the solar system planets and the exoplanets
with RV observations. The RV observations were taken from
exoplanets.org (2015 April 27, Han et al. 2014) and include all
data points where the eccentricity was measured (not fixed to
zero), and the RV amplitude (“K”) divided by its uncertainty
(“UK”) is greater than 10. The masses for the planets in our
sample were estimated based on the radius, using Weiss et al.
(2013) for planets with R ⩾ 4 R⊕ and following Weiss &
Marcy (2014) for planets where R ⩽ 4 R⊕.

Figure 5. Stellar density determined from asteroseismology divided by the stellar density determined from the planetary transit if the orbit was circular. Values much
smaller than one indicate eccentric orbits with [0, 180]w Î  and short transits, while values much larger indicate [180, 360]w Î  and longer transits. The best fitted
Rayleigh distribution is overplotted and has σ = 0.049. For illustration the densities that would be observed assuming the RV eccentricity distribution are also
indicated, as well as the distribution derived from the solar system planetʼs eccentricities.
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Our sample differs in two important ways from the RV
sample: planetary size and planetary multiplicity. These
properties are not independent since smaller planets are
frequently found in multiple planet systems (Latham et al.
2011). A hint toward smaller eccentricities for smaller/less
massive planets and higher multiplicity has already been
observed in RV systems. In systems with sub-Jovian mass
planets and systems with multiple planets, eccentricities are
limited to 0–0.45 (Wright et al. 2009; Mayor et al. 2011). Even
so the eccentricities observed in our sample have a much
narrower range, possibly because the average size of the
planets is much smaller even when compared to the sub-Jovian
RV sample (most planets in our sample cannot be detected with
RV measurements, and even when RV mass measurements are
possible eccentricity determinations are not feasible, Marcy
et al. 2014).

Analyzing TTV signals for Kepler planets, Hadden &

Lithwick (2014) find an rms eccentricity of 0.018 0.004
0.005

-
+ . They

further note that eccentricities of planets smaller than 2.5 R⊕
are about twice as large as those larger than this limit, although
they caution a TTV detection bias may influence this result. We
have compared our eccentricity measurements with the
planetary radii in Figure 8 (see also Section 3.2) and found
no evidence for a correlation. However, the difference between
the rms eccentricity for planets smaller and larger than 2.5 R⊕
is only 0.009 (Hadden & Lithwick 2014), which would likely
not be detectable in our sample.

Planet–planet interactions have been brought forward as a
mechanism to explain the observed eccentricities in massive
planets (Fabrycky & Tremaine 2007; Chatterjee et al. 2008;
Ford & Rasio 2008; Jurić & Tremaine 2008; Nagasawa et al.
2008). In this picture gravitational interactions lead to high
eccentricities and planetary migration. However, despite
finding a small anti-correlation between mass and eccentricity
for massive planets, Chatterjee et al. (2008) suggested that
damping from residual gas or planetesimals could more
effectively reduce the eccentricities of low-mass planets after
scattering. Furthermore, it has been suggested that there may
exist a dependence of eccentricity on the orbital semimajor
axis, because the mean eccentricity depends on the velocity
dispersion scaled by the Keplerian velocity (see, e.g., Ida et al.

2013; Petrovich et al. 2014). Consequentially the eccentricity
may be proportional to the square root of the semimajor axis
(Ida et al. 2013). The majority of the planets in our sample
have orbital distances that are unlikely to be affected by tidal
circularization, but it was suggested very recently that tidal
effects in compact multi-planet systems may propagate further
than for single planet systems (Hansen & Murray 2015).
The observed low eccentricities could be related to the planet

multiplicity, which was also observed by Limbach & Turner
(2014). Highly eccentric planets in multi-planet systems are
also less likely to be stable over longer timescales, which could
lead to lower observed eccentricities in compact systems
because systems with more eccentric systems would not
survive. Pu & Wu (2015) found that planets with circular
orbits can be more tightly packed than systems with eccentric
planets. The systems in our sample have between 2 and 5
transiting planets but the true multiplicity could be under-
estimated if additional non-transiting planet are present.

3.2. Homogeneous Stellar and Planetary
Parameters and New TTVs

Next to orbital eccentricities our analysis also yields a
homegeneous set of planetary parameters. They are not only
derived from homegeneous transit modeling but also from a
homegemeous set of stellar parameters, which were all derived
from asteroseismology (Huber et al. 2013; Silva Aguirre et al.
2015). We report the eccentricities and the planetary radii, as
well as the stellar masses and radii upon which they were based
(Huber et al. 2013; Silva Aguirre et al. 2015) in Table 1. The
modes and 68% highest probability density intervals are quoted
for all values. The full posterior distributions, including the
correlations between parameters, are available upon request.
We checked the distribution of transit impact parameters and

show a histogram in Figure 7. Because we are dealing with
multi-transiting systems a bias toward lower impact parameters
is expected since such systems are more likely to have multiple
planets transiting. When we plot the impact parameter of all
planets, low impact parameter values indeed appear favored
and the distribution is inconsistent with a homegeneous one
between 0 and 1 (KS-test with p-value of 0.003). If we only
plot the impact parameters of the outer planet (the longest

Figure 6. Eccentricity and mass measurements for exoplanets are plotted as taken from exoplanets.org on 2015 April 27, for planets where both values are determined.
Planets that are flagged as multi-planet systems are highlighted. For comparison, the solar system is shown. The eccentricities of the planets in our sample are plotted
with their mass estimated based on radius (Weiss et al. 2013; Weiss & Marcy 2014). Error bars are omitted for clarity.

10

The Astrophysical Journal, 808:126 (20pp), 2015 August 1 Van Eylen & Albrecht

http://exoplanets.org


period) in each system, a distribution that appears uniform in
impact parameter is observed (KS-test with p-value of 0.86, see
Figure 7). That planets on shorter orbital periods have lower
impact parameter than the outer planets in the same system
shows that most systems in our sample have very low mutual
inclinations, consistent with earlier work (Fabrycky
et al. 2014).

We furthermore compared the eccentricity to other para-
meters and found no correlation (see Figure 8). We plot the
eccentricity versus the orbital period and planetary radius. We
also compare the eccentricity to stellar temperature and stellar
age, two parameters that might influence tidal circularization.
We note that ages are only available for part of our sample
(Silva Aguirre et al. 2015). We see no correlations.

We have determined transit times and (re)derived orbital
periods in a way that is robust to outliers (see Section 2). In
several cases, we found clear evidence of TTVs. The TTV
periods and amplitudes that were included in our analysis are

listed in Table 2. For Kepler-103, Kepler-126, Kepler-130 and
Kepler-278, these TTVs have not been previously reported. In
some cases, hints of small TTVs were found, in which cases we
have checked that the decision whether or not to include them
had no significant influence on the derived eccentricity, and
ultimately did not include any TTVs in the final analysis. All
measured times of individual transits are available upon
request.

3.3. Planetary Valdidation

Multi-planet systems can often be confirmed based on
statistical grounds because their multiplicity makes false
positive scenarios very unlikely (Lissauer et al. 2014; Rowe
et al. 2014). However, this is no longer generally true if the
light curve consists of two or more blended stars of different
magnitudes, because it can be difficult to tell at which object
the transits occur (e.g., Van Eylen et al. 2014).
Transit durations can be used to confirm the planetary nature

of transiting candidates when the stellar density of the
suspected host star is well known (Tingley & Sackett 2005).
However, because eccentricity also influences the transit
duration, in general it is difficult to distinguish between
eccentric planets and false positives (Sliski & Kipping 2014).
Because we find that eccentricities are very small for multi-
planet systems, this complication does not arise for these
systems and transit durations can be readily used to assess the
validity of transit signals in these systems. The transit duration
provides a direct estimate of the stellar density, which can be
compared to an independent measurement of the stellar density
of the stars to determine which of the stars in the aperture hosts
the transiting planet(s).
Here we compare the stellar density estimates from the

planetary candidates with the asteroseismic density of the
brightest star in the system. Any mismatch would be a strong
indication that the star is not the true host. A clear agreement is
strong evidence that the star is the true host, especially if the
other star in the system has a very different density. In KOI-5,
we cannot draw a clear conclusion because only one of the
planets provides meaningful constraints. For KOI-270, we
confirm that the transits are caused by true planets that could
orbit either KOI-270 A or KOI-270 B, two stars that are very
similar. We confirm that the three planet candidates for KOI-
279 are genuine planets orbiting KOI-279 A, and finally we
also confirm a third planet orbiting Kepler-92 (two other
planets were previously confirmed). We discuss these systems
in more detail below.

3.3.1. KOI-5

KOI-5 contains two transiting planet candidates that have not
been validated or confirmed as true planets. The inner planet
candidate has an orbital period of 4.8 days and a 7.9 R⊕ radius,
while the second planet candidate orbits in 7 days and is much
smaller (0.6 R⊕). The reason the candidates have not been
validated is the presence of a second, fainter companion star
that is physically associated (Wang et al. 2014; Kolbl et al.
2015). We refer to it here as KOI-5B.
We take a 6% flux dilution (Wang et al. 2014; Kolbl et al.

2015) caused by KOI-5B into account before modeling the
planet candidates assuming they orbit the bright star (KOI-5A).
The posterior distribution for the inner planet is shown in
Figure 10.1 and its eccentricity is tightly constrained ([0.05,

Figure 7. Histogram of the modes of the impact parameters for individual
planets. Top: all planets. Middle: only outer planets. Bottom: planets that are
not the outer transiting planet.
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0.27] within 1 − σ). Even within 2 − σ, the lower eccentricity
bound is 0.04. An alternative way to present this is the relative
density, for which a 95% confidence interval is [0.72, 0.88].
This implies that if this candidate was a true planet orbiting
KOI-5A, it would have a non-zero eccentricity. This is
suspicious, in particular, given the short orbital period of the
candidate, and a possible explanation is that the candidate does
not transit KOI-5A but rather KOI-5B instead. Because KOI-
5B is much fainter, the candidate would consequentially be
larger and might not be planetary in nature.

The second candidateʼs posterior distribution is given in
Figure 10.2 and is consistent with a circular orbit around KOI-
5A (e [0, 0.4]Î , relative density [0.45, 1.11]Î ). This could
imply that this is a genuine planet orbiting KOI-5A. However,
due to the large error bar caused by the small size of the planet,
it is difficult to exclude KOI-5B as a host for this candidate
without knowing more about this companion star.

3.3.2. KOI-270

KOI-270 contains two transiting planet candidates that
transit every 12 and 33 days, thus far unconfirmed. KOI-270
has a stellar companion, separated by only 0.05 arcsec and with
the same magnitude in both J and Ks band (Adams et al. 2012).
Therefore, KOI-270 appears to consist of two very similar stars
and we dilute the light curve by a factor two to account for this.
We find no evidence for TTVs but note that only limited short-
cadence data is available.

After accounting for the flux dilution, the planetary radii are
2.1 and 2.8 R⊕. Both planets are consistent with circularity ([0,
0.31] and [0, 0.28], see Figures 10.3 and 10.4), which means
their transits match the asteroseismic stellar density. The
relative density intervals are [0.94, 1.29] and [0.80, 1.11]
respectively. Both candidates are likely true planets and KOI-
270 A is a plausible planet–host star. However, with KOI-
270 B presumably very similar to KOI-270 A, we cannot rule

out the planets orbit this star instead. In this case the transits
would still be caused by genuine planets with similar
properties, so we find that KOI-270ʼs two candidates are
indeed planets orbiting either KOI-270 A or KOI-270 B, and
the planets are further referred to as Kepler-449b and
Kepler-449c.

3.3.3. KOI-279

KOI-279 contains three planetary candidates that transit
every 7.5, 15, and 28 days, previously unconfirmed as planets.
For the outer planet, a long period TTV signal was clearly
measured (see Figure 9) and included, while for the inner two
planets no sinusoidal TTVs were included although an
increased scatter in the transit times of the middle planet
was seen.
The reason for the lack of confirmation for this system is the

presence of a second star (at 0.9 arcsec) to which we refer as
KOI-279 B which is significantly fainter and contributes 6%
flux.7 After removing this flux contamination assuming the
candidates orbit KOI-279 A and including the TTV signal for
the outer planet candidate we proceed to measure the orbital
eccentricity. The posterior distributions are reported in
Figures 10.5 –10.7.
We find the outer two planet candidates’ orbits to be tightly

constrained to be circular or close to circular, while the inner
planet similarly appears close to circular but is less tightly
constrained due to its small size. This implies that the stellar
density derived from the candidates’ transits is consistent with
the asteroseismic stellar density (Huber et al. 2013), with
relative densities [0.88, 1.08], [0.90, 1.13], and [0.56, 1.51]
respectively. The range of periods and the TTV signal is further
evidence that the planets orbit the same star. We find that the

Figure 8. Orbital period and planetary radius of planets in our sample and the stellar temperature and age, plotted vs. the measured relative density (where one
indicates a circular orbit).

7
Based on WIYN Speckle images and Keck spectra; Mark Everett and David

R. Ciardi, from https://cfop.ipac.caltech.edu.
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three candidates are indeed planets orbiting KOI-279(A), and
they are subsequently named Kepler-450b, Kepler-450c, and
Kepler-450d.

3.3.4. Kepler-92 (KOI-285)

Kepler-92 contains three planets, of which the inner two (13
and 26 day periods) were validated based on their TTV signal

Figure 9. Observed minus calculated transit times are shown for systems with detected TTVs. A sinusoidal fit to the O C- times is shown.
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(Xie 2014). The eccentricity of the planets could not be
determined due to a mass-eccentricity degeneracy (Xie 2014).
Due to a limited amount of short cadence data, we pick up only
a hint of the TTVs and we choose not to include them.

The planets are consistent with circularity ([0, 0.27] and [0,
0.25] at 68% confidence, respectively). Our eccentricity poster-
iors for the planets are shown in Figure 10.8 (Kepler-92b),
Figure 10.9 (Kepler-92c).

Figure 9. (Continued.)
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Thereʼs a third planetary candidate observed transiting every

49 days, which has not yet been validated or confirmed as a

true planet orbiting Kepler-92. We model the transit under the

assumption that it does. We find a modal eccentricity value of

0.07 (and a 68% confidence interval of [0.03, 0.41], see

Figure 10.10). Adaptive optics observations have revealed two

other stars at 1.4 and 2.3 arcsec, the brightest is estimated to be

5.6 magnitudes fainter in the Kepler bandpass (Adams

et al. 2012) so that their flux contributions are negliglible.

Given the planet candidateʼs period and similar size to the two

confirmed planets, as well as their agreement with the stellar

density for (close to) circular orbits, all planets are likely to

orbit the same star (Kepler-92), and KOI-285.03 is subse-

quently named Kepler-92d.

Figure 10. Posterior distributions of individual planets.

(The complete figure set (66 images) is available.)
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4. DISCUSSION

We discuss two important implications of our eccentricity
distribution here. In Section 4.1 we discuss the influence of
orbital eccentricity on habitability. In Section 4.2 the
consequences of the orbital eccentricity distribution on
exoplanet occurrence rates is discussed.

4.1. Habitability

Earthʼs orbit is almost circular with a current eccentricity (e)
of 0.017. The influence of the orbital eccentricity on
habitability has been investigated using planet climate models
(Williams & Pollard 2002; Dressing et al. 2010). Our results
allow one of the first looks at the orbital eccentricities of small
and potentially rocky planets and indicate that low eccentri-
cities are the rule. In fact we cannot find a clear candidate for a
planet on an elliptic orbit among the 74 planets in our sample.
The few planets with densities away from unity in Figure 5 also
have the largest uncertainties (see Appendix A for a discussion
of individual systems and Table 1 for an overview).

If this extends to planets on longer orbital periods or to
planets orbiting lower mass stars (the planets in our sample are
all outside the habitable zone) then this influences habitability
in two ways. Planets on circular orbits have more stable
climates than planets on eccentric orbits which can have large
seasonal variations, even though large oceans might temper the
climate impact of moderate eccentricities (Williams & Pollard
2002). Second the location of the habitable zone itself depends
on the orbital eccentricity. For moderately eccentric orbits the
outer edge of the habitable zone is increased (Dressing et al.
2010; Spiegel et al. 2010; Kopparapu et al. 2013), i.e.,
moderately eccentric planets could be habitable further away
from the host star than planets on circular planets. However,
our results suggest that this might not occur.

4.2. Occurrence Rates

The eccentricity distribution is a key parameter needed to
reliably estimate planetary occurrence rates inferred from
transit surveys. This is because the transit probability depends
on eccentricity (Barnes 2007). Planets on orbits with
e = 0.5 are 33% more likely to transit, and in the extreme
case of HD 80606b (e = 0.92) (Naef et al. 2001) the transit
probability increased by 640%. A recent estimate based on the
eccentricity distribution derived from RV observations shows
that the overall transit probability changes by 10% (Kipping
2014a). This can significantly change the planet occurrence
estimate, e.g., the number of planets smaller than 4 R⊕ around
cool stars is estimated to 3% precision before the effect of
eccentricity is taken into account (Dressing & Charbonneau
2013). Our analysis shows that neglecting eccentricity is a
valid assumption when considering transiting multiple planet
systems.

Beyond the influence on the global occurrence rate the
eccentricity distribution also influences the relative occurrence
between different types of planets. Because single more
massive planets show a wider range of eccentricities than
multi-planet systems with smaller planets, the occurrence of
larger planets is overestimated compared to smaller planets.
These effects are important when comparing occurrence rates
of different types of planets but have so far not been taken into
account (Petigura et al. 2013; Foreman-Mackey et al. 2014).

5. CONCLUSIONS

We have measured the eccentricity distribution of 74 planets
orbiting 28 stars, making use of photometry alone. For this we
made use of the influence of eccentricity on the duration of
planetary transits. Several complications are avoided by
carefully selecting this sample. Planetary false positives and
third light blending are sidestepped in our selection of
(primarily) confirmed multi-transiting planet systems around
bright host stars. Issues due to inaccurate stellar parameters are
overcome owing to the power of asteroseismology to determine
stellar densities and other stellar parameters. The use of short
cadence data, newly derived orbital periods and a careful
analysis of possible TTVs prevent a bias toward high impact
parameters.
We find that most of the systems we considered are likely to

reside on orbits that are close to circular. The eccentricity is
well-described by a Rayleigh distribution with σ = 0.049 ±
0.013. This is distinctly different from RV measurements
(Wright et al. 2009; Latham et al. 2011; Mayor et al. 2011),
possibly due to the smaller planets in our sample. It is similar to
low eccentricities reported for TTV systems (Hadden &
Lithwick 2014) and to the eccentricities found in the solar
system.
Our findings have important consequences.

1. Constraining orbital eccentricities is an important step
toward understanding planetary formation. Several
mechanisms for eccentricity excitation and damping have
previously been suggested based on evidence of eccentric
orbits from RV observations. If planet–planet scattering
(Ford & Rasio 2008) is important, it appears to result in
low eccentricity in systems with multiple planets, at least
for those systems with low mutual inclinations. This
could be related to the small planet size, the planetary
multiplicity or the orbital distance, or a combination of
these.

2. While no Earth twins are present in our sample, our
findings cover planets with small radii and a wide range
of orbital periods. It seems plausible that low eccentricity
orbits would also be common in solar system analogues,
influencing habitability and the location of the habita-
ble zone.

3. Orbital eccentricities influence planet occurrence rates
derived from transit surveys because eccentric planets are
more likely to transit. Our findings indicate that the transit
probability of multi-planet systems is different from that
of systems with single, massive planets.

4. We have compared the individual eccentricity estimates
with accurately determined stellar parameters, such as the
stellar temperature (Huber et al. 2013; Silva Aguirre et al.
2015) and age (Silva Aguirre et al. 2015), and found no
trend. It would be interesting to compare the eccentricity
measurements with measurements of stellar inclination,
which might be possible using asteroseismology (e.g.,
Chaplin et al. 2013; Lund et al. 2014; Van Eylen et al.
2014) for some stars in our sample.

5. With circular orbits common in systems with multiple
transiting planets, the stellar density can be reliably
estimated from transit observations of such systems. This
can be used to characterize the host stars of such systems
and to rule out planetary false positives. We use this to
validate planets in two systems with planetary candidates
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(KOI-270, now Kepler-449, and KOI-279, now Kepler-
450), as well as one planet in a system with previously
known planets (KOI-285.03, now Kepler-92d).

6. We anticipate that the methods used here will be useful in
the context of the future photometry missions TESS
(Ricker et al. 2014) and PLATO (Rauer et al. 2014), both
of which will allow for asteroseismic studies of a large
number of targets. Transit durations will be useful to
confirm the validity of transit signals in compact multi-
planet systems, in particular, for the smallest and most
interesting candidates that are hardest to confirm using
other methods. For systems where independent stellar
density measurements exist the method will also provide
further information on orbital eccentricities.
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APPENDIX A
INDIVIDUAL PLANET SYSTEMS

Here we discuss the eccentricity posterior measurements for
each star-planet system in our sample in detail. Our posterior
distributions follow the convention of the illustration in
Figure 2 to separate eccentricity measurements with angles in
[0, 180]° from those with [180, 360]w Î , where the former
are encoded with a minus sign, and we show the correlation
with b for reasons discussed in Section 2. All final values are
summarized in Table 1.

In what follows, when best values are reported, they are the
modal value of the distribution. When confidence intervals are
reported, they represent the 68% highest probability density
confidence interval unless stated otherwise.

We note that for individual systems, an unknown angle of
periastron ω influences the uncertainty of the measurement of e
as discussed in Section 2.2.1 and consequentially the
uncertainties on measurements of individual planets are larger
than when looking at the ensemble of planets as a whole (see
Section 3.1).

Kepler-10 (KOI-72) contains two planets. Kepler-10b
(Batalha et al. 2011) is Keplerʼs first rocky planet and has a
short 0.88 day period. Kepler-10c is a super-Earth in a 45 day
orbit (Fressin et al. 2011). A detailed asteroseismic analysis

also revealed that it is one of the oldest exoplanet systems
(10.41 ± 1.36 Gyr) (Fogtmann-Schulz et al. 2014).
We find no evidence of TTVs and present our eccentricity

distributions in Figures 10.11 and 10.12. Due to the small size
of the planets, the eccentricity distribution is degenerate with
impact parameter. However, low eccentricities are clearly
favored for both planets. For Kepler-10b, a circular orbit is
expected because of tidal circularization; we find e [0, 0.19]Î .
For Kepler-10c, the mode of the eccentricity is 0.05, the 68%
confidence interval is [0, 0.22]. Despite Kepler-10cʼs small
size, the planet was detected using RV measurements due to its
high density (Dumusque et al. 2014), and the RV observations
favor a low eccentricity (e [0, 0.14]Î ). Kepler-10 is the only
system in our sample for which RV eccentricity measurements
are available.
Kepler-23 (KOI-168) contains three planets that were

confirmed making use of their timing variations (Ford et al.
2012). With about three times more data available now, we
reanalyze the transit times and fit a sinusoidal TTV model to
the measurements. A TTV signal is visible for all three planets,
which orbit in 7, 10, and 15 days around the host star (see
Figure 9). The observed TTV period of 472 days for Kepler-
23c matches the predicted 470 days for a 3:2 period ratio with
Kepler-23b (Ford et al. 2012).
After removing the TTV signal, we model the planetary

transits. The planets are small (1.7, 3.1, and 2.2 R⊕) and
consequentially, a degeneracy between eccentricity and impact
parameter is observed. Nevertheless, the eccentricities are
likely low, with modal values of 0.06, 0.02, and 0.08,
respectively. The 1 − σ confidence intervals are consistent
with circularity, i.e., [0, 0.31] (Figure 10.13), [0, 0.39]
(Figure 10.14), and [0, 0.31] (Figure 10.15). The TTVs were
fitted using an assumption about circularity but the observed
TTV amplitude was larger than expected and could be caused
by (moderately) eccentric orbits (Ford et al. 2012).
Kepler-25 (KOI-244) contains two planets in a near 2:1

resonance, discovered due to their anti-correlated TTVs
(Steffen et al. 2012). A third, non-transiting planet was
discovered with RV observations (Marcy et al. 2014). The
latter is a large planet (minimum mass 90 ± 14 M⊕) in a long
123 day orbit, best-fitted with an eccentricity of 0.18 ± 0.10
(Marcy et al. 2014). The RV observations point to a low
density for the transiting planets but do not have the sensitivity
to measure eccentricities (Marcy et al. 2014). Due to the fast
stellar rotation Kepler-25 has been a target for Rossiter–
McLaughlin observations despite the small transit depth, and
the star was found to be closely aligned (2° ± 5°) with the
plane of the transiting planets (Albrecht et al. 2013). However,
rotational splittings of the asteroseismic signal of the star find

i 65.4star 6.4
10.6= - , which indicates a slight misalignment (Beno-

mar et al. 2014).
After removing the small TTVs (3.8 and 1.1 minutes

amplitudes, respectively; see Figure 9), we find both planets’
eccentricity to be tightly constrained. Both orbits are consistent
with circularity, and respectively have e [0, 0.06]Î and

e [0, 0.13]Î to 68% confidence. The posteriors are shown in
Figures 10.16 and 10.17. From TTVs a low eccentricity for the
planet pair is also measured (Wu & Lithwick 2013).
Kepler-37 (KOI-245) contains three small planets (Barclay

et al. 2013). The innermost one is the smallest known
exoplanet, similar in size to the moon. We refine its radius to
0.354 ± 0.014 R⊕. We find a circular orbit is likely, with a
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model eccentricity of 0.08 and a 68% confidence interval of [0,
0.29] (Figure 10.18). The initial analysis (Barclay et al. 2013)
yielded measurements of e cos w and e sin w which were
consistent with circularity but were less constraining.

Kepler-37cʼs radius is only 0.7 R⊕ and we find similar
eccentricity constraints as for Kepler-37b (Figure 10.19). The
outer transiting planet possibly has a small but non-zero
eccentricity (e [0.05, 0.22]Î , Figure 10.20), although the orbit
is also consistent with circularity within 2σ.

RV follow-up observations did not detect any of the planet
signals and yield only loose upper limits for the planetary mass;
no additional non-transiting planets were discovered (Marcy
et al. 2014).

Kepler-65 (KOI-85) contains three small planets with short-
periods (2, 6, and 8 day periods) that were previously validated
(Chaplin et al. 2013). A TTV signal in Kepler-65d was
detected but it was noted that uncertainties in the transit times
might be underestimated (Chaplin et al. 2013). We find no
evidence for TTVs in any of the planets. The rotational splitting
in the asteroseismic signal was also analyzed and the host star
was found to be aligned with the orbital plane of the planets
(Chaplin et al. 2013).

We find the eccentricity of all three planets to be consistent
with circularity. The 68% confidence intervals are [0, 0.18], [0,
0.12] and [0, 0.27] for Kepler-65b, Kepler-65c and Kepler-65d
respectively. The full distributions are shown in Fig-
ures 10.21–10.23.

Kepler-68 (KOI-246) contains two transiting planets,
Kepler-68b and Kepler-68c (Gilliland et al. 2013) on 5 and
10 days orbits. An additional large non-transiting planet
(Kepler-68d) in a 625 days orbit with an eccentricity of
0.10 0.04 was discovered (Marcy et al. 2014). The inner
transiting planet has a planet mass of 5.97M⊕ (Marcy
et al. 2014).

The transit duration was previously compared to a stellar
density estimate and both planets were consistent with
circularity, although the outer (transiting) planet could have
an eccentricity of up to 0.2 (Gilliland et al. 2013). We find the
inner planet to have a tightly constrained orbit (e [0, 0.13]Î ),
consistent with circularity. Due to the small size (<1 R⊕) of the
outer transiting planet, its eccentricity is largely unconstrained
and correlated with its impact parameter. The eccentricity
distributions are shown in Figures 10.24 and 10.25. We find no
evidence of TTVs.

Kepler-100 (KOI-41) has three planets that were validated
based on RV measurements (Marcy et al. 2014) which showed
no companion stars. None of the planets were detected in RV,
but upper limits on the planetary mass could be placed.

We find a hint of a TTV signal for the inner two planets
(Kepler-100b and Kepler-100c) but do not include it in our
analysis. Their orbital periods are 6.8 and 12.8 days. The inner
planet is the smallest (1.3 R⊕) and a moderate eccentricity
constraint is placed (e [0, 0.4]Î , Figure 10.26). Kepler-100c is
2.2 R⊕ and has its orbital eccentricity within [0.01, 0.17]
(Figure 10.27).

Kepler-100d (1.9 R⊕, P = 35 days) peaks at a significant
eccentricity (0.38). However, care must be taken when
interpreting this value, because of the large degeneracy with
impact parameter (see Figure 10.28). Depending on the impact
parameters, different eccentricities are possible, although very
large eccentricities (>0.65) are outside the 2σ confidence
interval.

Kepler-103 (KOI-108) contains two planets that were
validated based on RV measurements (Marcy et al. 2014),
although only upper limits on the masses could be placed and
their eccentricities could not be determined. The inner planet
orbits the star in 16 days and has a 3.5 R⊕ radius. The outer
planet is bigger (5.3 R⊕) and has a 180 days period.
Consequentially, only four transits were observed. Never-
theless, a clear TTV signal is measured for both planets (see
Figure 9). The TTVs have periods of 264 and 514 days and
amplitudes of 2.7 and 22.2 minutes, respectively. To our
knowledge these TTVs were previously undetected, although it
was noted that this interesting system warrants a detailed TTV
search (Marcy et al. 2014).
The eccentricity posteriors are shown in Figures 10.29 and

10.30 and the distributions peak at eccentricities 0.025 and
0.027, respectively, while 68% confidence intervals are [0,
0.21] and [0, 0.20].
Kepler-107 (KOI-117) contains four planets that were

validated as part of a large multi-transiting planet validation
effort (Rowe et al. 2014), based on a statistical framework
(Lissauer et al. 2014). The planets orbit on short periods of 3,
5, 8, and 15 days and are all small (1–3 R⊕). We find no
evidence for TTVs.
Despite their small sizes, we find good constraints on the

eccentricity; to 68% confidence, they are: [0, 0.22] (Kepler-
107b, Figure 10.31), [0, 0.28] (Kepler-107c, Figure 10.32), [0,
0.39] (Kepler-107d, Figure 10.33) and [0, 0.19] (Kepler-107e,
Figure 10.34).
Kepler-108 (KOI-119) contains two transiting planets that

were validated (Rowe et al. 2014) based on a statistical
framework (Lissauer et al. 2014). The planets orbit on
relatively long periods of 50 and 190 days. Only seven transits
were observed in short cadence for Kepler-109b, and only two
for Kepler-109c. The constraints on their eccentricity are
shown in Figures 10.35 and 10.36. We find that the inner, giant
planet, is almost certainly slightly eccentric (e [0.1, 0.41]Î ).
The outer planet is consistent with circularity (e [0, 0.23]Î ).
Kepler-109 (KOI-123) contains two transiting super-Earth

planets. Kepler-109b and Kepler-109c orbit on periods of 6.5
and 21 days and were validated statistically (Lissauer et al.
2014; Rowe et al. 2014). RV constraints rule out a rocky
composition for the planets (Marcy et al. 2014).
The posterior eccentricity distributions are given in Fig-

ures 10.37 and 10.38. The eccentricity of Kepler-109b shows a
degeneracy with impact parameter, but is nevertheless
constrained to [0.01, 0.31] with 68% confidence. Kepler-109c
has a modal eccentricity of 0.025 and has a 68% confidence
interval [0, 0.22].
Kepler-126 (KOI-260) contains three transiting planets that

were validated statistically (Lissauer et al. 2014; Rowe et al.
2014). We find evidence of long period TTVs in all three
planets which to our knowledge have not been previously
reported. Our best sinusoidal fits have periods of 2052, 372,
and 1052 days, respectively (see Figure 9).
The inner two planets are small (1.5 R⊕) and orbit in 10 and

21 days. Their eccentricities are constrained to [0, 0.16] and [0,
0.36]. The outer planet has a period of 100 days and a radius of
2.5 R⊕. Its eccentricity is tightly constrained to [0, 0.11]. The
eccentricity distributions are shown in Figures 10.39, 10.40,
and 10.41.
Kepler-127 (KOI-271) contains three planets on 14, 29 and

49 day orbits (1.4, 2.4, and 2.7 R⊕) that were validated
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statistically (Lissauer et al. 2014; Rowe et al. 2014). We find
marginal evidence for TTVs but do not include them in our
analysis. The small size of the inner planet causes a large
degeneracy between e and b causing it to be essentially
unconstrained (see Figure 10.42). For the other two planets, we
find modal values of 0.03 and 0.1 and 1 − σ confidence
intervals [0, 0.17] (Kepler-127c, Figure 10.43) and [0, 0.31]
(Kepler-127d, Figure 10.44).

Kepler-129 (KOI-275) contains two planets that have 16 and
82 day periods. They were validated statistically (Lissauer et al.
2014; Rowe et al. 2014). Only limited amount of short cadence
observations are available, and respectively only 12 and 2
transits are available. No TTV evidence was found. Both
eccentricity posterior distributions (Figures 10.45 and 10.46)
point toward circular orbits: e [0, 0.25]Î and [0, 0.35].

Kepler-130 (KOI-282) contains three transiting planets on
orbits of 8, 27, and 87 days that were validated statistically
(Lissauer et al. 2014; Rowe et al. 2014). Carefully measuring
their transit times we detect TTVs in the inner two planets. The
best sinusoidal fit to the transit times is shown in Figure 9 and
the TTVs have periods of 2000 and 500 days (see Table 2). To
our knowledge these TTVs were not previously reported.

After removing the TTV signal we model the transits. The
inner two planets (Figures 10.47 and 10.48) orbit in circular or
low-eccentricity orbits (e [0, 0.24]Î and [0, 0.28], respec-
tively). For the outer planet, the impact parameter and the
eccentricity are unconstrained and correlated (see Figure 10.49
due to the small transit depth and we caution against blindly
using the modal value: within 2σ, all eccentricities between 0
and 0.89 are allowed.

Kepler-145 (KOI-370) contains two transiting planets
validated statistically (Lissauer et al. 2014; Rowe et al.
2014). The planets were independently confirmed (Xie 2014)
based on a mutual TTV signal. The TTV signal in the inner
planet is only marginally significant, but has a similar period to
that of the outer one, and we choose to include it (see
Figure 9).

The planets orbit on 23 and 43 days periods. The inner
planetʼs transits are too shallow for any meaningful constraints
on eccentricity, which is heavily correlated with impact
parameter (see Figure 10.50). The outer planet favors circular
orbits or small eccentricties, as shown in Figure 10.51, with a
68% confidence interval of [0, 0.22].

Kepler-197 (KOI-623) contains four transiting planets with
periods 5, 10, 15, and 25 days that were validated statistically
(Lissauer et al. 2014; Rowe et al. 2014). All planets are small
(1–1.2 R⊕). We find no evidence of TTVs for any of the
planets.

We find low eccentricities or circular orbits for the three
inner planets: [0, 0.27] (Kepler-197b, Figure 10.52), [0, 0.22]
(Kepler-197c, Figure 10.53), and [0, 0.24] (Kepler-197d,
Figure 10.54). The outer planet shows a small but non-zero
eccentricity with a mode of 0.27 and a 68% confidence interval
[0.21, 0.63]. Given the small transit depth (and large
eccentricity error bar), some caution is required, as unseen
TTVs or a misidentified period could cause this measurement;
however, we find no evidence of this to be the case. The
posterior distribution is shown in Figure 10.55.

Kepler-278 (KOI-1221) contains two transiting planets with
periods of 30 and 51 days, validated statistically (Lissauer et al.
2014; Rowe et al. 2014). We include a TTV signal detected in
the outer planet (see Figure 9), but we note that this is a giant

star (2.9 Re) (Huber et al. 2013) and the light curve shows
significant variability, most likely due to stellar spots.
Consequentially, it is difficult to measure the planetary

transits for this star. The inner planet is most likely close to
circular, with a modal value of 0.03 and a 68% confidence
interval at [0, 0.36] (see Figure 10.56). The outer planet could
be eccentric, but we caution against overinterpreting this result
due to the large degeneracy with impact parameter (Fig-
ure 10.57) and the poor quality of the transit light curves.
Kepler-338 (KOI-1930) contains four planets, with orbital

periods of 9, 13, 24, and 44 days, and was validated statistically
(Lissauer et al. 2014; Rowe et al. 2014). We found no
convincing TTV signal. The inner planet (which is somewhat
confusingly called Kepler-338e) is 1.6 R⊕ and its eccentricity is
constrained to [0, 0.27] (Figure 10.61). The other three planets
are all about 2.5 R⊕ and have similar eccentricity constraints:
[0, 0.31] (Kepler-338b, Figure 10.58), [0, 0.26] (Kepler-338c,
Figure 10.59), and [0, 0.24] (Kepler-338d, Figure 10.60).
Kepler-444 (KOI-3158) contains five transiting planets that

all orbit the host star in a period less than 10 days. This highly
interesting system was characterized and validated very
recently (Campante et al. 2015). All five planets are small
with radii between 0.38 and 0.68 R⊕.
We find no evidence of TTVs and find a clear degeneracy

between b and e due to the small transit depths. The four inner
planets all have 68% confidence intervals consistent with zero
eccentricity: [0, 0.30] (Kepler-444b, Figure 10.62), [0, 0.29]
(Kepler-444c, Figure 10.63), [0, 0.34] (Kepler-444d,
Figure 10.64), and [0, 0.29] (Kepler-444e, Figure 10.65) and
[0, 0.29] (Kepler-444e, Figure 10.65). The outer planet has a
modal value of 0.58, however, we caution against over-
interpreting this due to the large degeneracy with the impact
parameter and the large error bar.

APPENDIX B
SYSTEMS THAT WERE EXCLUDED

Several systems were part of our initial sample but were
excluded from the final sample because the eccentricities could
not reliably be modeled. They are presented here. In all cases,
the presence of TTVs, which could not be adequately removed
using a sinusoidal model, is the cause of their exclusion.
Kepler-36 (KOI-277) consists of two planets in very close

orbits with periods of 13.8 and 16.2 days (Carter et al. 2012).
Their densities are very different, with the inner planet rocky
while the outer planet has a lower density (Carter et al. 2012).
With more data available we reanalyze the transit times and
their large TTV signal and find amplitudes of around three and
two hours respectively (see Figure 9). After removing the
TTVs, significant residuals in the timing variations remain
present, particularly for Kepler-36c. They indicate that a
sinusoidal model may not be adequate to fully remove the large
TTV signal, which is perhaps unsurprising given the close
proximity of the two planets. An alternative to the sinusoidal
model is to directly use the measured times of individual
transits; however, we find that this typically leads to “over-
fitting,” smearing out the folded transits by including noise on
individual timing measurements.
It is possible the eccentricity can be determined from the

transits if a full dynamical model is employed, predicting the
times of transits. This is outside the scope of this work.
Kepler-50 (KOI-262) is a two-planet system with neighbor-

ing orbits on a near 6:5 resonance (7.8 and 9.3 day periods). It
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was validated owing to the planets’ mutual TTV signal (Steffen
et al. 2013). The system was later analyzed and the host star
was found to be well-aligned with the orbital plane of the
planets (Chaplin et al. 2013).

The TTV signal is shown in Figure 9 but shows significant
residuals, indicating a sinusoidal model might not be adequate.
We note that this case is similar to Kepler-36 with two planets
in high order resonance orbits. A full dynamical model seems
to be required to adequately model the TTVs and the
eccentricity, but this is outside the scope of this work and we
further exclude Kepler-50 from our sample.

Kepler-56 (KOI-1241) contains two transiting planets with
mutual TTVs (Steffen et al. 2013). The planetʼs host star was
found to be misaligned compared to the planetary orbital plane
(Huber et al. 2013), which triggered further analysis (Li et al.
2014). The limited amount of data, the data quality and the
small size of the planets make it difficult to measure the TTV
signal and we do not include this planet in our further analysis.

Kepler-128 (KOI-274) consists of two small planets that
orbit close to a 2:3 resonance (periods of 15 and 22 days). A
TTV signal was previously detected (Xie 2014) and we show
our best sinusoidal fit in Figure 9. Due to the small size of the
planets their individual times are measured poorly, and it is
difficult to measure the TTV signal correctly.
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