
ECDH Key-Extraction via Low-Bandwidth

Electromagnetic Attacks on PCs

Daniel Genkin

Technion and Tel Aviv University

danielg3@cs.technion.ac.il

Lev Pachmanov

Tel Aviv University

levp@post.tau.ac.il

Itamar Pipman

Tel Aviv University

itamarpi@tau.ac.il

Eran Tromer

Tel Aviv University

tromer@tau.ac.il

February 16, 2016
(Initial public disclosure: February 9, 2016)

Abstract

We present the first physical side-channel attack on elliptic curve cryptography running on
a PC. The attack targets the ECDH public-key encryption algorithm, as implemented in the
latest version of GnuPG’s Libgcrypt. By measuring the target’s electromagnetic emanations,
the attack extracts the secret decryption key within seconds, from a target located in an adjacent
room across a wall. The attack utilizes a single carefully chosen ciphertext, and tailored time-
frequency signal analysis techniques, to achieve full key extraction.

1 Introduction

Physical side-channel attacks exploit unintentional information leakage via low-level physical behav-
ior of computing devices, such as electromagnetic radiation, power consumption, electric potential,
acoustic emanations and thermal fluctuations. These have been used to break numerous crypto-
graphic implementations; see [And08, MOP07, KJJR11] and the references therein.

Small devices, such as smartcards, RFID tags, FPGAs, microcontrollers, and simple embed-
ded devices, have received much research attention with numerous published side-channel attacks.
However, for more complex “PC” class devices (laptops, dekstops, servers etc.), there are few phys-
ical side-channel attacks demonstrated on cryptographic implementations: key extraction from
RSA using acoustic attacks [GST14], and key extraction from RSA and ElGamal using the ground-
potential and electromagnetic channels [GPT14, GPPT15]. As discussed in those works, attacks on
PCs raise new and difficult challenges compared to attacking small devices: hardware and software
complexity causing unpredictable behavior and noise; high clock speeds of several GHz; and attack
scenarios that force non-invasive attacks and limit signal quality, bandwidth and acquisition time.
In particular, the effective measurement bandwidth is much lower than the target CPU’s clock rate,
making it infeasible to distinguish individual instructions and necessitating new, algorithm-specific
cryptanalytic techniques.

This leaves open the question of what other cryptographic algorithm implementations on PCs
are vulnerable to physical side-channel attacks, and with what range, duration and techniques.

1

mailto:danielg3@cs.technion.ac.il
mailto:levp@post.tau.ac.il
mailto:itamarpi@tau.ac.il
mailto:tromer@tau.ac.il


1.1 Our Contribution

In this paper, we present the first physical side-channel attack on elliptic curve cryptography
running on a PC. Moreover, our attack is non-adaptive, requiring decryption of a single, non-
adaptively chosen ciphertext in order to extract the whole secret key by monitoring the target’s
electromagnetic (EM) field for just a few seconds.

We empirically demonstrate our technique on the ECDH public-key encryption algorithm used
in OpenPGP [CDF+07], as specified in RFC 6637 [Jiv12] and NIST SP800-56A [BCRS13]. The
attacked implementation is the latest version (at the time of writing) of Libgcrypt, the underlying
cryptographic library of GnuPG [Gpga]. To extract the secret key from the observed electromag-
netic leakage, we utilize intricate time-frequency analysis techniques.

We demonstrate the attack’s effectiveness by extracting keys from unmodified laptops running
Libgcrypt, using their EM emanations as measured from an adjacent room through a wall (see
Figure 6).

1.2 Attack Overview

The ECDH decryption consists primarily of multiplying the secret key (a scalar) by the curve point.
The multiplication contains a sequence of point addition, doubling and inversion, and our approach
utilizes the relation between the operands of these operations and the scalar. By asking for a
decryption of a carefully-chosen ciphertext, we cause a specific curve point to appear as the operand
in the elliptic curve additions. This point has a specific structure which causes an easy-to-observe
effect on Libgcrypt’s modular multiplication code. During the decryption of the chosen ciphertext,
we measure the EM leakage of the target laptop, focusing on a narrow frequency band (frequencies
in the range 1.5–2MHz). After suitable signal processing, a clean trace is produced which reveals
information about the operands used in the elliptic curve operations. This information, in turn, is
used in order to reveal the secret key.

Note that our attacks do not assume any correlation between the sequence of elliptic curve
double and add operations and the secret key. In particular, they work even if the scalar-by-point
multiplication is implemented using only point additions.

1.3 Targeted Software and Hardware

Hardware. We target commodity laptop computers. During our experiments, we have tested
numerous computes of various models and makes. The experiments described in this paper were
conducted using a Lenovo 3000 N200 laptops, which exhibit a particularly clear signal. The attacks
are completely non-intrusive: we did not modify the targets or open their chassis.

Software. We focus on Libgcrypt, which is popular cryptographic library that includes elliptic
curve cryptography. Libgcrypt is part of the GnuPG code base [Gpga], and is used in particular by
GnuPG 2.x, a very popular implementation of the OpenPGP standard [CDF+07] for applications
such as encrypted mail and files. Libgcrypt is also used by various other applications. We targeted
Libgcrypt 1.6.3 (the latest versions at the time of writing), compiled with its default options using
MinGW GCC version 4.6.2 [Min].

Current Status. We worked with the developers of Libgcrypt and GnuPG to evaluate and
deploy countermeasures preventing the attacks described in this paper (CVE 2015-7511). GnuPG’s
Libgcrypt 1.6.5, containing such countermeasures, was released simultaneously with the public
posting of our results.

2



Chosen Ciphertext Injection. Our attack requires decryption of chosen ciphertexts. Conve-
niently, GnuPG and Libgcrypt are used by various applications, where they are used to decrypt
externally-controlled inputs (the list of GnuPG frontends [Gpgb] contains dozens of such applica-
tions). One concrete attack vector was observed in [GST14], where Enigmail [Eni], a plugin for
the Mozilla Thunderbird e-mail client, automatically decrypts incoming emails by passing them to
GnuPG. Thus, it is possible to close the attack loop by remotely injecting the chosen ciphertext re-
quired by our attack into GnuPG via PGP/MIME-encoded e-mail [ETLR01]. Similar observations
hold for the GnuPG Outlook plugin, GpgOL.

1.4 Related Work

For small devices, side-channel attacks have been extensively demonstrated, on numerous cryp-
tographic implementations, using various channels, and in particular electromagnetic emanations
starting with [AARR02, GMO01, QS01]. See [And08, KJJR11, MOP07] and the references therein.

Physical Attacks on ECC. Since the first (simulated) attacks by Coron [Cor99], there have
been numerous physical side-channel attacks on implementations of Elliptic Curve Cryptography
(ECC) on small devices; see the surveys [FGM+10, FV12] and the references therein. However,
such attacks typically target small devices and either utilize subtle physical effects which are only
visible at bandwidths exceeding the device’s clock rate, or attack naive implementations (such as
the double-and-add algorithm). Three notable exceptions to the above approach are the attacks of
Okeya and Sakura [OS02] and Walter [Wal04] attacking the Oswald-Aigner scalar randomization
algorithm [OA01] assuming only the ability to distinguish between point addition and multiplica-
tion; the Refined Power Analysis attack of Goubin [Gou03]; and the Zero-Value Point Attacks of
Akishita and Takagi [AT03].

Unfortunately, all of the above approaches have significant drawbacks in the case of Libgcrypt
executed on PCs. Recording clock-rate scale signals (required for most attacks) from a full-fledged
PCs computer running a GHz-scale CPU is difficult and requires expensive, cumbersome, and deli-
cate lab equipment. The attacks of Okeya and Sakura [OS02] andWalter [Wal04] are only applicable
to the Oswald-Aigner scalar randomization algorithm [OA01] (utilizing its non-determinism across
various executions), which is not used by Libgcrypt. Finally, the attacks of Goubin [Gou03] and
Akishita and Takagi [AT03] utilize adaptive chosen ciphertexts, requiring hundreds of ciphertexts
in order to extract the secret scalar. Since in order to obtain a noise-free aggregate-trace several
traces are required per ciphertext, overall the attacks of [Gou03] and [AT03] require the execution
of several thousands of scalar-by-point multiplication operation, which is easily detectable.

Physical Side-Channel Attacks on PCs. Physical side-channel leakage from PCs have been
demonstrated via voltage on USB ports [OS06] and power consumption [CMR+13]. Cryptograph-
ically, physical side-channels were exploited for extracting keys from GnuPG’s RSA and ElGamal
implementations, using the acoustic channel [GST14], the chassis-potential channel [GPT14] and
the electromagnetic channel [GPT14, GPPT15] (across several GnuPG versions, including both
square-and-always-multiply and windowed exponentiation). On a related class of devices, namely
smartphones, Goller and Sigl [GS15] showed electromagnetic attacks on square-and-sometimes-
multiply RSA.

Software Side-Cache Attacks on GnuPG. Software-based side-channel key-extraction attacks
on PCs were demonstrated using timing differences [BB05, BT11] and contention for various mi-
croarchitectural resources, such as caches [Ber05, Per05, OST06]. Recently such attacks were shown
against GnuPG’s implementation of RSA and ElGamal [YF14, YLG+15], as well as elliptic-curve
DSA [BvdPSY14, vdPSY15]. The latter attacks rely on the ability to distinguish between point

3



doubling and point addition via cache access patterns, in order to mount a lattice attack on DSA
using partially known nonces. However, such types of attacks are not applicable for ECDH.

2 Cryptanalysis

2.1 Libgcrypt’s Elliptic Curve Encryption Implementation

We attack OpenPGP’s elliptic-curve public-key encryption scheme, called ECDH encryption, as
specified in RFC 6637 [Jiv12] and defined as method C(1e,1s,ECC CDH) in NIST SP800-56A [BCRS13].
ECDH encryption is essentially Diffie-Hellman key exchange over a suitable elliptic curve, where
one party’s Diffie-Hellman message serves as that party’s public key. The encryption operation
runs the other party’s part of the key exchange protocol against the public key, yielding a shared
key. Decryption recomputes that shared key.

More explicitly, the ECDH encryption combines an elliptic-curve based Diffie-Hellman key ex-
change protocol and a symmetric-key cipher (typically AES), as follows. Given an elliptic curve
group generator G, key generation consists of generating a random scalar k. The secret key is then
defined to be k while the public key is set to be [k]G (here and onward, we use additive group nota-
tion, and [k]G denotes scalar-by-point multiplication). Encryption of a message m is performed by
generating a random scalar k′, computing [k′]([k]G) and using the result in order to derive (using
a key derivation function) a key x for the symmetric encryption algorithm. The message m is then
symmetrically-encrypted using x, resulting in a ciphertext c′. The overall ciphertext is set to be
c = (c′, [k′]G). Decryption of a ciphertext c = (c′, [k′]G) is done by computing [k]([k′]G), applying
the key derivation function on the result to obtain a key x′ for the symmetric encryption algorithm,
and decrypting c′ using x′, resulting in a message m′. Since [k]([k′]G) = [k′]([k]G), we obtain that
x′ = x, resulting in m′ = m.

Our attack deduces the secret key k from the side-channel leakage during the scalar-by-point
multiplication [k]G′ in the decryption.

Libgcrypt’s Scalar-by-Point Multiplication. We now review Libgcrypt’s implementation of
the scalar-by-point multiplication operation which is used during the above-outlined ECDH encryp-
tion protocol. In order to perform the elliptic curve group operations as well as the large integer
operations, Libgcrypt uses an internal mathematical library called MPI (based on GMP [Gmp]).
For Weierstrass curves, Libgcrypt performs the scalar-by-point multiplication operation using the
standard double-and-add algorithm (Algorithm 1), maintaining the scalar in non-adjacent form
(NAF) which we now discuss.

Non-Adjacent Form Representation. Introduced by Reitwiesner [Rei60], the non-adjacent
form is a common generalization of the standard binary representation of integers, allowing for both
positive and negative bits. For example, the 4-digit NAF representation of 7 is (1,0,0,−1) compared
to its binary representation (0,1,1,1). The main advantage of using a NAF representation is that
it minimizes the number of non-zero digits from about 1/2 for the binary representation to about
1/3. Since every non-zero digit requires a point addition operation, using a NAF representation
minimizes the number of point additions. Thus, most modern representations of elliptic curve
cryptography typically represent scalars in using NAF.

We proceed to describe Libgcrypt’s point addition operation, used in lines 6 and 9. Later in
Section 2.2 we will show how to exploit Libgcrypt’s implementation of point addition in order to
achieve key extraction.

Libgcrypt’s Point Addition. Libgcrypt stores elliptic curve points using projective coordinates.
Each point is a tuple (x, y, z) where each element is a large integer stored using Libgcrypt’s arith-

4



Algorithm 1 Libgcrypt’s scalar-by-point multiplication operation (simplified).

Input: A positive scalar k and an elliptic-curve point P, where kn−1 · · · k0 is the NAF representation
of k, that is k =

∑
n−1

i=0
2i · ki and ki ∈ {−1,0,1} for all i = 0, · · · , n− 1.

Output: [k]P.
1: procedure point mul(k,P)
2: A← P

3: for i← n− 1 to 0 do

4: A← [2]A
5: if ki = 1 then

6: A← A+ P

7: if ki = −1 then

8: P′ ← [−1]P
9: A← A+ P′

10: return A

Algorithm 2 Libgcrypt’s point addition operation (simplified).

Input: Two points P1 = (x1, y1, z1) and P2 = (x2, y2, z2) in projective coordinates on an elliptic-
curve based group of order p.

Output: A point P3 = (x3, y3, z3) in projective coordinates such that P3 = P2 + P1 .
1: procedure point add(P1,P2)
2: if z1 = 0 then

3: return P2 ⊲ P1 is at infinity

4: if z2 = 0 then

5: return P1 ⊲ P2 is at infinity

6: l1 ← x1z
2
2 mod p

7: l2 ← x2z
2
1 mod p

8: l3 ← l1 − l2 mod p
9: l4 ← y1z

3
2 mod p

10: l5 ← y2z
3
1 mod p

11: l6 ← l4 − l5 mod p
12: if l3 = 0 and l6 = 0 then

13: return (1,1,0) ⊲ P1 is the inverse of P2 thus the result is infinity

14: l7 ← l1 + l2 mod p
15: l8 ← l4 + l5 mod p
16: z3 ← z1z2l3 mod p
17: x3 ← l26 − l7l

2
3 mod p

18: l9 ← l7l
2
3 − 2x3 mod p

19: y3 ← (l9l6 − l8l
3
3)/2 mod p

20: return (x3, y3, z3)

metic library, MPI. Large integers are stored by MPI as arrays of limbs, which are 32-bit words (on
the x86 architecture used in our tests). Algorithm 2 is a pseudocode of Libgcrypt’s point addition
operation. Notice the multiplication by y2 in line 10. We will now show how this multiplication
can be exploited in order to distinguish between −1 and 1 valued NAF digits of k, resulting in a
complete key extraction.

5



2.2 ECDH Attack Algorithm

Let DA-sequence denote the sequence of double and add operations performed in lines 4, 6 and 9 of
Algorithm 1. Notice that it is possible to deduce all the locations of zero valued NAF digits of k by
simply observing the DA sequence performed by Algorithm 1. However, since k is given in a NAF
representation, recovering the DA-sequence alone is not enough for achieving key extraction: there
remains an ambiguity between -1 and 1 valued NAF digits of k, since point addition is executed in
both cases (in addition to point doubling).

Observing Point Inversions. An immediate approach for distinguishing between 1 and −1
valued NAF digits would consist of attempting to observe the point inversion operation performed
in line 8. However, for Weierstrass curves, inverting a point P = (x, y) on an elliptic-curve group
of order p, simply requires computing the inverse of y modulo p. This operation is too fast for us
to observe in our low-bandwidth setting. Moreover, fact that point inversion is performed at every
−1-valued digit of the NAF form of k constitutes a side-channel weakness in Libgcrypt’s point
multiplication code, which is unlikely to be present in a more robust implementation. We thus do
not utilize this observation for our attack.

We proceed to describe how, by using a chosen ciphertext, an attacker can distinguish be-
tween the add operations performed by line 6 and the add operations performed by line 9. This
information, together with the DA-sequence is enough to recover the secret scalar k.

Distinguishing Between the NAF Digits of k. Let Q = (x, y) be a point with small y
(containing few limbs) and a random-looking (full-sized) x. Consider the chosen ciphertext (c′,Q)
for some c′, provided as an input to Libgcrypt’s ECDH decryption. Since Libgcrypt’s internal
representation uses projective coordinates, the point Q converted to a projective representation
P = (x, y,1) and it is then passed to Algorithm 1. Next, P is used in lines 6 and 9 thereby affecting
the leakage produced by each iteration of the main loop of Algorithm 1 as follows.

1. ki = 0. In this case only a point doubling operation is performed by Algorithm 1. Thus,
as mentioned before, these digits are immediately recoverable from the DA-sequence since any
double operation which is not followed by an add operation corresponds to a zero valued digit
of k.

2. ki = 1. In this case P is passed as is to the point addition routine (Algorithm 2) as its second
argument P2. Since y is small, the first operand, y2, of the multiplication in line 10 is only a few
limbs long.

3. ki = −1. In this case the point P is first inverted by line 8. For Weierstrass curves, point
inversion corresponds to computing the modular inverses of the y coordinate, so the y coordinate
of P′ is random looking. This P′ is passed to the point addition routine (Algorithm 2) as its
second argument P2. This makes the first operand, y2, of the multiplication in line 10 be random
looking and (likely) full length.

By observing the side-channel leakage produced by Algorithm 1, we will be able to recover the
DA-sequence, and also distinguish, in each invocation the multiplication in line 10 of Algorithm 2,
whether the first operand is short or full length. As explained above, this information is enough
in order to recover the secret scalar k.

2.3 Attacking the Always-Add Algorithm

In Libgcrypt’s point addition (Algorithm 1), the point doubling operation in line 4 is implemented
using a dedicated function that is easily distinguished, via the side channel, from point addition.

6



A natural (and common) countermeasures is to use a the variant of Algorithm 1 where the point
doubling operation is implemented using point addition, i.e., replace line 4 with A← A+ A.

In this section we analyze this “Always-Add” algorithm, and in particular, do not assume that it
is possible to immediately distinguish the point additions performed by lines 6 and 9 from the point
doublings performed by line 4. As we show, it is possible to utilize two chosen ciphertexts in order
to recover the DA-sequence as well as, for every addition operation, whether the corresponding
NAF digit is 1 or −1.

Revealing the 1 Digits of k. As in Section 2.2, the attacker requests a decryption of a point
P with small y coordinate. As discussed in Section 2.2, this creates a distinguishable leakage every
time that ki = 1 during the execution of the main loop of Algorithm 1, thereby revealing the
locations in the DA-sequence of all such digits.

Revealing the −1 Digits of k. Next, the attacker selects a point P whose inverse has a small
y coordinate, and requests an ECDH decryption of (c,P) for some arbitrary value c. During the
main loop of Algorithm 1 every time that ki = −1 the inversion of P, denoted by P′, is passed to
the point addition routine. Since P was chosen such that P′ has a small y coordinate, as discussed
in Section 2.2 this creates a distinguishable leakage every time that ki = −1 during the main
loop of Algorithm 1, thereby revealing the locations in the DA-sequence of all such digits. Key

Extraction. At this point the attacker has recovered the locations in the DA-sequence of all
point additions as performed by lines 6 and 9 of Algorithm 1. Moreover, for each point addition,
the attacker has recovered the corresponding value of ki. Thus, all remaining operations in the
DA-sequence are in fact points doublings. Using this information at hand, the scalar k can be
recovered.

3 Signal Analysis and Experimental Results

3.1 Experimental Setup

This section describes the lab setup used for characterizing the EM leakage from target computers at
frequencies of 0–5MHz. We have also constructed a more realistic setup, described in see Section 3.3.
Probe. To measure the EM leakage from the target laptop with high spatial precision, we used

a Langer LF-R 400 near field probe (a 25mm loop probe, 0–50MHz). The location of the probe
relative to the laptop body greatly affects the measured signal. In our experiments, the best signal
quality was obtained close to the CPU’s voltage regulator, which on most laptops is located in the
rear left corner. We thus placed the probe at that position, without any chassis intrusion or other
modification to the target laptop.

Amplification and Digitization. To amplify the signal measured by the probe we used a (cus-
tomized) Mini-Circuits ZPUL-30P amplifier, providing 40 dB of gain. The output of the amplifier
was then low-pass filtered at 5MHz and digitized using a National-Instruments PCI 6115 data
acquisition device sampling at 10Msample/sec with 12 bits of ADC resolution.

3.2 Signal Analysis

Scalar-Dependant Leakage. As an initial confirmation of the existence of scalar-dependent
leakage from the point multiplication, Figure 1 shows five distinct leakage patterns, obtained by
multiple invocation (in sequence) of Algorithm 1 using the same point P with small y coordinate
and five different values of the scalar k. Such key-dependent leakage was observed on many target
laptops, often in multiple frequency bands.

7



Figure 1: EM measurement (0.5 sec, 1.95-2.15MHz) of five scalar-by-point multiplication opera-
tions using the NISTP-521 curve executed on a Lenovo 3000 N200 laptop. The scalar was overridden
to be the 521-digit number obtained by repeating the pattern written to the right. In all cases, the
curve point had the same random-looking x coordinate and a small y coordinate.

Observing Figure 1, notice that for periodic scalars the spectral signature of the leakage signal
has strong side-bands surrounding a central carrier frequency. This is a strong indication of a
key-dependent modulation signal on a carrier frequency (analogously to modulations observed in
[GPT14, GPPT15])

Signal Acquisition. We picked a chosen ciphertext as explained in Section 2.2, and triggered
Libgcrypt ECDH decryption of this ciphertext on various target laptops. The ECDH keys were
chosen randomly, on the the NIST P-521 elliptic curve. We measured the target’s electromagnetic
emanations during decryption, as explained in Section 3.1, and stored these recorded traces for
offline signal processing.

Demodulation. We proceed to describe our signal processing methodology demodulating the
acquired signal and deducing the DA-sequence, as well as for distinguishing between −1 and 1 NAF
digits, for complete key extraction.

For each target, we manually scanned the spectrum and chose the carrier frequency exhibiting
the clearest modulation side-bands. After analog filtering and sampling, we used a digital band pass
filter to suppress all frequencies outside the band of interest. As in the case of [GPT14, GPPT15],
the key-dependent signal turned out to be frequency modulated (FM) on the carrier signal. Demod-
ulation was performed using the digital Hilbert transform, followed by further filtering. Figure 2(a).
shows an example of the resulting trace.

Obtaining a Clear Trace. Similarly to [GPT14, GPPT15], parts of each demodulated decryption
trace were occasionally corrupted by strong disturbances, e.g., due to timer interrupts in the target
laptop. But even ignoring these, a simple visual inspection of the trace in Figure 2(a) reveals no
immediately obvious patterns or clues about the scalar k or the inner workings of Algorithm 1. In
order to obtain a clearer trace and remove the interrupts, we used a multi-step procedure involving
the aggregation of several dozen recorded decryption traces, as follows.

Interrupts and Drifts. To aggregate traces, we first attempted simple alignment via correlation.
Unfortunately, the traces exhibited slow random drifts relative to each other, so that full alignment
of entire traces proved difficult. In addition, interrupts induced further random delays in each trace
relative to other traces, as well as signal distortion. See Figure 2(b).

Initial Alignment. Despite the relative distortion between decryption traces, we did notice that
a short trace segment immediately preceding each decryption operation was relatively similar across

8



(a) Part of a trace obtained during a single decryption (af-
ter FM demodulation and filtering). Note the interrupt
corrupting part of the signal.

(b) Two demodulated traces obtained during two de-
cryption operations, using the same ciphertext and
key. Note the loss of alignment due to the interrupt.

Figure 2: Frequency demodulated traces obtained from a single decryption operation.

all measurements, rarely having any interrupts or drifts. We thus used this common segment to
perform an initial alignment of all decryption traces, using simple correlation, as follows. We first,
chose a reference trace at random and aligned the initial segment of all other traces relative to it.
If the initial segment of the reference trace was corrupted due to noise or distortion, the current
reference trace was discarded and a new one chosen. If the initial segment of one of the other traces
did not align well with that of the reference trace, it was also discarded.

Gradual Alignment Correction. After achieving initial alignment of all decryption traces, we
compensated for the gradual drifts of the traces relative to the reference trace by performing indi-
vidual alignment correction as follows. Each trace was independently compared with the reference
trace, by simultaneously inspecting it from beginning to end. Periodically, the relative phase lag
between the two traces was estimated by cross-correlating a short local section in both traces. Any
detected misalignment was immediately corrected. If an interrupt was detected in one of the traces
during this process, the delay it induced was also corrected. Interrupts are easily detectable since
they cause large frequency fluctuations. The above process was performed independently for each
trace, always in respect to the original reference trace.

Trace Aggregation. Even after the alignment correction process described above, direct aggre-
gation of the traces did not produce an aggregated trace with sufficient fidelity. In order to fine-tune
the alignment and facilitate the aggregation process, we broke each trace down into a large number
of shorter segments, each corresponding to roughly 20 double and add operations. These were in
turn aligned again across all traces via correlation with a corresponding randomly-chosen reference
segment. After this final alignment step, segments were aggregated across all traces via a mean-
median filter hybrid. For each segment and at each time point, the samples across all traces were
sorted, and several lowest and highest values discarded. The rest of the samples were consequently
averaged, resulting in distortion-free aggregate trace segments. Figure 3 shows an example of such
an aggregate segment. The individual double and add operations can now clearly be seen.

Key extraction. For key extraction, we must deduce from each aggregated segment the partial
DA-sequence it contains, as performed by Algorithm 1. Moreover, for each addition operation
in the partial DA-sequence, we must also somehow distinguish whether the corresponding NAF
digit is 1 or −1. Obtaining this information will result in several dozen sequences of trinary bits
each representing a fragment of the NAF representation of the secret constant k. To facilitate the
reconstruction of k from its fragments, we chose to take the aggregate trace segments mentioned in
the previous section to be largely overlapping. In such a case, consecutive fragments of the NAF
representation of k will have many overlapping bits, allowing for a unique reconstruction.

9



Figure 3: Part of an aggregated trace obtained from several decryption operations during our
attack. The double operations is marked with D and the add operations are marked with the
corresponding bit of ki (either 1 or −1). The red arrows mark the differences between additions
performed by lines 6 and 9 of Algorithm 1. Notice that the difference occurs at the begining of
each addition operation, as expected from Algorithm 2.

We now describe the process of extracting the partial DA-sequence from each aggregated segment
as well as the process of determining whether the corresponding NAF digit is 1 or −1.

Extracting the Partial DA-Sequence. Although the sequence of double and add operations
can be identified in Figure 3 by careful observation, it is not clear how it can be extracted au-
tomatically and reliably. Attempting this in the (post-FM-demodulation) time domain appears
difficult since both double and add operations are comprised of largely similar peaks. Instead, we
utilize an alternative approach, utilizing the information present in the (post-FM-demodulation)
frequency domain. The top and middle parts of Figure 4 show an aggregated segment along with
its corresponding spectrogram. It can be seen that the addition and doubling operations generate
energy in two mostly separate frequency bands. We consequently focus on the upper band which
contains most of the energy of addition operations, and filter each aggregated segment around
this frequency-band. Notice that each doubling operation also contributes some small amount of
energy to this band, which may create false positives. In order to reliably extract the timings of
all addition operations, we multiply the energy in the upper band with its own derivative with
respect to time. In this manner we are able to enhance energy peaks that are already both strong
and sharply-rising, and attenuate any other peaks. After additional smoothing and equalization,
we obtain the trace in the bottom part of Figure 4 in which the occurrences of addition operations
are clearly visible. The timings of doubling operations are then inferred by the time-lapse between
additions, thus recovering the partial DA-sequence present in each aggregated segment.

Distinguishing Between 1 and -1. While the spectrogram in Figure 4 proved very useful in
identifying sequences of double and add operations, it is far less effective in determining whether
the NAF digit corresponding to an add operation is 1 or −1. The leakage induced by our chosen ci-
phertext is slight and only affects one of several modular multiplications performed by Algorithm 2.
Since the leakage is so short lived, it is difficult to differentiate between the frequency signatures
of the two cases. In order to overcome the issue we use the exact timings of the add operations
(which are already known from the previous step). For each add operation we zoom in on each
addition operation in the original aggregated trace using the timings obtained from the previous
step. In this manner we discard anything unrelated to the addition operation itself. We then plot a
spectrogram using a large time window, thereby increasing the frequency resolution at the price of
time resolution. This reveals consistent differences between addition operations corresponding to 1
and −1 NAF digits, in two frequency bands, see Figure 5. This difference allows us to consistently
differentiate between the two add operations (corresponding to 1 and −1 NAF digits), resulting in
a reliable key extraction.

10



Figure 4: Several stages of our approach for distinguishing between double and add operations.
The topmost figure is the aggregated segment corresponding to the bottom two figures, with the
locations of addition operations marked. The middle figure is the spectrogram of the aggregated
segment, where blue denotes frequencies with low-energy and red denotes frequencies with high
energy. In this figure the horizontal frequency is time (0-1.6msec) while the vertical axis is frequency
(0–400 kHz). The bottom figure gives the final result of the processing, clearly showing the locations
of the addition operations.

Overall Attack Performance. We applied our attack to randomly-generated ECDH keys over
the NIST P-521 elliptic curve. By measuring the EM emanations of a Lenovo 3000 N200 target, we
have extracted the secret scalar except its first 5 NAF digits, with an error of two digits. During
the attack we have used traced obtained form 75 decryption operations, each lasting about 0.05 sec,
yielding a total measurement time of about 75 · 0.05 = 3.75 sec.

3.3 Measuring the EM Leakage Through a Wall

In order to eavesdrop on the EM leakage emanating from target computers in surrounding rooms,
we have constructed a more portable experimental setup which we now discuss.

Antenna. We have used an Aaronia Magnetic Direction Finder MDF 9400 antenna, designed for
9 kHz–400MHz. This is essentially a tuned loop antenna.

Amplification and Digitization. The signals produced by the antenna were amplified first by
a Mini-Circuits ZFL-1000 amplifier and then by a (customized) Mini-Circuits ZPUL-30P amplifier,
providing a total of gain of approximately 60 dB (at the frequency of interest). The resulting signal
was then low-pass filtered at 5MHz and digitized using an Ettus Research USRP N200 software
defined radio, equipped with a LFRX daughter board, at 10Msample/sec.

Target Placement. For this experiment, the target laptop was placed in a room adjacent to
the attacker’s experimental setup, separated by a standard drywall (15 cm thick, reinforced with
metal studs). The location and orientation of the antenna greatly affects the resulting signal. In our
experiments, we have placed the antenna on the opposite side of the wall from the target computer’s
voltage regulator, with the antenna’s loop plane parallel to the wall surface. See Figure 6.

Overall Attack Performance. Applying our attack and signal processing techniques to a target

11



(a) An aggregated segment of an addition operations cor-
responding to a 1 NAF digit

(b) An aggregated segment of an addition operations cor-
responding to a −1 NAF digit

Figure 5: Zoomed-in views (bottom) and spectrograms (top) of add operations corresponding to
1 and -1 NAF digits. Note the energy difference in the 50–125 kHz band between the two signals.
This difference is consistent across all add operations, and can be used to differentiate between
them.

laptop (Lenovo 3000 N200) located in the adjacent room, we have successfully extracted the secret
scalar of a randomly generated ECDH NISTP-521 key except its first 5 NAF digits and with an error
of two digits. For the attack we have used traces collected by measuring the target’s EM leakage
during 66 decryption operations, each lasting about 0.05 sec. This yields a total measurement time
of about 3.3 sec.

4 Conclusion

This paper demonstrates the first side-channel attack on PC implementations of elliptic curve
cryptology. Our techniques do not assume the leakage of secret-key material via the sequence of
elliptic curve double and add operations. Instead our attacks rely on a strong correlation between
the operands of elliptic curve addition operation and the secret key. By injecting carefully chosen
ciphertexts, we make the operands to Libgcrypt’s multiplication routine highly distinguishable,
even by low-bandwidth measurements. Since the operands of the elliptic curve addition operation
are highly correlated with the secret key, we are able to completely recover the key within only a
few seconds of measurements.

Software Countermeasures. Our attacks extract the secret key by observing the leakage created
during the decryption of a carefully chosen ciphertext (curve points) which creates some mathemat-
ical structure in the operands of the elliptic curve addition operation. We now review the common
set of countermeasures for preventing such chosen ciphertext attacks, see [FGM+10, FV12] for
extended discussions.

Scalar Randomization and Splitting. Many side-channel attacks relay on averaging the leakage
during several decryption operations on order to achieve key extraction. A scalar randomization
countermeasure [Cor99] prevents such averaging by adding to the scalar a random multiple of
the group order before performing the scalar-by-point multiplication operation. This changes the

12



(a) Attacker’s setup for capturing EM emanations. Left to right:
power supply, antenna on a stand, amplifiers, software defined radio
(white box), analysis computer.

(b) Target (Lenovo 3000 N200), performing
ECDH decryption operations, on the other
side of the wall.

Figure 6: Attacking a target computer in an adjacent room, across a wall.

sequence of elliptic curve double and add operations performed during different decryption opera-
tions, thus hindering the averaging operation. Another common and similar countermeasure splits
the secret scalar k in into n parts k1, · · · , kn such that k =

∑
n

i=1
ki, performs the scalar-by-point

multiplication operation separately on each ki and them combines the result [CJ03].
While such a countermeasure is indeed effective against our attack (since it requires traces

obtained from several decryption operations), it will not stop chosen ciphertext attacks that only
rely on a single trace for key extraction.

Point Blinding. This method protects the scalar k multiplied with a ciphertext point P, by first
generating a random point R, computing k(P+R) and then subtracting kR from the result [Cor99].
Such a countermeasure will completely block chosen ciphertext attacks since the attacker is no
longer able to carefully chose a point P to be multiplied with k. However, the effect on performance
of this countermeasure is often significant, since now two scalar-by-point multiplication operations
have to be performed per decryption.

Future Work. While in the past few years there have been several physical key-extraction attacks
on full fledged-PC computers [GST14, GPT14, GPPT15], all of these attacks relied on a carefully
chosen ciphertext and targeted various public key encryption schemes. We pose, as intriguing open
problems, the challenges of non-chosen ciphertext attacks as well as attacking other cryptographic
primitives (such as symmetric encryption). Finally, our attacks utilized traces obtained from about
70 decryption operations in order to extract the secret key. We pose the task of minimizing this
number as another open problem.

13



Acknowledgments

We thank Werner Koch, lead developer of GnuPG, for the prompt response to our disclosure and
the productive collaboration in adding suitable countermeasures.

This work was sponsored by the Check Point Institute for Information Security; by the European
Union’s Tenth Framework Programme (FP10/2010-2016) under grant agreement no. 259426 ERC-
CaC, by a Google Faculty Research Award, by the Israeli Ministry of Science and Technology;
by the Israeli Centers of Research Excellence I-CORE program (center 4/11); by the Leona M. &
Harry B. Helmsley Charitable Trust; and by NATO’s Public Diplomacy Division in the Framework
of ”Science for Peace”.

References

[AARR02] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi. The
EM side-channel(s). In Workshop on Cryptographic Hardware and Embedded Systems
(CHES) 2002, pages 29–45. Springer, 2002.

[And08] Ross J. Anderson. Security Engineering — A Guide to Building Dependable Dis-
tributed Systems (2nd ed.). Wiley, 2008.

[AT03] Toru Akishita and Tsuyoshi Takagi. Zero-value point attacks on elliptic curve cryp-
tosystem. In International Conference on Information Security (ISC) 2003, pages
218–233, 2003.

[BB05] David Brumley and Dan Boneh. Remote timing attacks are practical. Computer
Networks, 48(5):701–716, 2005.

[BCRS13] Elaine Barker, Lily Chen, Allen Roginsky, and Miles Smid. NIST SP 800-56A: Rec-
ommendation for pair-wise key establishment schemes using discrete logarithm cryp-
tography (revision 2), 2013.

[Ber05] Daniel J. Bernstein. Cache-timing attacks on AES. http://cr.yp.to/papers.html#
cachetiming, 2005.

[BT11] Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still practical. In
ESORICS 2011, pages 355–371. Springer, 2011.

[BvdPSY14] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. ”ooh aah... just
a little bit” : A small amount of side channel can go a long way. In Cryptographic
Hardware and Embedded Systems (CHES) 2014, pages 75–92, 2014.

[CDF+07] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. OpenPGP message
format. RFC 4880, November 2007.

[CJ03] Mathieu Ciet and Marc Joye. (virtually) free randomization techniques for elliptic
curve cryptography. In International Conference Information and Communications
Security (ICICS) 2003, pages 348–359. Springer, 2003.

[CMR+13] Shane S. Clark, Hossen A. Mustafa, Benjamin Ransford, Jacob Sorber, Kevin Fu, and
Wenyuan Xu. Current events: Identifying webpages by tapping the electrical outlet.
In ESORICS 2013, pages 700–717. Springer, 2013.

[Cor99] Jean-Sébastien Coron. Resistance against differential power analysis for elliptic curve
cryptosystems. In Cryptographic Hardware and Embedded Systems (CHES) 2002,
pages 292–302, 1999.

14

http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming


[Eni] The Enigmail Project. Enigmail: A simple interface for OpenPGP email security.
URL: https://www.enigmail.net.

[ETLR01] M. Elkins, D. Del Torto, R. Levien, and T. Roessler. MIME security with OpenPGP.
RFC 3156, 2001. URL: http://www.ietf.org/rfc/rfc3156.txt.

[FGM+10] Junfeng Fan, Xu Guo, Elke De Mulder, Patrick Schaumont, Bart Preneel, and Ingrid
Verbauwhede. State-of-the-art of secure ECC implementations: A survey on known
side-channel attacks and countermeasures. In Proceedings of the 2010 IEEE Inter-
national Symposium on Hardware-Oriented Security and Trust (HOST) 2010, pages
76–87, 2010.

[FV12] Junfeng Fan and Ingrid Verbauwhede. An updated survey on secure ECC implemen-
tations: Attacks, countermeasures and cost. In Cryptography and Security: From
Theory to Applications - Essays Dedicated to Jean-Jacques Quisquater on the Occa-
sion of His 65th Birthday, pages 265–282, 2012.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analysis:
concrete results. In Workshop on Cryptographic Hardware and Embedded Systems
(CHES) 2001, pages 251–261. Springer, 2001.

[Gmp] GNU multiple precision arithmetic library. URL: http://gmplib.org/.

[Gou03] Louis Goubin. A refined power-analysis attack on elliptic curve cryptosystems. In
International Workshop on Theory and Practice in Public Key Cryptography (PKC)
2003, pages 199–210, 2003.

[Gpga] GNU Privacy Guard. URL: https://www.gnupg.org.

[Gpgb] GnuPG Frontends. URL: https://www.gnupg.org/related_software/frontends.
html.

[GPPT15] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. Stealing keys
from PCs using a radio: Cheap electromagnetic attacks on windowed exponentiation.
In Workshop on Cryptographic Hardware and Embedded Systems (CHES) 2015, pages
207–228, 2015. Extended version: Cryptology ePrint Archive, Report 2015/170.

[GPT14] Daniel Genkin, Itamar Pipman, and Eran Tromer. Get your hands off my laptop:
Physical side-channel key-extraction attacks on PCs. In Workshop on Cryptographic
Hardware and Embedded Systems (CHES) 2014, pages 242–260. Springer, 2014. Ex-
tended version: Cryptology ePrint Archive, Report 2014/626.

[GS15] Gabriel Goller and Georg Sigl. Side channel attacks on smartphones and embedded
devices using standard radio equipment. In International Workshop on Constructive
Side-Channel Analysis and Secure Design (COSADE) 2015, pages 255–270. Springer,
2015.

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-bandwidth
acoustic cryptanalysis. In CRYPTO 2014, pages 444–461 (vol. 1). Springer, 2014.
Extended version: Cryptology ePrint Archive, Report 2013/857.

[Jiv12] A. Jivsov. Elliptic curve cryptography (ECC) in OpenPGP. RFC 4880, 2012.

[KJJR11] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction to
differential power analysis. Journal of Cryptographic Engineering, 1(1):5–27, 2011.

[Min] Minimalist GNU for Windows. URL: http://www.mingw.org.

15

https://www.enigmail.net
http://www.ietf.org/rfc/rfc3156.txt
http://gmplib.org/
https://www.gnupg.org
https://www.gnupg.org/related_software/frontends.html
https://www.gnupg.org/related_software/frontends.html
http://www.mingw.org


[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks —
Revealing the Secrets of Smart Cards. Springer, 2007.

[OA01] Elisabeth Oswald and Manfred Josef Aigner. Randomized addition-subtraction chains
as a countermeasure against power attacks. In Cryptographic Hardware and Embedded
Systems (CHES) 2001, pages 39–50, 2001.

[OS02] Katsuyuki Okeya and Kouichi Sakurai. On insecurity of the side channel attack
countermeasure using addition-subtraction chains under distinguishability between
addition and doubling. In Australian Conference on Information Security and Privacy
(ACISP) 2002, pages 420–435, 2002.

[OS06] Yossi Oren and Adi Shamir. How not to protect PCs from power analy-
sis, 2006. presented at CRYPTO 2006 rump session. http://iss.oy.ne.ro/

HowNotToProtectPCsFromPowerAnalysis.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures:
The case of AES. In RSA Conference Cryptographers’ Track (CT-RSA) 2006, pages
1–20. Springer, 2006.

[Per05] Colin Percival. Cache missing for fun and profit. Presented at BSDCan. http:
//www.daemonology.net/hyperthreading-considered-harmful, 2005.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA): Mea-
sures and counter-measures for smart cards. In E-smart 2001, pages 200–210, 2001.

[Rei60] George W. Reitwiesner. Binary arithmetic. Advances in Computers, 1:231–308, 1960.

[vdPSY15] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. Just a little bit more. In RSA
Conference Cryptographers’ Track (CT-RSA) 2015, pages 3–21, 2015.

[Wal04] Colin D. Walter. Issues of security with the oswald-aigner exponentiation algorithm.
In RSA Conference Cryptographers’ Track (CT-RSA) 2004, pages 208–221, 2004.

[YF14] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: a high resolution, low noise,
L3 cache side-channel attack. In USENIX Security Symposium 2014, pages 719–732.
USENIX Association, 2014.

[YLG+15] Yuval Yarom, Fangfei Liu, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-level
cache side-channel attacks are practical. In IEEE Symposium on Security and Privacy
(S&P) 2015. IEEE, 2015.

16

http://iss.oy.ne.ro/HowNotToProtectPCsFromPowerAnalysis
http://iss.oy.ne.ro/HowNotToProtectPCsFromPowerAnalysis
http://www.daemonology.net/hyperthreading-considered-harmful
http://www.daemonology.net/hyperthreading-considered-harmful

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Attack Overview
	1.3 Targeted Software and Hardware
	1.4 Related Work

	2 Cryptanalysis
	2.1 Libgcrypt's Elliptic Curve Encryption Implementation
	2.2 ECDH Attack Algorithm
	2.3 Attacking the Always-Add Algorithm

	3 Signal Analysis and Experimental Results
	3.1 Experimental Setup
	3.2 Signal Analysis
	3.3 Measuring the EM Leakage Through a Wall

	4 Conclusion
	Acknowledgments
	References

