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ABSTRACT 
 
This paper presents a diagnostic system for 
classification of cardiac arrhythmia from ECG 
data, using Logistic Model Tree (LMT) classifier. 
Clinically useful information in the ECG is found 
in the intervals and amplitudes of the charac-
teristic waves. Any abnormality in the wave 
shape and duration of the wave features of the 
ECG is considered as arrhythmia. The ampli-
tude and duration of the characteristic waves of 
the ECG can be more accurately obtained using 
Discrete Wavelet Transform (DWT) analysis. 
Further, the non-linear behavior of the cardiac 
system is well characterized by Heart Rate 
Variability (HRV). Hence, DWT and HRV tech-
niques have been employed to extract a set of 
linear (time and frequency domain) and non- 
linear characteristic features from the ECG 
signals. These features are used as input to the 
LMT classifier to classify 11 different arrhyth-
mias. The results obtained indicate an impres-
sive prediction accuracy of 98%, validating the 
choice and combined use of the current popular 
techniques (DWT and HRV) for cardiac ar-
rhythmia classification. The system can be de-
ployed for practical use after validation by ex-
perts. 
 
Keywords: ECG; Arrhythmia; Wavelet Transform; 
HRV Analysis; Feature Extraction 
 
1. INTRODUCTION 

Electrocardiography is a commonly used, non-invasive 
procedure for recording electrical changes in the heart. 
The record, which is called an electrocardiogram (ECG 
or EKG), shows the series of waves that relate to the 
electrical impulses which occur during each beat of the 
heart. The information present in the ECG characteristic 
wave peaks and time intervals between them are impor-

tant. The waves in a normal record are named P, Q, R, S, 
and T and follow in alphabetical order. Any abnormal 
change in the shape and variation of time intervals is 
considered as arrhythmia. 

Detection of abnormal ECG signals is a critical step in 
administering aid to patients. Arrhythmias can occur in a 
healthy heart and be of minimal consequence. They may 
also indicate a serious problem and lead to heart disease, 
stroke or sudden cardiac death. Cardiac arrhythmia is 
one of the major causes of sudden death. To detect the 
presence of arrhythmia, patients are hooked to cardiac 
monitors in hospitals. This requires continuous monitor-
ing by the physicians. Visual inspection is tedious and 
physician dependent. Computer programs have been 
developed to help in this visual analysis by providing 
condensed printouts. This again requires meticulous 
study by the physician to identify arrhythmia. To cater to 
large number of patients, to eliminate subjective inaccu-
racies and to aid the physician in the diagnosis several 
methods for automated arrhythmia detection have been 
developed in the past few decades to attempt simplify 
the monitoring task and improve diagnostic efficiencies. 

In pursuit of arrhythmia detection and classification 
work, many computer techniques have been developed. 
Notably, Palreddy et al. employed a multiple-classifier 
architecture composed of Self Organizing Maps (SOM) 
and Learning Vector Quantization (LMQ) to classify 
premature ventricular contraction (PVC) beats and the 
non-PVC beats [1]. Babak Mohammadzadeh-Asl et al 
used both linear and non-linear parameter extracted from 
heart rate signals with multilayer feed forward neural 
networks to classify only five types of arrhythmias [2]. J. 
Lee et al. proposed a wavelet based approach along with 
Linear Discriminant Analysis (LDA) for classifying only 
five types of arrhythmias using multilayer perceptron 
classifier [3]. Chazal et al. has proposed a method for 
automatic classification of heartbeats using ECG mor-
phology, heartbeat interval features and RR intervals to 
discriminate only five different beat types [4]. Dingfie et 
al. classified only six arrhythmias using autoregressive 
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modeling and Generalized Linear Model (GLM) [5]. 
Linh et al. selected the Hermite Function Expansion as 
the feature extraction method to represent the QRS com-
plex. They proposed a fuzzy neural network where Her-
mite coefficients served as the features to classify only 
seven different types of arrhythmias [6]. Kannathal et al. 
used three non-linear parameters as inputs to the pro-
posed ANF classifier for classification of only ten dif-
ferent types of arrhythmias [7]. Kadbi et al. used wavelet 
parameters along with RR interval and Form Factor as 
inputs to an ANN classifier to discriminate only ten dif-
ferent arrhythmias [8]. 

In clinical domains, one has to face the problem of 
developing classifiers that are able to deal with nonlinear 
discrimination between classes, incomplete or ambigu-
ous input patterns, and suppression of false alarms. It is 
necessary to develop new detection schemes with a high 
level of accuracy, or equivalently, low false-positive and 
false-negative statistics, for them to be useful in practical 
applications. In this direction a new approach based on 
Logistic Model Tree classifier is presented in this paper. 
LMT is a recent addition to decision trees that replace 
the terminal nodes of a decision tree with logistic regres-
sion functions. This has the advantage of producing de-
cision trees that are more comprehensible, have higher 
accuracy, and have higher fidelity than previous decision 
tree extraction algorithms [9]. 

2. DATA SOURCE AND CONTENT 

ECG data for use in this classification work has been 
collected from the MIT-BIH arrhythmia database as 
published in Physionet, a site dedicated to data for vari-
ous diseases and their study [10]. The database contains 
48 recordings, each containing two 30-min ECG lead 
signals (denoted A and B). In 45 recordings, lead A is 
modified-lead II and for the other three is lead V5. Lead 
B is lead V1 for 40 recordings and is either lead II, V2, 
V4 or V5 for the other recordings. Twenty-three records, 
numbered from 100 to 124 with some numbers missing, 
serve as a representative sample of routine clinical re-
cordings and the remaining twenty-five records, num-
bered from 200 to 234 again with some numbers missing, 
contain complex ventricular and supraventricular ar-
rhythmias. In this work, ECG signals from Modified 
Lead II (MLII) leads are chosen. Prior to recording, the 
ECG signals in these records have been sampled at a 
frequency of 360Hz and preprocessed to remove noise 
due to power-line interference, muscle tremors, spikes 
etc. This database was selected because it contains a 
variety of beat types. Another reason for considering this 
database was its use in other studies and thus compari-
son of results can be performed. One minute segments of 
each beat type were extracted from the records for fur-
ther processing. This work focused on several important 
arrhythmia types such as Paced beat (P), Atrial prema-

ture beat (A), Right bundle branch block beat (R), Left 
bundle branch block beat (L), Ventricular escape beat (E), 
Ventricular flutter wave (!), premature ventricular con-
traction (V), Fusion of ventricular and normal beat (F), 
Fusion of paced (f), Blocked Atrial Premature Beat (x) 
and the Normal beat segment (Normal). The number of 
segments extracted for each type from the database re-
cords is given in Table 1. 

3. FEATURE EXTRACTION 

The main objective of the feature extraction process is to 
derive a set of parameters that best characterize the sig-
nal. These parameters, in other words, should contain 
maximum information about the signal. Hence the selec-
tion of these parameters is an important criterion to be 
considered for proper classification. Arrhythmia classi-
fication, therefore, involves determination of several 
characteristic features of the ECG signal. This work ex-
plores a combination of linear (time and frequency do-
main) and non-linear characteristic features of the ECG 
signal. The Discrete Wavelet Transform has been used to 
obtain the amplitude and duration of the characteristic 
waves of the ECG from which a set of time-domain pa-
rameters are derived. The DWT is also used to obtain the 
RR interval time series.  Heart Rate Variability (HRV) 
helps in understanding the non linear behavior of the 
cardiac system. Using the RR series a set of non linear 
parameters are also derived. 

3.1. Time-Domain Analysis 

For each of the segments extracted from the records, the 
characteristic points P, Q, R, S and T are obtained using 
Discrete Wavelet Transform. 

3.1.1. Discrete Wavelet Transform (DWT) 
The wavelet transform is a convolution of the wavelet 
function (t) with the signal x(t). Orthonormal dyadic 
discrete wavelets are associated with scaling functions 

 
Table 1. Arrhythmia types classified in proposed method. 

Type of Arrhythmia 
No of Segments Ex-

tracted 

Normal 459 

P 105 

A 123 

R 99 

L 108 

E 18 

! 24 

V 290 

F 16 

f 27 

x 12 
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tion A1 respectively. The first approximation A1 is de-
composed again and this process is continued. The de-
composition of the signal into different frequency bands 
is simply obtained by successive highpass and lowpass 
filtering of the time domain signal. The signal decompo-
sition can be mathematically expressed as follows: 

(t). The scaling function can be convolved with the 
signal to produce approximation coefficients A. The 
wavelet transform of the signal x(t) can be written as: 

, ( ) .,( )m n t d tm nT x t


 

           (1) 

By choosing an orthonormal wavelet basis, m, n (t), 
one can reconstruct the original signal [11]. The ap-
proximation coefficients of the signal at scale m and 
location n can be represented by: 

hiy [k] = x[n].g[2k - n]          (3) 

loy [k] = x[n].h[2k - n]          (4) 

The characteristic points P, Q, R, S and T are obtained 
at different decomposition levels as shown in Figure 2. 

, ( ) .,( )m n t d tm nA x t


 

      (2) 
 Segment selection 
 8-level wavelet decomposition using Daube-

chies 6 wavelet functions 3.1.2. DWT Decomposition 
Discrete Wavelet Transform involves decomposition of a 
signal by wavelet filter banks. DWT uses two filters, a 
low pass filter (LPF) and a high pass filter (HPF) to de-
compose the signal into different scales. The output co-
efficients of the LPF are called approximations while the 
output coefficients of the HPF are called details. The 
approximations of the signal are what define its identity 
while the details only imparts nuance [12]. 

 Detection of R peak at level 4 using adaptive 
threshold value (related to the maximum and 
mean values of the signal) 

 Determination of R-R interval using R-R dis-
tance 

 Detection of Q, S points as local minimum 
points at level 0, before and after R wave 

 Elimination of the QRS complex from the signal 
to obtain other parameters The DWT decomposition of an input signal x[n] is 

schematically shown in the Figure 1 below. Each stage 
consists of two digital filters and two downsamplers to 
produce the digitized signal. The first filter, g[n] is a 
high-pass filter, and the second, h[n] is a low-pass filter. 
The downsampled outputs of the first high pass filter and 
low-pass filter provide the detail D1 and the approxima- 

 Detection of T wave at level 6 and 7 for finding 
QT distance 

 Detection of P wave at level 6 and 7 for finding 
P-R and P-P distance 

From the values obtained the following five time- 
domain parameters have been calculated: 

 
Feature Meaning Formula 

P-P Mean of P-P interval durations. TPP = Pi+1 –Pi  , i=1…N – 1
R-R Mean of R-R interval durations. TRR=Ri+1 –Ri  , i=1…N – 1
P-R The time duration between successive P and R waves in each beat. TPR=R – Pon-set 

QRS Duration 
The time duration from the beginning of the Q wave to the end of 

the S wave. 
TQRS=TS  –TQ 

QT Interval Duration 
It is the time from the beginning of the Q-wave to the end of the 

T-wave 
TQT =Toff-set–Q 

 

 

Figure 1. DWT decomposition. 
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n

3.2. Frequency Domain Analysis 

Time-domain methods are computationally simple but 
lack the ability to discriminate between sympathetic and 
parasympathetic contributions of HRV. Spectral analysis 
is the most popular linear technique used in the analysis 
of HRV signals [13]. Spectral power in the high fre-
quency (HF) (0.15–0.4 Hz) band reflects respiratory 
sinus arrhythmia (RSA) and thus cardiac vagal activity. 
Low frequency (LF) (0.04–0.15Hz) power is related to 
baroreceptor control and is mediated by both vagal and 
sympathetic systems [14]. Hence, the frequency domain 
parameter LF/HF, which is the ratio between LF and HF 
band powers, is obtained for each segment. 

3.3. Non-Linear Analysis 

The cardiovascular system is a complex non-linear sys-
tem and is characterized by many complex estimators. In 
this classification work the following parameters have 
been derived from the RR-interval time series obtained 
using DWT. 

3.3.1. Spectral Entropy 
The power spectral density (PSD) of a signal is the dis-
tribution of power as a function of frequency. This PSD 
can be obtained using Fourier transform. The normaliza-
tion of this PSD yields the probability density function 
(PDF) [15]. This PDF has a value in the range 

0 1 1 , 2 , . . . ,fp f        (5) 

1

1
n

f
f

p


             (6) 

The spectral entropy H which describes the complex-
ity of the heart rate variability (HRV) signal is obtained 
using Eq.(7). 

1
f

f f

H p
p

 
 

  
         (7) 

Here pf is the probability density function at f. The spec 

tral entropy H calculated for each segment is used as one 
of the classifying parameters [16]. 

3.3.2. Detrended Fluctuation Analysis (DFA) 
The Detrended Fluctuation Analysis (DFA) is used to 
quantify the fractal scaling properties of short time R-R 
interval signals. This technique is a modification of the 
root-mean square analysis of random walks applied to 
nonstationary signals [17]. The root-mean-square fluc-
tuation of an integrated and detrended time series is 
measured at different observation windows and plotted 
against the size of the observation window on a log-log 
scale. First, the R-R time series (of total length N) is 
integrated using the equation: 

1

( ) ( ( ) ))
k

avg
i

y k RR i RR


           (8) 

where y(k) is the kth value of the integrated series, RR(i) 
is the ith inter beat interval and RRavg is the average 
inter beat interval over the entire series [18]. Then, the 
integrated time series is divided into windows of equal 
length, n. In each window of length n, a least squares 
line is fitted to the R-R interval data (representing the 
trend in that window). The ‘y’ coordinate of the straight 
line segments are denoted by yn(k) . Next, we detrend 
the integrated time series, yn(k) in each window. The 
root mean-square fluctuation of this integrated and de-
trended series is calculated using Eq.(9) for each seg-
ment. 

2

1

1
( ) [ ( ) ( )]

N

n
k

F n y k y
N 

  k         (9) 

4. LOGISTIC MODEL TREES CLASSIFIER 

Logistic Model Trees are a combination of a tree struc-
ture and logistic regression functions to produce a single 
decision tree [19,20,21,22]. The decision tree structure 
has the logistic regression functions at the leaves. The 
leaf node has two child nodes which is branched right 

 

 

Figure 2. Characteristic points extraction from ECG signal at various decomposition levels.
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and left depending on the threshold. If the value of the 
attribute is smaller than the threshold it is sorted to left 
branch and value of attribute greater than the threshold it 
is sorted to right branch as shown in Figure 3. 

The threshold is usually fixed by Logit Boost method 
[19]. Logit Boost uses a ensemble of functions FK to 
predict classes 1, . . . , K using M “weak learners”. 

1

( ) ( )
K

k m
m

F x f


  x               (10) 

Steps followed for developing the LMT classifier: 
 The linear regression function is fitted using the 

Logitboost method to build a logistic model. 
The Logitboost method uses 5 examples for the 
cross validation to determine the best number of 
iterations to run, when fitting the logistic regres-
sion function at a node of the decision tree 

 The logistic model is built using all data. 
 The split of the data at the root is constructed 

using the threshold. 
 This splitting is continued till some stopping 
 

criterion is met. Here the stopping criterion is 5 
examples, since it helps in cross validation for 
logitboost method. 

 Once the tree has been build it is pruned using 
CART-based pruning [19]. 

Reasons for choosing the Logistic Model Tree classifier: 
 Logistic Regression is very good at detecting 

linear relationships and then combining those 
relationships into an equation that provides the 
odds of the dependent variable reaching a par-
ticular outcome, when the various independent 
variables are fed into the resulting equation.  

 Logistic Regression models are widely used and 
they are considered robust and not prone to over 
fitting the data. 

 These models can be built with high level of 
accuracy using little data preparation. 

 Logistic Model Trees give explicit class prob-
ability estimates rather than just a classification. 

The classification task, depicted in Figure 4, involves 
the following steps: 

 

 
Figure 3. Tree structure of logistic model tree (LMT). 

 

 

Figure 4. Block diagram of the proposed method. 
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 One minute segments of each beat type are ex-
tracted from ECG records in the database. 

 Each segment is then decomposed using DWT 
into various levels for extracting linear time- 
domain parameters. 

 The different nonlinear parameters are calcu-
lated using their respective formula. 

 Both linear and non-linear parameters for all the 
segments are combined and a dataset is formed. 

 75% of the dataset, called training set, is used 
for training the classifier. 

 The remaining 25% of the dataset, called test set, 
is used for testing the classifier. 

5. RESULTS AND DISCUSSIONS 

The objective of any clinical research is to find the rela-
tionship between results and presence of any disease. 

For the evaluation of the proposed classifier, a total of 
1281 segments, extracted from the MIT BIH arrhythmia 
database records were used. Five time-domain, one fre-
quency domain and two non-linear parameters were de-
rived from these segments. These eight parameters along 
with the corresponding output class (type of arrhythmia) 
forms a feature vector. Thus 1281 feature vectors com-
prise the dataset. 75% of each type from this dataset was 
used as the train dataset and the remaining 25% as the 
test dataset. The output obtained from the Logistic 
Model Tree was used to calculate the accuracy of each 
type of beat using Eq.(11)). 

Number of beats correctly classified
Accuracy

Total number of beats
  

(11) 
The experimental results are presented in Table 2. 

 
Table 2. Performance of the proposed method. 

Type of 
Arrhythmia 

No of Segments 
Extracted 

No of Segments for 
Training 

No of Segments for 
Testing 

Correctly 
Classified 

Accuracy % 

Normal 459 353 106 102 96.22 

P 105 74 31 29 93.54 

A 123 95 28 26 92.85 

R 99 74 25 25 100 

L 108 77 31 31 100 

E 18 13 5 5 100 

! 24 18 6 6 100 

V 290 219 71 70 98.6 

F 16 12 4 4 100 

F 27 19 8 8 100 

X 12 7 5 5 100 

Average=98.29 

 
Table 3. Performance comparison of different ECG arrhythmia classifiers. 

Work Reference Types Accuracy (%) Feature Extraction Method Classifier 

Palreddy [1] 2 98.58% LVQ SOM 

Babak [2] 5 99.38% HRV NN 

Lee [3] 5 99.48% WT LDA/MLP 

Chazal[4] 5 96.87% ECG Morphology/ Interval LDA 

Dingfie [5] 6 93.2% AR Modeling GLM 

Linh [6] 7 96% HER FNN 

Kannathal [7] 10 94.64% HRV ANN 

Kadbi [8] 10 90% WT Cascade ANN 

Proposed Method 11 98.29% DWT/HRV LMT 
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Table 3 shows the performance comparison of the 

different ECG arrhythmia classifiers. The proposed me- 
thod shows comparable performance even when 11 dif-
ferent types of arrhythmias have been considered. 

6. CONCLUSIONS 

In this paper, the effectiveness of the Logistic Model 
Tree classifier for arrhythmia classification has been 
demonstrated. The Logistic Model Tree classifier was 
fed by the combination of linear and non-linear parame-
ters derived from ECG data using DWT and HRV. The 
results indicate that the proposed method employing the 
LMT classifier with linear and nonlinear parameters is 
effective for classification of cardiac arrhythmias with an 
acceptably high accuracy. Compared to other approaches 
in the literature cited, the proposed method exploits the 
power of HRV and DWT techniques in discriminating 11 
different arrhythmia types. Parameters derived from 
ECG features and HRV analysis can therefore be used as 
a reliable indicator of different types of arrhythmias. The 
proposed system, after validation by experts, can serve 
as a diagnostic tool and aid the physician in the detection 
and classification of cardiac arrhythmias. 
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