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ABSTRACT This paper aims at proposing an abnormality detection framework for electrocardiogram

(ECG) signals, which owns unbalance distribution among different classes and gaining high accuracy in

rhythm/morphology abnormalities classification. The proposed framework is composed of two models: data

augmentation model and classification model. In this framework, data augmentation model is designed

to recast a class-balanced training dataset by generating artificial data of minor class. The outputs of

augmentationmodel are transferred into classificationmodel. The classificationmodel is designed to identify

abnormalities accurately after training using both the experimental and generated datasets. Data augmen-

tation model is supported by auxiliary classifier generative adversarial network (ACGAN). We construct

Generator and Discriminator of the ACGAN by stacking multiple 1-dimensional convolutional layers with

small kernel size. Dropout function and batch normalization are added to prevent gradients vanish and

speed up convergence. In order to evaluate the performance of augmentation model, a set of quantitative

indicators are introduced to verify the quality of generated ECG signals. We establish classification model

based on stacked residual network parallel connected with long short-term memory (LSTM) network.

The experimental study is conducted for single heartbeat detection and consecutive heartbeat detection.

The results based on standard benchmark, MIT-BIH, and competition database provided by 2018 China

physiological signal challenge (CPSC) have verified the proposed framework can achieve high performance

in robustness and accuracy for class-imbalanced dataset.

INDEX TERMS Electrocardiogram signals, heartbeat arrhythmias detection, auxiliary classifier generative

adversarial network, data augmentation, long short-term memory network, residual network.

I. INTRODUCTION

In recent years, the incidence of cardiovascular diseases

(CVDs) has exploded due to multiple factors such as pop-

ulation ageing, chronic cardiovascular disease and increas-

ing living pressures. With high mortality, heart disease has

become a major threat to human life [1], [2]. Therefore,

the task about monitoring and preventing it in advance is

quite important. One intrinsic presentation of heart diseases is

heart’s rhythm/morphology abnormal activity, and electrocar-

diogram (ECG) which records such electrical activity of heart

in visible way provides abundant information for abnormality
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diagnosis. Thus, detecting abnormalities of ECG signals has

often been applied in clinical CVDs diagnosis [3], [4].

The majority of extant models for rhythm/morphology

abnormalities detection [5], [6] are comprised by four

independent steps: 1) ECG signals acquisition; 2) data pro-

cessing; 3) features extraction; 4) identification. Each proce-

dure can introduce errors and lead to inaccurate detection.

Recently, deep learning-based approach which ensembles

feature extraction and classification into one process has been

successfully applied for ECG signal analysis to overcome

this challenge. Deep learning-based ECG signal processing

framework has powerful feature extraction ability which can

learn deep features from given signals and optimize model

automatically to achieve high accuracy in classification.
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Typically, there are different deep learning architectures,

such as Deep Belief Network (DBN), Convolutional Neural

Network (CNN), Recurrent Neural Network (RNN) and

Long Short-Term Memory (LSTM), and so on. For example,

Acharya et al. [7] proposed a deep CNN structure to auto-

matically identify 5 different categories of ECGs arrhythmia.

Salloum andKuo [8] applied RNN to build an effective CVDs

identification system. Tan et al. [9] proposed a stacked LSTM

network with CNN to classify normal versus CVD ECGs,

which achieve high accuracy.

For deep learning-based approaches, each model is con-

structed by stacked multi-hidden layers. Meanwhile, each

hidden layer contains considerable parameters. Therefore,

the number of parameters in deep learning model which

needs to be trained is enormous. To achieve a high accuracy,

the deep learning model needs adequate training by plentiful

balanced training data. However, in practice, the occurrence

rate of different abnormalities is diverse. It often leads to an

imbalanced distribution between minor and major cases of

multiple abnormalities in collected ECG signals. Such class-

imbalance prevents the deep network to learn how to identify

minority class.

Several researches have been conducted to deal with this

data imbalanced issue. Rajesh and Dhuli [10] implemented

re-sampling techniques for imbalanced ECG beats classifica-

tion. Ukil et al. [11] combined over-sampling methods with

semi-supervised feed-back controlled approach to achieve an

intelligent class augmentation algorithm. Gogna et al. [12]

introduced semi-supervised deep learning approach, stacked

auto-encoder (SAE) model for ECG signal reconstruction.

However, previous work related to imbalanced data aug-

mentation mainly based on sample from original signal,

and the improvements are limited. Generative Adversarial

Network (GAN) which was firstly introduced to generate

artificial convincing image samples [13] provides a new

approach for imbalanced data learning. Madani et al. [14]

investigated its capability for learning from both labeled and

unlabeled medical images, and realized data-efficient cardiac

disease diagnosis. Chen et al. [15] modified original GAN

structure to boost risk prediction performance with limited

electronic health records (EHRs). Shao et al. [16] utilized

auxiliary classifier GAN (ACGAN) with label condition

information for imbalanced mechanical signal augmentation.

However, limited work has been conducted in ECG signal

augmentation using GAN structure.

Therefore, this work further investigate the GAN’s poten-

tial in dealing with imbalanced ECG signal issue, and

constructs a deep-learning based ECG rhythm/morphology

abnormalities detection framework. The framework is com-

posed of two models: data augmentation model and classifi-

cation model. The data augmentation model is supported by

ACGAN which is used to generate artificial ECG signal and

form a new class-balanced training dataset. It also proposes

a quantitative assessment criterion to evaluate the quality

of generated signal. The classification model is based on

stacked residual block and LSTM network. It is used for

ECG abnormalities classification after data augmentation.

The novelties and contributions of this work mainly includes:

1) the ACGAN is firstly applied for ECG signal generation

to solve the data imbalanced issue; 2) a set of evaluation

indicators are proposed to assess the performance of data

augmentation model; 3) the proposed detection framework

can achieve high performance in robustness, and accuracy for

class-imbalanced dataset.

The reminder of the paper is organized as follows:

Section II introduces the basic theories of ACGANs, residual

network, and LSTM network. Then the proposed detection

framework is illustrated in section III with detailed structure

of both ACGANs, and classification model. In section IV,

experiments are conducted to test the performance of pro-

posed detection framework for single heartbeat detection and

consecutive heartbeat detection. After that, results and some

discussions are presented. Finally, conclusion is drawn in

section V.

II. BASIC THEORY

In this paper, three deep-learning approaches are utilized

to form the detection model. The basic theories of GAN

and ACGAN, which are used for data augmentation, are

briefly introduced in part A. Residual network and LSTM,

which are applied in classification model, are represented in

part B and C, respectively.

A. AUXILIARY CLASSIFIER GENERATIVE ADVERSARIAL

NETWORKS

As shown in Fig.1(a), GANs are composed of two parts: the

Generator G and the Discriminator D. The principle of GANs

is to generate fake data which make the Discriminator hard to

classify fake or real, that is theGenerator is trained to generate

fake data which can fool the Discriminator. The input of

the Generator is random noise vector z, and the Generator

force z to model the distribution of real data vector x and

then output fake data. The input of the Discriminator is from

both real data and generated fake data, and the Discriminator

FIGURE 1. Typical structure of (a) regular GAN, (b) ACGAN.
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is trained to classify real and fake data correctly. In a word,

the training process of GANs is a two-player minimax game.

The Generator is trained to generate fake data by making the

Discriminator recognize fake data as real; on the contrary,

the Discriminator is trained to classify real and fake data

as accurate as it can. The target of GANs training can be

described with value function V (D,G) followed by (1) [13]:

min
G

max
D

V (D,G) = Ex∼Pdata(x)
[

logD (x)
]

+Ez∼Pz(z)
[

log (1 − D (G (z)))
]

(1)

where, D (x) represents the probability that x from the

real data distribution Pdata rather than the Generator Pg;

G (z) represents a mapping from noise vector to generated

vector. In training procedure, the Generator is trained after

the Discriminator has been well trained. We update param-

eters in Discriminator to maximum the function V (G,D),

while updating parameters in Generator to minimum the

function V (G,D).

ACGAN is a type of variant of the GAN. As shown

in Fig.1 (b), it introduces category information as auxiliary

term to improve the performance of the Generator [17]. And

the output of the Discriminator includes categories as well.

Therefore, the G(z) existed in (1) transform to G (c, z) in

ACGAN, where c represents corresponding class label. The

loss functions of ACGAN contains two parts: LS records the

probability of the correct source (the same as GAN) as shown

in (2), and LC records the probability of correct label as shown

in (3).

LS =Ex∼Pdata(x)
[

logD (x)
]

+Ez∼Pz(z)
[

log (1 − D (G (z)))
]

(2)

LC =Ec∼Pdata(c)
[

logD (c)
]

+Ec∼Pz(c)
[

log (1 − D (G (c)))
]

(3)

Since the Discriminator should be able to correctly classify

fake and real data with accurate corresponding label, the

Discriminator is trained to maximum LS + LC . Meanwhile,

we hope the output of the Generator can fool the

Discriminator to recognize it as real one with correctly

corresponding label. Therefore, the Generator is trained to

maximum LC − LS .

B. RESIDUAL NETWORK

After successful implementation in image classification

[18], [19], deep convolutional neural networks have been

extended to various fields, including physiological signal

analysis. Evidence [20], [21] reveals that networks with deep

structure have better performance. For example, outstanding

results [20], [21] on ImageNet challenging [22] all exploit

‘‘very deep’’ [20] models. But [19] also refers that with more

layers to stack, the phenomenon called vanishing/exploding

gradients more likely to occur during model training [23].

This problem can hamper the model converge to correct

direction. To overcome such problem, [24] proposed residual

block to reduce gradient vanish or explode, as shown in Fig.2.

FIGURE 2. Structure of residual block [24].

The process of deep model training is actually to opti-

mize parameters in stacked layer to fit one desired map-

ping H (x). As illustrated in [24], when the optimization of

H (x) is hard to conducted, an alternative residual mapping:

F (x) = H (x) − x can be established firstly, and then the

desiredH (x) can be recast by adding F(x) and x. The shortcut

connection which skips one or more layers in Fig.2 simply

performs identity mapping: x, and its output is added to the

output of stacked layers. Such operation does not introduce

extra parameters and complexity. Moreover, it resolves the

vanishing gradient problem by preventing partial derivative

to zero in chain rule. Besides that, residual block accelerates

the convergence speed for shallow network.

C. LONG SHORT-TERM MEMORY NETWORK

LSTM is derived from RNN, which has capability of learning

long-term dependencies. It is consisted of an input layer,

memory units and an output layer. Its memory unit has a

three-gate structure named input, forget and output gate [25].

A typical structure of a LSTM unit is illustrated in Fig.3. The

input gate learns what information is stored in the memory

unit. The forget gate is used to learn howmuch information to

be retained or forgotten by generating decision vectors ranged

in [0, 1]. Output gate learns when stored information can be

used.

FIGURE 3. Typical structure of a LSTM unit.

III. SYSTEM FRAMEWORK

The framework proposed in this study contains two parts: data

augmentation model and classification model. The original

training data are firstly transferred into data augmentation
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FIGURE 4. Proposed ECG arrhythmias detection framework with data augmentation model and classification model.

model to achieve a class-balanced distribution. Then the gen-

erated training data is used to train the classification model.

Data augmentation model is supported by ACGAN, and clas-

sification model is based on residual network and LSTM.

As shown in Fig.4, the procedure of ECG arrhythmias

detection proposed in this study consists of four major steps.

The random noise z and corresponding label c is put into

Generator (in data augmentation model) first to output the

generated data. Then, the generated data are mixed with

the real data together, and put into Discriminator (in data

augmentation model) to train parameters in Discriminator.

After that, with the well trained Discriminator, high quality

generated data can be obtained in Generator. Finally, a bal-

anced dataset can be formed to train the classification model.

Detailed structures of Generator and Discriminator are

discussed in part A. Meanwhile a set of statistical indicators

are introduced to evaluate the signal generated by ACGAN.

Then the frame of classification model is presented in part B.

A. ACGAN BASED DATA AUGMENTATION MODEL

1) MODEL STRUCTURE

Generator is designed to establish a mapping from latent

space(z, c) to artificial ECG signal, where z is normal distribu-

tion noise and c is random corresponding label. Discriminator

is designed to train Generator towards better performance.

Since ECG signal from each individual possess different

morphology, to better learn hierarchical features of input

signal, 14 1-dimensional (1D) convolutional layers including

2 up-sampling operations are utilized with small kernel size

to construct the Generator, and 16 1D convolutional layers

are applied to form the Discriminator.Sigmoid function and

softmax function are adopted as the output layers of Discrim-

inator to generate predicted sample source and specific label

respectively. Batch normalization and dropout are added to

prevent overfitting. The specific structure of ACGAN is listed

in Table 1.

TABLE 1. Structure of data augmentation model.

For model training, based on loss function mentioned in

section II, parameters are updated iteratively using ADAM

optimizer with learning rate 0.0001 for Generator and

0.0002 for Discriminator. The procedure can be divided into

3 steps during each training epoch:
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a): Generating artificial data through Generator by

inputting random noise and corresponding labels.

b): Mixing artificial data with real data and transferring

them into Discriminator. Parameters in Discriminator are able

to update according inputted data and label.

c): After well training Discriminator, fixing parameters in

Discriminator into constant status and updating parameters in

Generator.

Through adequate iterations, losses of Generator and

Discriminator are forced to achieve a balance status called

Nash Equilibrium.

2) MODEL EVALUATION

The purpose of applying ACGAN architecture is to gener-

ate convincing ECG signal for data augmentation, and then

transfer them into classificationmodel. Therefore, it is impor-

tant to evaluate the similarity between the generated signal

and the original signal. However, the evaluation criterion

is still an open issue. For image generation task, it can be

conducted by visual evaluation or statistical measures, such

as peak signal to noise ratio (PSNR) and structural simi-

larity (SSIM). For one-dimensional time series, Euclidean

distance (ED), Pearson correlation coefficient (PCC) and

Kullback–Leibler (K–L) divergence are introduced as eval-

uation indicators [16].

Considering ECG signal is periodic time series which is

composed by several fixed waveforms, including P-wave,

QRS complex, and T-wave. The generated signal can be

evaluated both by vision and statistical indicators.

In this study, ED, PCC, and K-L divergence are chosen as

quantitative indicators. ED represents the distance between

the generated signal and original one, PCC measures the

linear correlation between the two distributions, and K-L

divergence evaluates the difference between the two sig-

nals. For each category, specific evaluation procedure can be

performed as follows:

a) Calculating average original signal as the template

signal;

b) Calculating the ED, PCC, and K-L divergence between

the template signal and original data, and calculating

the average ED, PCC, and K-L divergence as the com-

pared indicators CIs;

c) Calculating the ED, PCC, and K-L divergence between

the template signal and generated data, and calculating

the average ED, PCC, and K-L divergence as the final

indicators FIs;

d) Comparing FIs with CIs, the smaller difference

between FIs and CIs represents high similarity.

B. CLASSIFICATION MODEL

In classification procedure, multiple stacked 1D convolu-

tional layers with several residual blocks are used to extract

deep features of ECG signals. Considering ECG signals are

time-series signals, we combine LSTM network with residual

network to achieve a better performance in features learning.

The input of the model is parallel processed by

1D-convolutional residual network and LSTM respectively as

shown in Fig.5. To achieve concatenate operation of two out-

puts, global average pooling is added after residual network.

The pooling operation translates output of residual network

to 1D vector. Then it is concatenated with features extracted

by LSTM, and connected to three fully-connected layers.

Softmax function is adopted as final output layer to determine

the class of input ECG segment. The detailed structure of each

neural network is illustrated in Table 2.

TABLE 2. Structure of classification model.

IV. EXPERIMENT AND RESULTS

In this study, we test the proposed detection model’s per-

formance in both single heartbeat detection and consecutive

heartbeats detection. For single-beat detection, the standard

benchmark: MIT-BIH database is introduced. Comparative

experiments are also carried out to compare the classification

results with existingmethods. Then, the competition database

provided by 2018 China Physiological Signal Challenge

(CPSC) is applied for consecutive-beats detection. We also

compare the classification results with the Top Three Results

in the competition.

The proposed model is trained on a workstation with Intel

Core i7-7700, CPU 3.6 GHz, RAM 8 GB, and GPU NVIDIA

GeForce GTX 1060 8GB.

A. MIT-BIH DATABASE

MIT-BIH arrhythmia database is developed byMassachusetts

Institute of Technology (MIT) [26]. It contains 48 half-hour

recordings sampled at 360Hz. Four of them (recording 102,

104, 107, and 217) are generated by pacemaker, and are

excluded in this study. MIT also provided Annotation Files

with this database. They recorded the location of R-peak
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FIGURE 5. Structure of proposed classification model.

and type of the each heartbeat. The arrhythmia types of this

database are up to 16 including the normal type (N). Five

majority types including N, left bundle branch block (L),

right bundle branch block (R), premature ventricular con-

traction (V), and atrial premature contraction (A) obtained

from modified limb lead II are used to evaluate the proposed

detection model.

As shown in Fig.6, the typical ECG signal contains QRS

complex, P-wave, and T-wave. Among them, R-peak of

QRS complex divides a heartbeat into two parts. Therefore,

the location of R-peak can help to segment consecutive

ECG signal into single heartbeat segmentation. Based on the

R-peak location provided by Annotation Files, since one

heartbeat usually last 0.6s to 0.8s, 0.24s (88 points) offset

before R-peak and 0.44s (156 points) offset after R-peak are

adopted in this study as single heartbeat duration.

FIGURE 6. Typical consecutive ECG signal.

After signal segmentation, total of 99244 single heartbeat

segments are used for this work. The number of samples

within each type is listed in Table 3. Daubechies wavelet

8 is utilized to remove noise and baseline drift. For each

type, 90% of samples are formed as database DS1-1 which

is used for classification model training, and the rest 10%

are formed as database DS1-2 for testing. Among the DS1-1,

2000 samples of it are formed as the database DS1-3 which is

used for ACGAN training, and 200 samples of it are formed

as the database DS1-4 for ACGAN testing. Table 3 records

the number and data length of each dataset samples.

1) DATA AUGMENTATION

As shown in Table 3, the sample distribution of each

type is unbalanced, the number of type N accounts

for 75%, while the minor type A only represents 3%.

Therefore, database DS1-3 is firstly utilized to train ACGAN

model for data augmentation.

TABLE 3. Data profile of MIT-BIH before data augmentation.

The training epoch of ACGAN model is set to be 150, and

we generate different numbers of artificial samples for each

category to make sure each class contains 10000 recordings

for classification model training. Model training process is

recorded in Fig. 7. Generation loss in Fig.7 (a) reflects the

model’s ability in predicting the correct sample source (from

real data or generated data); classification accuracy (b) and

loss (c) present model’s performance in predicting correct

sample class.

As shown in Fig.7 (a), Generator and Discriminator go

towards Nash Equilibrium after approximately 20 epochs,

and there is an obvious improvement in classification accu-

racy presented in Fig.7 (b).

After data augmentation, the original training dataset

DS1-1 is enriched to database DS1-5 as recorded in Table 4.

TABLE 4. Data profile of MIT-BIH after data augmentation.

After adequate training, generated samples of each type

is listed in Fig.8 (a) to (e). The red line shown in the

figure represents the original signal, and blue line remarks the

generated signal. It is clear that although ECG signal within

different category has mutiple morphologies in both ampli-

tude and time duration, ACGAN can learn deeper features

automatically and generate alike samples.
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FIGURE 7. ACGAN performance in (a) generative loss, (b) classification
accuracy, and (c) classification loss.

As illustrated in Section III. Part A, quantitative indica-

tors are conducted to evaluate the similarity between gener-

ated samples and original samples. The results are listed in

the Table 5. ED and K-L divergence indicates the distance

and divergence between the two distributions, and the lower

value represents more similar. PCC represents the correlation

between two samples, and high value over 0.8 represents

strong correlation. As shown in Table 5, the differences

between CIs and FIs values are small which indicate the

TABLE 5. Quantitative evaluation of generated signal.
FIGURE 8. Generated data and original data of (a) type N; (b) type L;
(c) type R; (d) type V; (e) type A.

generated data and original data have similar distribution.

Besides that, the PCC values of FIs are all over 0.8 which

represents strong similarity among the generated data and

original one.

2) CLASSIFICATION RESULTS

After data augmentation, generated database DS1-5 is used

for classification model training. To test the capability of

data augmentation model, the original imbalanced database

DS1-1 is applied to training the same classification model
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TABLE 6. Classification performance of DS1-1 and DS1-5.

as well. The classification performance is evaluated by three

measures, sensitivity (SEN), specificity (SPE) and classifi-

cation accuracy (ACC). SEN is the true positive rate, and it

represents the proportion of all positive samples classified to

positive. SPE is the true negative rate, and it represents the

proportion of all negative samples classified to negative. ACC

is the classification accuracy. Higher values of those mea-

sures indicate better performance. Mathematically, they are

calculated by (4) to (6)

SEN = TP/(TP+ FN ) × 100% (4)

SPE = TN/(TN + FP) × 100% (5)

ACC = (TN + TP)/(TN + TP+ FN + FP) × 100% (6)

where TP is the number of true positive samples, FN is the

number of false negative samples, TN is the number of true

negative samples, and FP is the number of false positive

samples.

The results of classification performance trained by

DS1-1 and DS1-5 are listed in Table 6. It shows that the SEN

of type A in DS1-1 is relatively low. That means the classifi-

cation model is not well trained since A class is the minority

class, and the model has difficulty in dealing with it. It may

wrongly classify other types’ samples into type A. After

resolving the data imbalance issue by data augmentation,

SEN of type A in DS1-5 has a significant improvement, from

85.83% to 93.7% . Besides that, compared with training by

imbalance database, the total ACC, SEN, and SPE all have

improvement.

For comparison, other related works including supervised,

and unsupervised/semi-supervised approaches based on this

standard benchmark are listed in Table 7. Considering we

TABLE 7. Comparison between the related work and proposed detection model.
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introduce ACGAN model to deal with data imbalanced

issue, some other results using multiple data augmentation

algorithms are also summarized in Table 7. It can be seen

that the detection model proposed in this study has better

performance over all the comparison methods. For data aug-

mentation, ACGANhas stronger capability than conventional

sampling methods and deep-learning based SAE model.

B. COMPETITION DATABASE

The competition database used for consecutive heartbeats

detection is provided by CPSC2018 [29]. It contains 6,877

(female: 3178; male: 3699) 12 leads ECG recordings lasting

from 6s to 60s (sampled with 500 Hz). As shown in Table 8,

the distribution between minor and major cases is imbal-

anced. For example, STE and LBBB only have 202 and

207 recordings, respectively, while RBBB has 1695 record-

ings. Since the most minor case (STE) only occupies 3% of

the total dataset, even if the network structure learns nothing

about this case and gives out totally wrong detection results

about it, we still can get the accuracy as high as 97%. Such

class-imbalance prevents the network to learn how to identify

minor class.

TABLE 8. Data profile of competition database.

Since data length in each recording is different, original

signals need to be segmented into the same date length.

As demonstrated in study 1, the location of R-peak can help to

segment the heartbeat, so, finding the R-peak location which

is also known as QRS detection is conducted firstly. For each

12-lead ECG sample, the lead-I signal is used to determine the

specific location of R-peak. Dyadic splines 4-level wavelet is

apply to realizing QRS detection. After getting the location

of R-peak, 0.25s (125 points) offset before R-peak and 0.35s

(175points) offset after R-peak are adopted as one heartbeat

duration. Five consecutive heartbeats are integrated as one

sample. Hence, each sample in this study is 12 × 1500 time-

series vector. Fig.6 shows the segment of the original lead-I

signal, and locations of R-peak are illustrated in Fig.9 (a) with

black circles. The final lead-I sample after preprocessing is

listed in Fig.9 (b).

Since the shortest length of one original recording contains

3000 points, after preprocessing, the capacity of the database

is up to 13754 samples. Followed by the stipulation of

CPSC2018, 50 samples of each type are formed as the testing

database (DS2-2) for model verification, and the remainders

are formed as database DS2-1 which is used for model

FIGURE 9. (a) Detection the location of R-peak; (b) signal segmentation
based on R-peak.

training. Among the DS2-1, 300 samples of it are formed as

the database DS2-3 which is used for ACGAN training, and

50 samples of it are formed as the database DS2-4which is for

ACGAN testing. Table 9 records the number and data length

of each dataset samples. Numbers 1-9 listed in the ‘Type’

column represent type Normal, AF, I-AVB, LBBB, RBBB,

PAC, PVC, STD, and STE, respectively.

TABLE 9. Data profile of competition database before data augmentation.

1) DATA AUGMENTATION

Each sample contains 12-lead signal, since the scale of

database for ACGAN training is limited (only 300 samples),

training the ACGAN to learn variations among 12-lead signal

is difficult. Therefore, we utilize lead-I to lead-XII signal

to train ACGAN model respectively, and generating each

lead signal one by one. Finally 12 leads generated signal are

integrated as one sample.

The training epoch of ACGAN model is set to be 150,

and model training process is recorded in Fig. 10. As shown

in Fig.10 (a), Generator and Discriminator go towards Nash

Equilibrium after approximately 90 epochs, and classification

accuracy finally up around 100% as presented in Fig.10 (b).

We generate different numbers of artificial samples for

each category to make sure each class contains 4000 record-

ings for classification model training. After data augmen-

tation, the original training dataset DS2-1 is enriched to

database DS2-5 as recorded in Table 10.

Since the scale of one generated sample in this study is

large, we do not intend to list the waveform here, and only

100918 VOLUME 7, 2019



P. Wang et al.: ECG Arrhythmias Detection Using ACGAN and Residual Network

FIGURE 10. ACGAN performance in (a) generative loss, (b) classification
accuracy, and (c) classification loss.

TABLE 10. Data profile of competition database after data augmentation.

evaluating the generated samples based on quantitative indi-

cators. The results are listed in the Table 11.

As shown in Table 11, the differences between value CIs

and FIs are small, and the PCC value of FIs are all over 0.8.

Therefore, the generated data and original data have similar

distribution and strong correlation.

2) CLASSIFICATION RESULTS

Considering the database provided by CPSC 2018 is not

the standard benchmark, there is few work conducted with

TABLE 11. Quantitative evaluation of generated signal.

this database. This study is only compared with the Top Three

Results outcome in this physiological signal challenge. The

evaluation criterion is proposed by the CPSC 2018 as well.

As shown in Table 12, the number of classification results is

counted by each label firstly.

TABLE 12. Counting rules for the numbers of the variables.

Then for each type, F1 score is defined in Table 13.

Based on mathematical definition of F1 score, the final

scores are defined as (7)-(11):

F1 = (F11 + F12 + F13 + F14 + F15 + F17 + F17

+ F18 + F19) /9 (7)

FAF = 2 × N22/ (N2 X + NX2) (8)

FBlock = 2 × (N33 + N44 + N55) / (N3 X + NX3

+ N4 X + NX4 + N5 X + NX5) (9)

FPC = 2 ×
(

N66+Nη

)

/ (N6 X+NX6+N7 X+NX7) (10)

FsT = 2 ×
(

Ngs+Ngg

)

/ (NBX+NX8+N0X+NX9) (11)
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TABLE 13. Definition for each nine types.

TABLE 14. Performances with different data augmentation strategies.

To test the advantage of constructing an ACGAN

based data augmentation model before training classifica-

tion model. We conduct comparison experiment in three

frameworks, and the results are listed in Table 14. Those

three frameworks have the same classification model but

different in data augmentation part. The first one is barely

a classification model with no data augmentation procedure.

The second one uses SMOTE to augment minor classes [30].

The third one is the proposed framework in this study.

As shown in Table 14, with no data augmentation proce-

dure, classification model performs poorly in minor classes,

such as PAC, PVC, and STE. Since those classes occupy

small proportion in the training set, the losses generated

by those classes are small. Therefore, classification model

ignores the limited loss decline.

After applying SMOTE to augment data, the performance

of the same classification model significantly improves. But

SMOTE’s capacity in class-imbalanced resolving is weaker

than ACGAN. The ACGAN model performs better in each

type.

To evaluate the performance of proposed detection frame-

work, we compare the scores of proposed framework with

The Top Three Results whose Entry Numbers are CPSC0236,

CPSC0223, and CPSC0183, respectively in 2018 CPSC.

The models with final codes they applied are listed in [29].

To deal with data imbalanced issue, CPSC0236 introduced

Attention Mechanism to adjust weight, CPSC0223 applied

over-sampling strategy to augment dataset. However, none

of them attempt to utilize unsupervised or semi-supervised

approaches to generated artificial data for augmenta-

tion. We summary the detailed model structure of each

work, and record classification performance of them

in Table 15. We highlight the highest score in each item by

red mark.

TABLE 15. Comparison between the related work and proposed detection model.
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It is clear that the proposed model has more balanced per-

formance in each category, and gets the highest scores in F1,

FPC, and FST. Since F1 score has the similar definition with

ACC, the proposed framework significantly improves the

classification accuracy. Although FAF and FBlock calculated

based on proposed framework are not the best, the differences

between them with the best values are little. Furthermore,

one notable point is that the accuracy of minor types (FST)

has a great promotion by dealing with data imbalanced issue.

Although CPSC0236 and CPSC0223 did not investigate

semi-supervised approaches, they adopted other strategies to

deal with the imbalanced data and achieve relatively high

results. However, the ACGAN applied in this work further

improves the performance, and verifies its efficiency in solv-

ing data imbalanced issue.

V. CONCLUSION

In this paper, we propose a heartbeat arrhythmias detection

framework which has high performance in robustness and

accuracy. The proposed framework contains two parts:

ACGAN based data augmentation model and residual

network-LSTM based classification model.

Data augmentation model is designed to enrich data of

minor class and recast new training dataset which has

class-balanced distribution. Generator and Discriminator of

ACGAN proposed in this paper are construed by stacked

1D convolutional layers with small size kernel. Dropout and

Batch Normalization are utilized to avoid overfitting and

gradients vanish. Classification model is designed to extract

deep features from the ECGs. We adopt stacked residual

network parallel connected with LSTM network as main

frame to construct the classification model. Experiments on

standard benchmark, MIT-BIH and competition ECG sig-

nals provided by 2018 CPSC have verified that proposed

framework achieve high accuracy in both single heartbeat

abnormalities detection and consecutive heartbeat detection.

However, there are still some limitations in the proposed

architecture: 1) the classification accuracy of consecutive

heartbeat detection is not as high as the performances of stan-

dard benchmark. It may be caused by un-accurate ECG signal

segmentation. The location of R-peak in standard benchmark

is accurately annotated by MIT, while the R-peak in compe-

tition database needs to be calculated by ourselves. In further

development, we plan to investigate more accurately QRS

detection approach to increase the classification accuracy.

2) The proposed framework is composed of two separated

model, and these models are trained separately. However, the

performance can be improved if joint training is feasible to

achieve the global optimization. Therefore, in future work,

we plan to achieve an end-to-end framework to improve the

classification performance.
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