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ABSTRACT To reduce the influence of both the baseline wander (BW) and noise in the electrocardio-

gram (ECG) is much important for further analysis and diagnosis of heart disease. This paper presents

a convex optimization method, which combines linear time-invariant filtering with sparsity for the BW

correction and denoising of ECG signals. The BW signals are modeled as low-pass signals, while the ECG

signals are modeled as a sequence of sparse signals and have sparse derivatives. To illustrate the positive

of the ECG peaks, an asymmetric function and a symmetric function are used to punish the original ECG

signals and their difference signals, respectively. The banded matrix is used to represent the optimization

problem, in order to make the iterative optimization method more computationally efficient, take up the less

memory, and apply to the longer data sequence. Moreover, an iterative majorization-minization algorithm is

employed to guarantee the convergence of the proposed method regardless of its initialization. The proposed

method is evaluated based on the ECG signals from the database of MIT-BIH Arrhythmia. The simulation

results show the advantages of the proposed method compared with wavelet and median filter.

INDEX TERMS Baseline wander correction, ECG denoising, convex optimization, sparsity.

I. INTRODUCTION

Electrocardiogram (ECG) is a time-varying signal which

provides some information of the heart and disease. It is

widely used for the diagnosis to detect whether the heart is

healthy or not. In the process of the signal acquisition, ECG

signal is inevitably polluted by different kinds of interference,

including baseline wander (BW) and random noise. The BW

of ECG signal is mainly caused by the noise made by the

breath or movement of the test people, which is a common

problem and cannot be avoided. The BWhas a low frequency,

leading the overlap with the ST segment of ECG, which

eventually influences the accuracy of the doctor judgment on

the myocardial ischemia and other diseases [1]. At the same

time, the spectrum of the noise is consistent with the ECG

signal, making it difficult to separate the ECG signal from

the noise, and the traditional filter is invalid at the receiver.

The associate editor coordinating the review of this manuscript and
approving it for publication was Mohammad Zia Ur Rahman.

Considering that BW correction and denoising for ECG

signal will both provide better assistance for the diagnosis,

to reduce the effect of the BW and additive noise has been

a hot topic in the area of ECG signal processing during the

past decades. In terms of BW correction, a nonlinear filter

bank was utilized in [2], leading to the stepped waveform

distortion. To solve this problem, the ECG signal based on

empirical mode decomposition (EMD) for BW correction

was proposed in [3]. In [4], a multivariate EMD (MEMD)

method for BWcorrection of ECG signals was presented. The

ensemble EMD (EEMD) integrated empirical mode decom-

position and the least mean square (LMS) algorithm was

combined in [5]. A method combined fractal modeling with

EMD was proposed in [6]. Considering that EMD decompo-

sition is more complicated and the loss of waveform details is

easily caused, a novel method of BW correction based on the

combination of mean-median filter and EMD was proposed

in [7]. In [8], a technique based on Hilbert vibration decom-

position (HVD)was proposed to correct the BW.Based on the
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results in [8], a method based on iterative Hilbert transform

and HVDwas proposed in [9], which improved the efficiency

of the algorithm.

On the other hand, in terms of ECG signal denoising,

wavelet algorithm is one of the most effective methods

and has been researched recently in [10]–[13]. An improved

Symlet wavelet threshold for ECG signal denoising was set

up in [10]. Adaptive double threshold filtering (ADTF) and

discrete wavelet transform were proposed in [11]. Discrete

wavelet transformation and nonlocal mean (NLM) estimation

was combined in [12]. A new algorithm that combines β-hill

climbing metaheuristic with wavelet transform was designed

in [13]. However, in these methods, the amplitudes of the

R-wave and S-wave of the ECG signal will decrease and

the underestimation will occur after the denoising, resulting

in the loss of the characteristics and useful information of

the ECG signal. As one of the new branches for the signal

processing, sparse representation has been widely used in

signal denoising [14]–[16], especially total variation (TV)

denoising based on signal sparsity [17]–[19]. In the process

of traditional TV denoising, stair-case artifacts are easily pro-

duced and the high-amplitude components are often under-

estimated. To improve this situation, some advanced TV

denoising and algorithms were proposed [20], [21]. In [20],

a denoising filter where the signal comprises a low-frequency

component and a sparse or sparse derivative component was

designed, using the majorization-minimization (MM) and

alternating direction method of multipliers (ADMM) [22]

to solve the constructed optimization problems. Based on

the research in [21], the joint suppression method of BW

and noise for chromatogram was designed, as well as the

advanced penalty function on the basis of TV denoising.

Some state-of-the-art denoising methods still have limita-

tions. In [23], the problem of waveform unsmoothness in the

sparse denoising of ECG signal is solved, but the peak under-

estimation is still exist. In [24], the sparse penalty function

is further improved based on [23] to solve the problem of

peak underestimation, however, the BW interference cannot

be effectively removed.

Taking into consideration that BW correction and denois-

ing are considered individually in most existing technologies,

the researchers design the methods with combination of the

both for efficiency. In [25] a method based on wavelet is

proposed, but wavelet transform cannot effectively remove

the smooth varying BW interference. In [26], training dic-

tionary is used for sparse representation of given ECG sig-

nals to learn more signal details, however, the algorithm

is time-consuming, and the peak underestimation is still

obvious.

In order to further reduce the influence of BW interference

and peak underestimation, a joint ECG BW correction and

denoising based on LTI filtering and sparsity method is pro-

posed in this paper. The main contributions are listed.

1) The sparsity of ECG signal and the derivative are ana-

lyzed. An asymmetric penalty function is utilized, which

could not only promote the sparsity of the ECG signal, but

also realize the precise punishment by taking into account the

positive and negative peaks of the ECG signal.

2) The effect of different difference orders on the denoising

of ECG signal is compared by experiments. The results show

that the denoising effect with high-order difference is better

than low-order difference and could completely recover the

detailed features of the original ECG signal.

3) The LTI filtering and the sparse denoising algorithm are

applied to the ECG signal for BW correction and denoising.

The issue of the peak underestimation of the ECG signal is

effectively improved, and the performance of the algorithm

is systematically proposed.

This paper is organized as follows. The related tech-

niques and mathematical methods are presented in Section II.

In Section III, the optimization problem of ECG joint BW

correction and denoising is proposed and the algorithms

system model is given. In Section IV, an iterative algo-

rithm for solving optimization problems is derived. Simu-

lations for BW correction and denoising are conducted in

Section V. Detail discussions of the simulation results under

various algorithm are also provided. Section VI draws the

conclusion.

II. PRELIMINARIES

A. NOTATION

The lower- and upper-case bold denote the vectors and matri-

ces, respectively. The N -point signal x with the length of

N is represented by the vector x = [x(0), . . . , x(N − 1)]T ,

where [·]T is the transpose. All derivatives could be expressed

as finite differences for the reason that all the works are

considered in the discrete-data domain in this paper. The

first-order difference matrix of size (N − 1) × N is defined

as

D1 =











−1 1

−1 1

. . .
. . .

−1 1











, (1)

and the second-order difference matrix of size (N − 2) × N

can be defined as

D2 =











1 −2 1

1 −2 1

. . .
. . .

. . .

1 −2 1











. (2)

Generally, the matrix of size (N − k)×N with the difference

operator of order k is denoted as Dk . D0 is defined as the

identity matrix, i.e.,D0 = I. The ℓ1 and ℓ2 norms are defined

as

‖x‖1 =
∑

n

|xn|, ‖x‖22 =
∑

n

|xn|
2, (3)

respectively.
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B. MAJORIZATION-MINIZATION

In the optimization, a difficult minimization problem can

be replaced by a sequence of simpler ones through MM

approach [27], [28]. In the following, to minimize a convex

function F(x), MM approach solves a sequence of simpler

minimization problems, using the iteration

x(k+1) = argmin
x
G(x, x(k)), (4)

where G(x, v) is a convex majorizor of F(x) that coincides

with F(x) at x = v in each iteration. i.e., G(x, v) ≥ F(x)

for all x, and G(v, v) = F(v). More details can be obtained

from [27]. The update Eq. (4) will produce a sequence x(k)

converging to the minimizer of F(x) after the procedure of

initialization x(0).

C. TOTAL VARIATION DENOISING

TV denosing is widely used for the sparse signal and image

processing denoising, as well as other aspects, e.g., signal

restoration, reconstruction and deconvolution. The method is

also utilized for other signals [17], [29], [30]. It would sup-

press the noise effectively when the derivative of the signal

is sparse, and could be regarded as a convex optimization

problem containing a quadratic data fidelity.

The denoising of sparse derivative signal refers to the

problem of estimating the signal x, which has a sparse or

sparse derivative. The model can be formed as

y = x + w, (5)

where w denotes stationary white Gaussian noise. It is well

known that ℓ1 norm is a convex proxy for sparsity. The objec-

tive function of TV denoising contains a non-differential term

and its solution has been wildly discussed [31], [32]. Assume

the noise which follows stationary white Gaussian noise with

variance σ 2 is added to theN -point signal x. Considering that

the appropriate data fidelity constraint is ‖y − x‖22 ≤ Nσ 2,

the estimation of x was formulated as an ℓ1 norm based on

convex optimization problem, i.e.,

argmin
x

‖Dx‖1, (6a)

‖y − x‖22 ≤ Nσ 2. (6b)

Using a control parameter λ, the optimization problem can

converse to the unconstrained one as follows,

argmin
x

{
1

2
‖y − x‖22 + λ‖Dx‖1}. (7)

The increase of the parameter λ could make the solution x

closer to the piecewise constant. The same as the first-order

difference method, other derivative (e.g., second or higher

derivatives) approximation methods can be used for sparse

derivative denoising.

D. LTI FILTERS

LTI filters are usually modeled to be recursive difference

equations [33]. Considering that LTI filters are most suitable

for signals limited to the known frequency band, they are basi-

cally used as the high-pass filter to cut off the lower-frequency

components. One of the application is for BW of ECG sig-

nal. A linear phase filter could effectively avoided phase

distortion which may alter various temporal relationships in

the cardiac cycle. In this paper, a proper discrete-time filter

is designed to make the proposed approach more effective

and efficient. In other words, the data processing of the

zero-phase, non-causal, recursive filter with finite length is

described in the form of a banded matrix, which could trans-

form to the sparse optimization to design LTI filters.

In order to avoid the unnecessary distortion, the filters L

and H are taken to be zero-phase, non-causal, and recursive

filters. That means the matrices A and B have the specific

zero-phase property, and the shifts in peak locations would

not appear in the filters. A procedure for defining such filters

is given in [20]. The filter is specified by two parameters:

its order 2d and its cutoff frequency fc. In this paper the

high-pass filter H is set to be the form

H = B−1A, (8)

where A and B are banded convolution matrices, and

both represent LTI systems. H represents a cascade of

LTI systems.

A zero-phase non-causal high-pass filter is described by

the difference equation as

j1y(n+ 1) + j0y(n) + j1y(n− 1)

= −x(n+ 1) + 2x(n) − x(n− 1), (9)

and y = A−1Bx is defined, so the transfer function of the

filter Eq. (9) is given by

H (z) =
B(z)

A(z)
=

−z+ 2 − z−1

j1z+ j0 + j1z−1
. (10)

Considering the transfer function on the higher-order high-

pass filter, Eq. (10) could transform to

H (z) =
(−z+ 2 − z−1)d

(−z+ 2 − z−1)d + β(z+ 2 + z−1)
. (11)

The low-pass filter and the high-pass filter have the relation-

ship shown as H = B−1A, so the low-pass filter L(z) has the

transfer function

L(z) =
β(−z+ 2 − z−1)d

(−z+ 2 − z−1)d + β(z+ 2 + z−1)d
. (12)

E. SPARSITY OF ECG SIGNAL

A standard ECG signal is periodical and can be sectioned as

several pieces according to the features of the waves, which

are named as P, Q, R, S and T waves, respectively. As shown

in Fig. 1, the ECG signal consists of abrupt peaks returning to

a relatively flat baseline, and exhibits a form of sparsity. The

low- and high- order derivatives of the original ECG signal

are plotted in Fig. 2 and Fig. 3, respectively. It could be seen

that the difference ECG signal is sparser than the original one,

and the difference value tends to be zero when the order is

VOLUME 7, 2019 31575
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FIGURE 1. Basic pattern of ECG signal.

FIGURE 2. Examples for the derivatives of ECG signal with low-order
difference.

FIGURE 3. Examples for the derivatives of ECG signal with high-order
difference.

higher. The difference signal will no longer change obviously

when the difference order reaches to four. Therefore, the ECG

signal can be regarded as a sparse one.

III. SYSTEM MODEL

A. PROBLEM FORMULATION

A mixed ECG signal consists of three parts: the original

signal, BW interference, and noise signal. It is modeled as

a N -point data vector

y = x + f + n, (13)

where x is the original ECG signal with a sparse K -order

derivative, f represents the low-pass BW signal, and n denotes

the additive noise which follows stationary white Gaussian

noise with variance σ 2.

Generally, the BW is a low-pass signal, and its frequency

is typically less than 0.5 Hz. LTI filter is most suitable when

the signal is approximately restricted to a known frequency

band. The BW could be removed by low-pass filtering.

In the following, a simplified case is considered where the

low-pass signal is observed in noise alone. In this situation,

the observed signal y is the mixture of BW signal f and the

white Gaussian noise n. Then f can be recovered approxi-

mately from y through a low-pass filtering, i.e.,

f̂ = LPF(y) ≈ LPF(f + n), (14)

where LPF represented the low-pass filtering.

In the second step, the situation that the ECG signal x is

present in the observed signal y is considered. The estimation

of the ECG signal x, which denotes as x̂, can be obtained

beforehand. Now the signal contains sparse signal or sparse

derivative component along with noise, i.e., y = x + f + n.

A simple optimization is utilized to estimate the f and x

individually. Given the estimation x̂, f could be estimated as

f̂ = LPF(y − x̂), (15)

in which

f̂ ≈ f, x̂ ≈ x, (16)

are assumed. Substituting Eq. (16) in Eq. (15) gives

f ≈ LPF(y − x̂). (17)

Therefore, the problem is to find x̂.

Substituting Eq. (13) in Eq. (17) gives

(y − x̂) − LPF(y − x̂) = I − LPF(y − x̂) ≈ n. (18)

Note that the left-hand side of Eq. (18) constitutes a high-pass

filter of y− x̂. Define HPF = I−LPF, Eq. (18) can be written

as

HPF(y − x̂) ≈ n. (19)

Considering H represents the high-pass filter matrix,

the Eq. (19) can be written as

H(y − x̂) ≈ n. (20)

On the other hand, it could be noticed that Eq. (13) is a

highly underestimated equation and could be regarded as an

ill-posed or N-P hard problem [34], [35]. Infinite solutions

would appear for the reason that the number of unknowns is
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larger than that of equations. Generally, convex optimization

techniques are used to estimate transient components from

observed signals. Based on TV denoising, the estimation of

x̂ could be formulated as the convex optimization problem,

i.e.,

x̂ = argmin
x

{
1

2
‖H(y − x)‖22 + λ‖Dx‖1}. (21)

After x̂ is obtained, f can be estimated according to Eq. (15).

B. SYMMETRIC PENALTY SPARSE DIFFERENCE MODEL

According to Eq. (13), x is sparse and has a sparse derivative.

In sparse signal processing, the behavior of sparse signal is

usually realized by using proper non-quadratic regularization

terms. Under the high-order situation, the optimization prob-

lem on estimation of x̂ is

x̂ = argmin
x

{F(x) =
1

2
‖H(y − x)‖22

+

K
∑

i=1

λi

Ni−1
∑

n=0

φ([Dix]n)}, (22)

where φ refers to a penalty function, and the number of

constraints of punishment depends on K . More discussion

about the order of difference and the choice of the parameter

λi will be given in Sec. V. Eq. (22) could promote sparsity of

both x and its K -order difference. The high-pass filter is the

same as the equation H = B−1A.

In TV denoising, the sparse-derivative denoising could

be formulated as a minimizing problem for the ℓ1 norm

of the derivative of x, which subjects to the data fidelity

constraint. The function φA = |x| may lead to the prob-

lem of the ℓ1 norm regularization, i.e., the function is not

differentiable at zero. To address this issue, a differen-

tiable approximation of the ℓ1 penalty function is proposed

as

φB(x) = |x| − ρlog(|x| + ρ). (23)

Considering that the φB(x) = |x| − ρlog(|x| + ρ) degrades

into the absolute value function φA(x) when ρ = 0, ρ should

be set to follow the constant ρ > 0 and ρ ≈ 0. On the one

hand ρ should be presented to be an adequate small value

to make sure the penalty function is smooth and original

non-differentiable penalty function is sparse. On the other

hand, ρ should be relatively large enough to avoid some

problems arising from the numerical optimization algorithm.

In this paper, ρ = 10−6 is set up for the reason that the

numerical issues are efficiently avoided and the effect on the

optimal solution is negligible.

C. ASYMMETRIC PENALTY SPARSE DIFFERENCE MODEL

The signal x maybe asymmetrically sparse for some applica-

tions. For example, ECG signal has positive peaks on a rela-

tively flat baseline, and its original signal is asymmetrically

sparse. In this paper the asymmetric penalty [36] is used for

FIGURE 4. The flow-diagram of the proposed method.

punishment on positive and negative. θ is defined as

θ (x; r) =

{

x, x ≥ 0

−rx, x < 0
(24)

where r > 0 is a positive constant. It could be noticed

that Eq. (24) has the same drawback as φA = |x|, i.e., it is

non-differentiable at x = 0. To solve this problem, a differ-

entiable form is proposed as

θρ(x; r) =











x, x > ρ

f (x), |x| ≤ ρ

−rx. x < −ρ

(25)

Excluding the intermediate function f (x), Eq. (25) will trans-

form to the absolute value function φA(x) = |x| when r = 1.

Therefore, the main problem is how to construct intermediate

functions f (x), and the answer will be given in Sec. IV.

IV. COMPOUND OPTIMIZATION ALGORITHM

The flow-diagram of the proposed method is shown in

Fig. 4. Two algorithms for the spare optimization in the

flow-diagram are designed in this section. One is based on the

symmetric penalty sparse difference algorithm, and the other

is a compound algorithm based on symmetric and asymmetric

sparse difference penalty. MM procedure in Eq. (4) is used to

derive the iterative algorithm for optimization.
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A. SYMMETRIC PENALTY SPARSE DIFFERENCE

ALGORITHM

According to Sec. III, it is known that φ is a symmetric

penalty function. AmajorizerG(x, v) is firstly found for φ(x),

i.e.,

g(v, v) = φ(v), (26)

g(x, v) ≥ φ(x), (27)

Since φ(x) is a symmetric function, Eq. (27) can be regarded

as an even second-order polynomial, i.e.,

g(x, v) = mx2 + b. (28)

According to Eqs. (26) and (27), it could be obtained that

mv2 + b = φ(v), 2mv = φ′(v). (29)

After that, the m and b can be computed as

m =
φ′(v)

2v
, b = φ(v) −

v

2
φ′(v). (30)

Substituting Eq. (30) in Eq. (28) achieves

g(x, v) =
φ′(v)

2v
x2 + φ(v) −

v

2
φ′(v). (31)

Then, it could be derived that

N−1
∑

n=0

g(xn, vn) =
∑

n

[
φ′(v)

2v
x2n + φ(vn) −

vn

2
φ′(vn)]

=
1

2
xT

φ′(vn)

vn
x +

∑

n

[φ(vn) −
vn

2
φ′(vn)]

=
1

2
xT [Ŵ(v)]x + c(v)

≥

N−1
∑

n=0

φ(xn), (32)

where

[Ŵ(v)]n,n =
φ′(vn)

vn
, (33)

and

c(v) =
∑

n

[φ(vn) −
vn

2
φ′(vn)]. (34)

Based on Eq. (32), it can be further obtained that

K
∑

i=0

λi

N−1
∑

n=0

g([Dix]n, [Div]n)

=

K
∑

i=0

[
λi

2
(Dix)

T φ′([Div]n)

[Div]n
Dix

+
∑

n

[φ([Div]n) −
(Div)n

2
φ′(Div)n]

=

K
∑

i=0

[
λi

2
(Dix)

T [3(Div)](Dix) + ci(v)]

Algorithm 1 Symmetric Penalty Sparse Difference Algo-

rithm
1: Input: y, A, B, λi, i = 0, . . . ,K

2: b = BTBA−1y

3: x = y (initialization)

Repeat

4: [3i]n,n =
φ′([Dix]n)
[Dix]n

, i = 0, . . . ,K

5: I =
∑K

i=0 λiDi3iDi

6: E = BTB + AT IA

7: x(k+1) = A[E(k)]−1b

If the convergence conditions are met, output x, other-

wise, k = k + 1, and go to step 4-7.

8: H = BA−1

f = y − x − H(y − x)

Output: x, f

≥

K
∑

i=0

λi

Ni−1
∑

n=0

φ([Dix]n), (35)

where

[3(Di)]n,n =
φ′([Div]n)

[Div]n
, (36)

and

ci(v) =
∑

n

[φ([Div]n) −
(Div)n

2
φ′(Div)n]. (37)

Base on Eq. (35), the majorizer of F(x) based onMM is given

by

G(x, v) =
1

2
‖H(y − x)‖22

+

K
∑

i=0

[
λi

2
(Dix)

T [3(Div)](Dix)] + c(v). (38)

Minimizing G(x,v) with respect to x yields

x = (HTH +

K
∑

i=0

λiD
T
i [3(Div)]Di)

−1HTHy. (39)

Combining Eqs. (8) and (39), x can be written as

x = A(BTB + AT (

K
∑

i=0

λiD
T
i [3(Div)Di)A)

−1BTBA−1y

= AE−1BTBA−1y, (40)

where

E = BTBA + AT (

K
∑

i=0

λiD
T
i [3(Div)]Di)A. (41)

The complete algorithm is proposed in Algorithm 1.
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B. COMPOUND PENALTY SPARSE DIFFERENCE

ALGORITHM

For the consideration of the positive of the ECG signal peaks,

asymmetric penalty is used for the original signal, and sym-

metric penalty is used for the difference signal. In this way,

not only the detail part of ECG signal could be better repre-

sented, but also the sparsity of ECG signal could be enhanced

and more real ECG signal could be restored. Eq. (22) can be

further written as

x̂ = argmin
x

{F(x) =
1

2
‖H(y − x)‖22

+ λ0

N−1
∑

n=0

θρ(xn; r) +

K
∑

i=1

λi

Ni−1
∑

n=0

φ([Dix]n)}, (42)

where φ = φB for the optimal solution x. To construct the

intermediate function x in Eq. (25), a quadratic equation is

introduced as

g(x, v) = ax2 + bx + c. (43)

According to the MM algorithm

g(x, v) = θ (x, r), g′(v, v) = θ ′(v; r), (44)

g(s, v) = θ (s, r), g′(s, v) = θ ′(s; r). (45)

Note that a, b, c and s are all functions of v. Solving for them

gives

a =
1 + r

4|v|
, b =

1 − r

2
, c =

(1 + r)|v|

4
, s = −v. (46)

Substituting Eq. (46) in Eq. (43), the majorizer for θ (x, r) can

be obtained as

g(x, v) =
1 + r

4|v|
x2 +

1 − r

2
x +

(1 + r)|v|

4
. (47)

Furthermore, to address ’devide-by-zero’ numerical issue

when v approaches zero in Eq. (47), θρ(x; r) is defined to be

the second order polynomial with v = ρ in a neighborhood

of x = 0, i.e.,

θρ(x; r) =















x, x > ρ

1+r

4ρ
x2+

1−r

2
x+

(1+r)ρ

4
, |x| ≤ ρ

−rx. x < −ρ

(48)

Assume that g(x, v) is the majorizer of the asymmetric and

differentiable function θρ(x; r), then define f (x) = 1+r
4ρ
x2 +

1−r
2
x +

(1+r)ρ
4

, ‖x‖ ≤ ρ. For θρ(x; r) to be a majorizer of

g(x, v), it can be shown as

g(x, v) =



























1 + r

4v
x2 +

1 − r

2
x +

(1 + r)v

4
≥ f (x),

v > ρ

−
1 + r

4v
x2 +

1 − r

2
x −

(1 + r)v

4
≥ f (x).

v < −ρ

(49)

Then, it could be derived that

g(x, v) − f (x) = (
1 + r

4v
−

1 + r

4ρ
)x2 + (v− ρ)

1 + r

4

=
(1 + r)(v− ρ)(vρ − x2)

4vρ
> 0 (50)

when v > ρ, and

g(x, v) − f (x) = (−
1 + r

4v
−

1 + r

4ρ
)x2 + (v+ ρ)

1 + r

4

= −
(1 + r)(v+ ρ)(vρ + x2)

4vρ
> 0 (51)

when v < −ρ. Therefore, in the domain [−ρ, ρ], θρ(x; r)

itself is used as majorizer and is found to be

g(x, v) =











1 + r

4|v|
x2 +

1 − r

2
x +

(1 + r)|v|

4
, |v| > ρ

1 + r

4ρ
x2 +

1 − r

2
x +

(1 + r)ρ

4
. |v| ≤ ρ

(52)

It can be obtained that

N−1
∑

n=0

g(xn, vn) = xT [Ŵ(v)]x + bT x + c(v)

≥

N−1
∑

n=0

θρ(xn; r), (53)

where Ŵ(v) is a diagonal matrix and expressed as

[Ŵ(v)]n,n =











(1 + r)

4|vn|
, |vn| ≥ ρ

(1 + r)

4ρ
, |vn| ≤ ρ

(54)

and

b =
1 − r

2
. (55)

Combining Eq. (35) with Eq. (53), the majorizer for F(x)

is given by

G(x, v) =
1

2
‖H(y − x)‖22 + λ0x

T [Ŵ(v)]x + λ0b
T x

+

k
∑

i=1

[
λi

2
(Dix)

T ] + c(v). (56)

Minimizing G(x, v) with respect to x yields

x = HTH + 2λ0Ŵ(v)

+

K
∑

i=1

λi(Di)
T [3(Div)Di]

−1(HTHy − λ0b). (57)

H has the expression that H = B−1A, hence, Eq. (57) could

be written as

x = A(BTB + ATKA)−1(BTBA−1y − λ0A
Tb)

= AP−1(BTBA−1y − λ0A
Tb), (58)
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Algorithm 2 Compound Penalty Sparse Difference Algo-

rithm
1: Input: y, r ≥ 0, A, B, λi, i = 0, . . . ,K

2: b = 1−r
2

3: z = BTBA−1y − λ0A
Tb

4: x = y (initialization)

Repeat

5: [3i]n,n =
φ′([Dix]n)
[Dix]n

, i = 0, . . . ,K

6: P = BTB + ATKA

7: K = 2λ0Ŵ +
∑K

i=1 λi(Di)
T3iDi

8: x = AP−1z

Until convergence

9: H = BA−1

f = y − x − H(y − x)

Output: x, f

where

P = BTB + ATKA, (59)

and

K = 2λ0Ŵ(v) +

K
∑

i=1

λi(Di)
T [3(Div)]Di. (60)

P and K are the banded matrices. The MM iteration can be

implemented using the fast solver for the banded systems,

shown as

K = 2λ0Ŵ(x
(k)) +

K
∑

i=1

λi(Di)
T [3(Dix

(k))]Di, (61)

P(k) = BTB + ATK(k)A, (62)

x(k+1) = AP−1(BTBA−1y − λ0A
Tb). (63)

Furthermore, the matrix-vector multiplications are also com-

putationally efficient for the reason that all matrices are

banded.

Finally, the update equations constitute the Algorithm 2,

which in this paper is listed as Compound Penalty Sparse

Difference Algorithm.

V. SIMULATION RESULTS

The experimental environment is Windows 10 operating sys-

tem, MATLAB R2014A, and the machine is configured with

Intel(R) Core i7-6700 CPU 3.40 GHz processor and 8 GB

RAM.

A. ECG DATABASE

The ECG signals used for the test are taken from MIT-BIH

Arrhythmia Database [37], while the BW signals are taken

from MIT-BIH Noise Stress Test Database [38], and all the

BW signals are obtained from the real physical active of vol-

unteers. Set 0 dB, 1.25 dB and 5 dB signal noise radio (SNR)

for the system, respectively. The proposed method was com-

pared with the wavelet and median filter methods for ECG

signals. Also, the white Gaussian noise with variance σ 2 is

added on the ECG signals.

FIGURE 5. The example of ECG signal. (a) Original ECG signal. (b) Baseline
wander ECG signal. (c) Baseline wander and noise ECG signal.

B. PERFORMANCE INDEX

The performance of proposed method is evaluated based on

the calculated SNR and mean square error (MSE). The SNR

and MSE can be represented as follows,

SNR = 10 log

∑N−1
n=0 [x(n)]

2

∑N−1
n=0 [x(n) − x̂(n)]2

, (64)

MSE =
1

N

N−1
∑

n=0

[x(n) − x̂(n)]2. (65)

It is well known that the denoising effect performs better at

high SNR and low MSE.

C. BASELINE CORRECTION OF REAL ECG SIGNAL

The example in this subsection illustrates the use of the cor-

rection of BW in real ECG signal. Fig. 5 shows the example

of ECG signal. Fig. 5 (a) represents the raw ECG signal (MIT-

BIH record No.103), Fig. 5 (b) represents the ECG signal

with BW, while Fig. 5 (c) is the ECG signal with both BW

and white Gaussian noise. To clarify the use of the propose

algorithm, set d = 1 with a cut-off frequency of fc = 0.009.

The ECG signal is modeled as a signal with three-order sparse

derivatives, and the reason will be given in the last subsection.

Fig. 6 illustrates the effect of BW elimination with dif-

ferent methods, the blue line is original clean ECG signal,

while the line of ECG signal with BW correction using the

proposed algorithm, the wavelet and median filter are red,

green and black, respectively. It is clearly shown that after the

processing of the proposed method, the ECG signal success-

fully removes the BW and gets its normal steady curve and

original characteristics. Compared with other two algorithms,

the proposed method has the better performance on the BW

correction, and the restored signal is basically consistent with

the original ECG signal. Moreover, the waveform using the

proposed method is more smooth, and the low-frequency

noise in the BW could be efficiently removed.

Table 1 illustrates the comparison of the SNR and MSE

of wavelet, median filter, and the proposed method for BW
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FIGURE 6. Compare with other methods of ECG baseline correction.

TABLE 1. Experimental results for BW correction with different SNRs and
MSEs.

correction. The results show that after BW noise signals are

added to the ECG signal with SNRs of 0 dB, 1.25 dB, and

5 dB, respectively, the proposed method provides superior

performance than wavelet and median filter with different

SNRs and MSEs. For example, the experiment results for

MIT-BIH record no.103 show that for SNR of 1.25 dB,

the output SNRs of wavelet and median filter are 4.02 dB

and 4.45 dB, while the proposed method gives an output SNR

of 15.88 dB. At the same time, the MSE of proposed method

is 0.006, which is lower than other methods.

D. DENOISING OF REAL ECG SIGNAL

To show the denoising effect, the proposed scheme is

compared with the wavelet algorithm which has the best

denoising effect among the traditional algorithms. The real

ECG signal with additive white Gaussian noise is used for

comparison.

The denoising performance of wavelet is shown in Fig. 7.

It is clearly shown that the wavelet algorithm achieves great

denoising performance. However, it could be found from

Fig. 7 (c) and Fig. 7 (d) that the denoised signal has slight

wave oscillation, and obviously underestimates the ampli-

tudes of ECG peaks. It is noticed that the SNR of the denoised

signal is 10.33 dB, and MSE is 0.019.

Fig. 8 shows the denoising performance of the proposed

algorithm. It is shown in Fig. 8 (c) and (d) that compared

with wavelet, the proposed method could effectively reduce

the noise and avoid the wave oscillation and overestimation

of the amplitudes of ECG peaks. The SNR is 16.46 dB and

MSE is 0.004, which could estimate the amplitudes of ECG

peaks more accurately.

FIGURE 7. Denoised ECG signal using wavelet algorithm (Red line is
original ECG signal, and blue line is denoised ECG signal in Fig. 7 (d).)
(a) Original ECG signal. (b) Noise ECG signal. (c) Denoised ECG signal.
(d) Compare with original ECG signal.

FIGURE 8. Denoised ECG signal using the proposed algorithm (Red line is
original ECG signal, and blue line is denoised ECG signal in Fig. 8 (d).)
(a) Original ECG signal. (b) Noise ECG signal. (c) Denoised ECG signal.
(d) Compare with original ECG signal.

E. JOINT BW CORRECTION AND DENOISING OF REAL

ECG SIGNAL

In this subsection, the example is applied to illustrate the per-

formance of the proposed algorithm for joint BW correction

and denoising.

The simulation results are shown in Fig. 9. Set the parame-

ters r = 1 and fc = 0.009. As shown in Fig. 9 (b), the baseline

is well estimated. Fig. 9 (c) illustrates that the proposed

algorithm achieves great performance for BW correction and

denoising, and Fig. 9 (d) shows the estimation of residual

constitute, i.e., the noise of the ECG signal.

Themedian filter andwavelet are used for comparisonwith

the proposed algorithm, which is shown in Figs. 10 - 12. The

same degree of BW is added to explore the different denoising

performance in different SNRs. It can be observed that the

proposed algorithm could effectively isolate and preserve

the P-waves, QRS-complex and T-waves in the denoised

ECG signal. The wavelet algorithm has a good denoising

performance, but it cannot well correct the BW. The median

filter could effectively eliminate the BW, however, the effect
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FIGURE 9. Joint baseline wander correction and denoising. (a) The ECG
signal added BW signal and noise. (b) Baseline, estimation (r = 1, fc =

0.009, d = 1). (c) The ECG signal of BW correction and denoising.
(d) Residual.

FIGURE 10. ECG signal added noise with SNR = 5 dB.

on signal denoising is much poor. Compared with other two

algorithms, the proposed algorithm achieves a better perfor-

mance of BW correction and denoising.

Furthermore, in order to prove the universality and validity

of the proposed method, another two samples (MIH-BIH

no.105, MIT-BIH no. 213) with morphological variations are

used for joint BW correction and denoising. The simulations

are shown in Fig. 13 and Fig. 14. The performance compar-

ison between SNR and MSE of different methods for the

three signals is shown in Table 2. It can be seen that the

proposed method achieves good performance under different

morphological variations of ECG signals. The wavelet and

median methods could only provide minor improvement in

the SNR and MSE.

F. DIFFERENCE ORDER

According to Eq. (42), the estimation results of ECG signal x

are related to the value of difference order λ. Considering that

the regularization parameter λ is critical for the reconstruction

of ECG signal, the proper difference order for ECG signal is

FIGURE 11. ECG signal added noise with SNR = 10 dB.

FIGURE 12. ECG signal added noise with SNR = 15 dB.

FIGURE 13. MIT-BIH no. 105 joint BW correction and denoising.

discussed in this subsection. The example is considered under

the situation that fc = 0.009, d = 1 and r = 1. A mix

ECG signal is shown in Fig. 15, which is a real ECG signal

added the BW signal and white Gaussian noise. Figs. 16 - 19

provide the reconstructions of ECG signal under different

orders.
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FIGURE 14. MIT-BIH no. 213 joint BW correction and denoising.

TABLE 2. Experiment results of output SNR and MSE in different input
SNRs.

FIGURE 15. Mixed ECG signal.

As shown in Fig. 16, when 1-order difference is chosen,

the BW in the mixed ECG signal is corrected and the noise

is reduced effectively. However, it could be observed that the

reconstructed ECG signal is not smooth enough and hasmany

stair-case artifacts, which cannot retain the detailed features

FIGURE 16. Reconstructed ECG signal with 1-order difference.

FIGURE 17. Reconstructed ECG signal with 2-order difference.

of the original signal. The SNR of the reconstructed ECG

signal is 14.49 dB, and the regularization parameter λ is set

as follows: λ0 = 0.6, λ1 = 7.

As shown in Fig. 17, when 2-order difference is chosen,

the noise is further reduced. There are still stair-case artifacts

and sawtooth step waveforms, but the number of those is

significantly reduced compared with the 1-order difference

case, and the original signal is roughly restored with the

preservation of more details. The SNR of the reconstructed

ECG signal is 15.21 dB, and the regularization parameter λ

is set as follows: λ0 = 0.6, λ1 = 7, λ2 = 7.

As shown in Fig. 18, when 3-order difference is chosen,

the noise is continuously reduced. The waveform of the

reconstructed signal becomes smoother, and it is hard to

visibly find the existence of stair-case artifacts and serrated

stepped waveforms. The waveform of reconstructed signal

is closer to that of the original signal, and the details is

more accurate. The SNR of the reconstructed ECG signal is

16.78 dB, and the regularization parameter λ is set as follows:

λ0 = 0.6, λ1 = 7, λ2 = 7, λ3 = 20.

As shown in Fig. 19, when 4-order difference is chosen,

there is no significant change in the reconstructed ECG signal
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FIGURE 18. Reconstructed ECG signal with 3-order difference.

FIGURE 19. Reconstructed ECG signal with 4-order difference.

compared to the 3-order difference case. Moreover, the SNR

of the reconstructed ECG signal is 16.57 dB, which is lower

than that of the 3-order difference case, showing that the per-

formance is not as good as 3-order difference case. As a result,

the difference with 4-order or more is not recommended and

3-order is most proper for the example.

VI. CONCLUSION

In this paper, a convex optimization method for BW correc-

tion and denoising of ECG signals is proposed, combining

LTI filtering with sparse denoising.Wavelet and median filter

are applied for comparison. Simulation results show that the

proposed algorithm has a better performance for BW correc-

tion of ECG signal. For the aspect of denoising, the proposed

method achieves a good noise reduction effect and effectively

solves the problem of low peak estimation of ECG signal

existing in the traditional method. In addition, the simulation

experiments of ECG signal combined with joint BW correc-

tion and denoising are also carried out. The results show that

the proposed method could effectively reduce the noise and

correct the BW in the ECG signal. The waveform of ECG

signal is smooth and more details are preserved. Moreover,

the advantages of the proposed method is shown by means of

SNR and MSE. Finally, the difference order of ECG signal

is discussed, and the conclusion that the 3-order difference

is suitable under the situation of the setting parameter is

obtained. It could be noticed that there are some limitations

with proposed method, i.e., parameter could only be selected

based on experience at present. The adaptive parameters for

any input ECG signals will be considered to further improve

the computational efficiency in future work.

REFERENCES

[1] J. A. van Alsté, W. Van Eck, and O. E. Herrmann, ‘‘ECG baseline wander

reduction using linear phase filters,’’ Comput. Biomed. Res., vol. 19, no. 5,

pp. 417–427, 1986.
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