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Classi�cation of electrocardiogram (ECG) signals plays an important role in clinical diagnosis of heart disease.�is paper proposes
the design of an e	cient system for classi�cation of the normal beat (N), ventricular ectopic beat (V), supraventricular ectopic beat
(S), fusion beat (F), and unknown beat (Q) using a mixture of features. In this paper, two di
erent feature extraction methods are
proposed for classi�cation of ECG beats: (i) S-transform based features along with temporal features and (ii) mixture of ST and
WT based features along with temporal features. �e extracted feature set is independently classi�ed using multilayer perceptron
neural network (MLPNN).�e performances are evaluated on several normal and abnormal ECG signals from 44 recordings of the
MIT-BIH arrhythmia database. In this work, the performances of three feature extraction techniques with MLP-NN classi�er are
compared using �ve classes of ECG beat recommended by AAMI (Association for the Advancement of Medical Instrumentation)
standards. �e average sensitivity performances of the proposed feature extraction technique for N, S, F, V, and Q are 95.70%,
78.05%, 49.60%, 89.68%, and 33.89%, respectively. �e experimental results demonstrate that the proposed feature extraction
techniques show better performances compared to other existing features extraction techniques.

1. Introduction

Electrocardiogram (ECG) signal which is the recording of the
cardiac electrical activity provides the important information
about heart’s condition. Detection of ECG arrhythmias is
necessary for the treatment of patients for diagnosing the
heart disease at the early stage. It is very di	cult for doctors
to analyze long ECG records in the short period of time and
also human eye is poorly suited to detect the morphological
variation of ECG signal, hence imposing the need for an
e
ective computer aided diagnostic (CAD) system. �e
automatic ECG signal analysis faces a di	cult problem due to
large variation inmorphological and temporal characteristics
of ECG waveforms of di
erent patients as well as the same
patients [1]. �e ECG waveforms may di
er for the same
patient at di
erent time and may be similar for di
erent
patients having di
erent types of beats. For this reason, most
of the ECG beats classi�cation methods perform well on
the training data but provide poor performance on the ECG
waveforms of di
erent patients.

In the last decade, a number of researchers have reported
the di
erent automatic ECG classi�cation techniques [2–8].

An e	cient system for recognition of the premature ventric-
ular contraction from the normal beats and other heart dis-
eases is reported in [2] and achieved accuracy of 97.14% using
twelve �les from MIT-BIH database for ECG classi�cation.
�e ECG beat classi�cation system based on higher order
statistics of subband components and a feed forward back
propagation neural network is described in the literature [3]
and achieved the classi�cation accuracy of 96.34%. In [4], a
combinationmethod based on the complementary features of
mixture of experts and negative correlation learningmethods
is introduced for classifying the normal heartbeats, premature
ventricular contraction (PVC) arrhythmias, and other abnor-
malities and achieved accuracy of 96.02%. �e multilayer
perceptron neural network classi�er is used to classify the
four types of ECG beats (normal beat, congestive heart failure
beat, ventricular tachyarrhythmia beat, and atrial �brillation
beat) using Lyapunov exponents, wavelet coe	cients, and the
power levels of power spectral density (PSD) values obtained
by eigenvector methods of the ECG signals as feature set and
achieved average accuracy of 93.89% [5]. In [6], six types of
beats including normal beat, PVC, fusion of ventricular and
normal beat, atrial premature beat (A), right bundle branch
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block beat, and fusion of paced and normal beat obtained
from the MIT-BIH arrhythmia database, are classi�ed using
particle swarm optimization and radial basis function neural
network. Two classi�ers are combined together usingmixture
of experts where the local classi�er requires a cardiologist
to annotate a segment of patient speci�c ECG and achieved
accuracy of 94.0% for distinguishing the two classes using
mixture of expert classi�ers. In [7], the morphological and
temporal features are extracted to classify the �ve classes of
ECG signal using linear discriminant classi�er and achieved
lower average accuracy of 85.9%. �e disadvantage of de
Chazal et al. [7] method is that the �xed classi�cation
method does not take any variation in ECG pattern caused
by personal or environmental di
erences. In [8], Jiang and
Kong have used the Hermite transform coe	cients and
time intervals between two neighboring R-peaks of ECG
signals based features and block based neural network as
a classi�er and classi�ed �ve types of ECG beat with an
accuracy of 96.6%. In this method, there are around 1015
parameters/thresholds which are set empirically with respect
to the dataset used. Another problem of this method is that
the reported block-based neural networks (BbNN) require
equal sizes for input and output layers.

However, all aforementioned techniques have following
drawbacks as follows. (i) In general, all these methods have
not performed well due to their inconsistent performance
when classifying new patients ECG waveform. (ii) Most of
these techniques were tested only on limited ECG data base.
(iii) Despite many ECG classi�cation methods o
ered in the
earlier literature, only few have employed a standard classi-
�cation scheme for ECG arrhythmia such as ANSI/AAMI
EC57:1998 [10]. (iv)Most of themuse either time or frequency
domain representation of the ECG signals as features though
both time and frequency are equally important to consider
morphological variation of ECG beats.

In this paper, a novel approach is proposed to patient
adaptation while avoiding the above limitations. ECG classi-
�cation strongly depends on extraction of features from ECG
waveforms. In this work, signi�cant features are extracted
using S-transform (ST) and wavelet transform (WT) due to
their time-frequency localization properties [11]. �e ST has
unique properties such as (i) frequency invariant amplitude
response, (ii) progressive resolution, and (iii) absolutely
referenced phase information which means that the phase
information given by the ST refers to the argument of the
cosinusoid at zero time [11]. Besides, the interpretation of
the important signal information in the ST is apparent which
will be bene�cial to extract the important features from the
ECG signal [12]. On the other hand, WT is an e	cient
tool for analyzing nonstationary ECG signals. It is also used
to decompose an ECG signal which e
ectively isolates the
relevant properties of the ECG signal morphology from the
noise, baseline dri�, and amplitude variation of the ECG
signal [9]. Earlier researcher has used the WT coe	cients
at the appropriate scales as morphological feature vectors
rather than the original signal time series and achieved good
classi�cation performance [9]. �erefore, the two feature
extraction techniques are combined depending on their
properties and advantages which could help to select the

features more e
ectively than using them independently.
MLP-NN is normally used as a classi�er to discriminate the
ECG signal using these features. In this paper, we have used
the MLP-NN classi�er because (i) it can be used to generate
likelihood-like scores that are discriminative in the state level,
(ii) it can be easily applied in hardware platform for its simple
structure, (iii) it has the ability to approximate functions and
automatic similarity based generalization property, and (iv)
complex class distributed features can be easily mapped by
neural network [13]. �e proposed methods classify the �ve
classes of ECG beat recommended by the AAMI standard
and experimental results are comparedwith the other existing
feature extraction techniques. �is paper proposes e
ective
feature extraction methods which exhibit highest ECG clas-
si�cation sensitivity for large database.

�e remainder of this paper is structured as follows.
Section 2 presents the database used in this context. �e
proposed framework is described in Section 3. Experimental
design is described in Section 4. Performance results and
discussion are explained in details in Section 5 and Section 6.
Finally, the conclusions of the paper are reported in Section 7.

2. Data Base

In this study, ECG data of MIT-BIH arrhythmia data base
[14] are used for performance evaluation of the proposed
ECG beat classi�cation technique. �is database contains 48
ECG recordings, each containing 30min segment selected
from 24 hrs recordings of 48 individuals. Each ECG signal is
passed through a band pass �lter at 0.1–100Hz and sampled at
360Hz. �e 44 records from MIT-BIH arrhythmia database
are used for performance assessment. According to theAAMI
recommended practice the 4 paced beats are excluded in this
experimental evaluation process because these beats do not
retain su	cient signal quality for reliable processing [10].
�is database contains di
erent types of arrhythmias. In
this paper, the normal and arrhythmia beats are combined
based on AAMI standard which is described in Table 1.
�e AAMI convention is used to combine the beats into
�ve classes of interest [7]: normal beat, le� bundle branch
block (LBBB), right bundle branch block (RBBB), and atrial
escape and nodal junction escape beats belong to class N
category; class V contains premature ventricular contraction
(PVC) and ventricular escape beats, class S contains atrial
premature (AP), aberrated premature (aAP), nodal junction
premature (NP), and supraventricular premature (SP) beats,
class F contains only fusion of ventricular and normal (fVN)
beats, and class Q which is known as unknown beat contains
paced beat (P), fusion of paced and normal (fPN) beats, and
unclassi�ed beats. Five classes of ECG arrhythmia are shown
in Figure 1.

3. Proposed Framework

�e block diagram of the ECG classi�cation technique is
shown in Figure 3. In this context, the proposed classi�cation
techniques consist of three main stages such as (i) prepro-
cessing and QRS detection, (ii) feature extraction, and (iii)



International Scholarly Research Notices 3

Table 1: ECG class description using AAMI standard.

AAMI class MIT-BIH heart beat types

Normal beat (N) Normal beat (N)
Le� bundle branch

block beat (L)
Right bundle branch

block beat (R)
Atrial escape beat (e)

Nodal (junctional)
escape beat (j)

Supraventricular
ectopic beat (S)

Atrial premature beat
(A)

Aberrated atrial
premature beat (a)

Nodal (junctional)
premature beat (J)

Supraventricular
premature beat (S)

Ventricular ectopic
beat (V)

Premature ventricular
contraction (V)

Ventricular escape
beat (E)

Fusion beat (F)
Fusion of ventricular
and normal beat (F)

Unknown beat (Q) Paced beat (/)
Fusion of paced and
normal beat (f)

Unclassi�ed beat (Q)
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Figure 1: Five classes of ECGbeat (a) normal (N), (b) supraventricular ectopic (S), (c) fusion (F), (d) ventricular ectopic (V), and (e) unknown
(Q).

classi�er. �e preprocessing stage involves the following two
substages: (i) normalize the amplitude of ECG signals to zero
mean; this reduces theDCo
set and eliminates the amplitude
variance �le to �le; (ii) the bandpass �lter (3–20Hz) is used
to contain most of QRS complex energy and least amount

of high frequency noise and low-frequency baseline wander.
Figures 2(a) and 2(b) show the frequency and phase spectrum
of bandpass �lter, respectively, and Figures 2(c) and 2(d) show
the ECG signal before and a�er the use of bandpass �lter.
�e proposed technique follows QRS complex detection as
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Figure 2: (a) Frequency spectrum of band pass �lter; (b) phase spectrum of the �lter; (c) ECG signal before applying the �lter; (d) a�er
applying the �lter.
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Figure 3: Block diagram of ECG classi�cation using proposed
hybrid feature extraction technique.

reported in Pan Tompkins’ QRS detection algorithm [15].
�is paper proposes feature extraction techniques based on
ST and mixture of ST and WT based feature set.

3.1. Feature Extraction. Feature is a distinctive or characteris-
tic measurement, transform, structural component extracted

from a signal of a pattern. A feature extractor should
reduce the pattern vector (i.e., the original waveform) to
a lower dimension, which contains most of the important
information from the original vector [16]. Generally, two
types of features are extracted from one ECG cardiac cycle:
(a) morphological features and (b) temporal features.

3.1.1. Temporal Features. Four temporal features are extracted
directly from RR-intervals of the preprocessed ECG signal.
RR-intervals are calculated as the interval between successive
heartbeats. �e following are the four ways to extract the
temporal features: (i) pre-RR-interval: RR-interval between
a given heartbeat and the previous heartbeat; (ii) post-RR-
intervals: the RR-interval between a given heartbeat and the
following heartbeat; (iii) average RR-intervals: the mean of
the RR-intervals for a recording and is considered as the
same value for all heartbeats in a recording; (iv) local average
RR-interval: averaging the RR-intervals of ten RR-intervals
surrounding a heartbeat [7]. �us, four temporal features
are obtained from each ECG heart beat which is shown in
Figure 4(c).

3.1.2. Morphological Features. In this paper, three types
of morphological features are used to classify the ECG
beats: (a) ST based morphological features, (b) WT based
morphological features, and (c) combined morphological
feature of ST and WT. �ese features are extracted from one
ECG cardiac signal. For morphological feature extraction,
180 samples are extracted from one ECG cardiac cycle by
selecting awindowof−250ms to +250ms around theR-peak.
Figure 4(a) indicates the time domain and time-frequency
domain ECG signal, respectively.

(1) Proposed ST Based Features. �e ST [11] is used to obtain
the time-frequency representation of a time domain noisy
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Figure 4: Extracted feature vector from one ECG cardiac cycle of Tape no. #200 ECG record. (a) ECG signal of selected samples; (b) ST
of selected ECG signal; (c) extracted temporal feature set from selected ECG signal; (d) ST based morphological feature set; (e) WT based
feature set; (f) combined set of WT, ST, and temporal features.

ECG signal. �e continuous ST �(�, �) of a noisy ECG signal
ℎ(�) at time � = � and frequency � is de�ned as

� (�, �) = ∫
∞

−∞
ℎ (�)





�




√2�

−(�−�)2�2/2−�2�����. (1)

A voice �(�, ��) is de�ned as a one-dimensional function
of time for a constant frequency ��, which shows how the
amplitude and phase for this exact frequency change over
time. If the time series ℎ(�) is windowed (or multiplied point
by point) with a window function (Gaussian function) �(�),
then the resulting spectrum is

�(�) = ∫
∞

−∞
ℎ (�) � (�) −�2�����, (2)

where generalized Gaussian function is

� (�) = 1
�√2�

−�2/2	2
(3)

and then allowing the Gaussian to be a function of translation
� and dilation (or window width) �,

� (�, �, �) = ∫
∞

−∞
ℎ (�) 1

�√2�
−(�−�)2/2	2−�2�����. (4)

�is is a special case of the multiresolution Fourier transform
because there are three independent variables in it; it is
also impractical as a tool for analysis. Simpli�cation can be

achieved by adding the constraint restricting the width of the
window to � which is proportional to the period (or inverse
of the frequency):

� (�) = 1



�




. (5)

�e reasons [17] for takingGaussianwindoware as follows: (i)
it is symmetric in time and frequency; the Fourier transform
(FT) of a Gaussian is Gaussian, (ii) there are no side lobes
in a Gaussian function, and (iii) it uniquely minimizes the
quadratic time frequency moment about a time frequency
point.

�e Discrete ST [17] of the ECG signal ℎ[��] is given by

� [��, �
��] =


−1
∑
�=0

�[� + �
�� ] −2�2�2/�2�2��/
, (6)

where �[�/��] is the FT of the � point time series ℎ[��]
and �,�, � = 0, 1, . . . , (� − 1). �e output of ST is a complex
valuedmatrix whose rows indicate the frequency and column
indicates the time.�eST-amplitude, which is used to analyze
the ECG signal, is de�ned as

� (��, �) = 






� [��,
�
��]








 . (7)

�e proposed feature extraction technique ST is applied to
the selected portion of ECG signal. �e ST output is denoted
as ST-matrix. Features are extracted by applying standard
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Table 2: One way ANOVA results for di
erent types of classes.

Feature type Source of variation Sum of squares df Mean squares � �

S-transform

Between the groups 28.4927 −1 −28.4927 −0.49 <0.0001
Within the groups 924.7985 16 57.7999

Total 953.2912 15
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Figure 5: Subband decomposition of discrete wavelet transform.

statistical techniques to the contours of the ST-matrix as well
as directly on the ST-matrix. �ese features are very useful
for detection, classi�cation, and quanti�cation of relevant
parameters of ECG signals. Eight features are extracted from
the ST output, four from the time-frequency contour (TF-
contour) and remaining four from the timemaximum ampli-
tude plot (TmA-plot) [18]. Total eight signi�cant features are
extracted below in two cases.

Case 1. Feature extraction from TF-contour:

(1) S1: standard deviation of the TF-contour having the
largest frequency amplitude of TF-contour;

(2) S2: mean of contour having largest frequency ampli-
tude of TF-contour;

(3) S3: the energy of contour having largest frequency
amplitude of TF-contour.

Case 2. Extraction of features from TmA-plot:

(4) S4: maximum value of TmA-plot;

(5) S5: minimum value of TmA-plot;

(6) S6: mean value of the TmA-plot;

(7) S7: standard deviation of TmA-plot;

(8) S8: maximum energy of TmA-plot.

�us, eight morphological features are obtained by applying
standard statistical techniques to the contours of the ST-
matrix as well as directly on the ST-matrix which is shown
in Figure 4(d). Table 2 represents one way ANOVA results
for di
erent types of classes based on di
erent types of
features. If the � value (signi�cance level) [19] in Table 2 is
less than 0.05, there is a signi�cant di
erence between the
groups with a con�dence level of 95%.�is rule indicates that
performances of S-transform based feature set of ECG signal
are signi�cantly di
erent from each other.

(2) WT Based Features. �e choice of appropriate wavelet
and the number of decomposition levels are very important
section on analysis of ECG signals using wavelet transform
(WT) [20]. �e decomposition levels are selected based
on the maximum frequency components of the signal. �e
levels are taken such that those parts of the signal corre-
late well with the wavelet coe	cients. In this paper, the
number of decomposition levels is taken to be 4, i.e., ECG
signals are decomposed into the details D1–D4 and one
approximation coe	cient A4 which is shown in Figure 5.
�e Daubechies wavelet of order 2 (db2) is chosen due to its
similar morphological structure with the ECG signals [21].
�e wavelet coe	cients give a compact representation of
the signal that indicates the distribution of signal energy in
time and frequency. �e computed detail and approximation
wavelet coe	cients of the ECG signals of each record are
used as the feature vectors representing the ECG signal. For
extracting the statistical features, 180 samples of ECG signal
are taken from one ECG cardiac cycle by selecting a window
of −250ms to +250ms around the R-peak. For each ECG
beat, the detail coe	cients at the �rst, second, third, and
fourth levels (91, 47, 25, and 14 coe	cients, resp.) and the
approximation coe	cients (14 coe	cients) of fourth level
decomposition are computed. �en, the total 191 wavelet
coe	cients are obtained from each ECG beat. In order to
reduce the dimensionality of the extracted features, statistics
over the set of the wavelet coe	cients are used.�e following
statistical features are extracted using WT to represent the
time-frequency distribution of the ECG signal:

(1) F1: maximum value of the wavelet coe	cients in each
subband,

(2) F2: mean value of the wavelet coe	cients in each
subband,

(3) F3: minimum value of the wavelet coe	cients in each
subband,

(4) F4: standard deviation of the wavelet coe	cients in
each subband,
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where F1, F2, F3, and F4 are the feature of each subband.
�erefore, 20 features are extracted from the selected subband
of WT which is depicted in Figure 4(e).

(3) Proposed Combined Features of ST andWT. �e proposed
combined feature set is formed by appending the four
temporal features, twenty WT based features, and eight ST
based features. Figure 4(f) represented the combined feature
set of Tape no. #200 ECG record.

3.2. Classi
er. �e network topology is the MLP-NN classi-
�er with a single hidden layer. A MLP-NN [22] is trained
with the error back propagation algorithm.�e input ofMLP-
NN is driven separately by the WT along with temporal
based feature set [20] and proposed feature sets. �e output
layer has �ve neurons, which is equal to the number of ECG
beat types to be classi�ed. �e number of input nodes is
equal to the number of input features. �e back propagation
training with generalized delta learning rule is an iterative
gradient algorithm designed to minimize the root mean
square error between the actual output of amultilayered feed-
forward, neural network and a desired output. Each layer
is fully connected to the previous layer and has no other
connection. �e hyperbolic tangent function is applied as an
activation function. �e weight and bias values in the MLP-
NN are updated with a learning rate of 0.5 which is chosen
empirically.�e smaller wemake the learning rate parameter,
the smaller the changes to the synaptic weights in the network
will be from one iteration to the next and the smoother the
trajectory in weight space will be. On the other hand, we
make the learning rate parameter too large in order to speed
up the rate of learning; the resulting large changes in the
synaptic weights assume such a form that the network may
become unstable (i.e., oscillatory). In order to achieve faster
convergence with minimum oscillation, a momentum term
may be added to the basic weight updating equation [22].

4. Experimental Design

Classi�cation experiments are performed using 44 records of
the MIT-BIH arrhythmia database. In this work, a common
training data set is constructed using �rst 20 records of MIT-
BIH database (picked from the range 100–124, i.e., 100, 101,
103, 105, 106, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121,
122, 123, and 124) which contains 80 from type-N, 75 from S,
and 80 fromVbeat, and all (13) type F and all (7) typeQ beats.
In this technique, each record in the MIT-BIH data base is
about 30 mins. �erefore, each record is subsampled into six
sets. Each set contains 5mins of ECG signal. Patient speci�c
classi�er is trained with a total of 255 common training beats
and 5mins of each patient speci�c record (picked from the
range 200–234, i.e., 200, 201, 202, 203, 205, 207, 208, 209, 210,
212, 213, 214, 215, 219, 220, 221, 222, 223, 228, 230, 231, 232,
233, and 234). �e remaining 25mins of each record is used
in testing purpose for classi�cation evaluation. For second set
of training, the classi�er is trainedwith a total of 255 common
training beats and next 5mins of each patient speci�c record
(picked from the range 200–234) and the remaining 25mins

of each corresponding record is used for testing. �e process
is repeated six times so that classi�er is trained with 255
common training data plus 5mins of each patient speci�c
record and remaining 25mins of each corresponding data is
used for testing. �e formation of each training and testing
data set used forMLP-NNclassi�er is shown inFigure 6 using
tree diagram.

5. Results

�e performance of the NN classi�er mostly depends on
the selection of hidden nodes. However, there are no such
techniques to select the number of hidden nodes for better
performance of the classi�er. Hidden nodes in the hidden
layer are selected empirically. As an example, for record
no. 200, the variation of the classi�cation performance with
respect to hidden nodes is shown in Figure 7. In this study,
6-set cross validation techniques are used for training and
testing of the MLP-NN classi�er. �e overall performance
of the classi�er is evaluated by taking the average of six
sets. In this paper, classi�cation performances are evaluated
using three approaches. �e �rst approach uses the WT
based features combined with temporal features, the second
approach uses the ST based features along with temporal
features, whereas the third approach uses the mixture of ST
and WT based features along with temporal feature set. �e
�rst method is indicated as WT based feature extraction
method [20], second method is represented as Proposed-1
method, and third method is called Proposed-2 method.�e
correct classi�cation or misclassi�cation is quanti�ed using
four metrics such as True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN). �e classi�ca-
tion sensitivity (Sen) and accuracy (Acc) are evaluated using
these metrics. Classi�cation accuracy is de�ned as the ratio
of the number of correctly classi�ed patterns (TP and TN) to
the total number of patterns classi�ed:

Acc = TP + TN

TN + FN + TP + FP
. (8)

Sensitivity is the rate of correctly classi�ed events among all
events:

Sen = TP

TP + FN
. (9)

Figures 8, 9, 10, 11, and 12 show the sensitivity of N, S, F,
V, and Q class during each set of the classi�cation using WT
based feature extraction method, Proposed-1 and Proposed-
2 methods, respectively. It can be depicted from the �gures
that the Proposed-2 method shows the best performance
compared the other techniques. �e average performance
from each of the classi�ers is tabulated in Table 3. In WT
based feature extraction method, the average sensitivity of N,
S, F, V, andQ classes are 92.67%, 73.60%, 34.42%, 83.29%, and
2.08%, respectively, using 24 records whereas the Proposed-
1 gives an average sensitivity of N, S, F, V, and Q class with
94.55%, 74.82%, 37.01%, 88.55%, and 20.00%, respectively,
using the same records. On the other hand, the Proposed-2
shows an average sensitivity of N, S, F, V, and Q class with
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44 records for evaluation4 records that contain paced beats

Total 48 records of MIT-BIH ECG database

Total 255 common training beats from 100–124

Remaining 25mins of patient speci�c

Total 255 common training beats from 100–124 Next 5mins of patient

Testing data

Set 1

Set 2

Remaining 25mins of patient speci�c

Remaining 25mins of patient speci�c

Total 255 common training beats from 100–124 Last 5mins of patient
speci�c record (200–234)

Testing data

Set 6

24 ECG records (200–234)20 ECG records (100–124)

Testing data

Training set

Testing set

Training set

Training set

Testing set

Testing set

 record (200–234)

First 5mins of patient

.

.

.

speci�c record (200–234)

speci�c record (200–234)

record (200–234)

record (200–234)

records N(80), V(75), S(80), F(13), and Q(7)

records N(80), V(75), S(80), F(13), and Q(7)

records N(80), V(75), S(80), F(13), and Q(7)

Figure 6: Diagram for 44 ECG recordings used as training and testing data set.
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Figure 7: �e prformances of the proposed combined feature
extraction method for Tape no. #200 ECG record when di
erent
hidden nodes are used.

95.70%, 78.05%, 49.60%, 89.68%, and 33.89%, respectively.
�e average sensitivity of all classes using three techniques is
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Figure 8: Sensitivity of N class using WT based, Proposed-1, and
Proposed-2 feature extraction methods for six di
erent sets used.

shown in Figure 13 using bar diagram. �e average accuracy
of N, S, F, V, and Q is 94.45%, 97.68%, 99.11%, 96.42%,
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Figure 9: Sensitivity of S class using WT based, Proposed-1, and
Proposed-2 feature extraction methods for six di
erent sets used.
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Figure 10: Sensitivity of F class using WT based, Proposed-1, and
Proposed-2 feature extraction methods for six di
erent sets used.
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Figure 11: Sensitivity of V class using WT based, Proposed-1, and
Proposed-2 feature extraction methods for six di
erent sets used.
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Figure 12: Sensitivity of Q class using WT based, Proposed-1, and
Proposed-2 feature extraction methods for six di
erent sets used.
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Figure 13: Bar diagram of all classes’ sensitivity.

and 99.63%, respectively, using Proposed-2 method whereas
the Proposed-1 method yields that the accuracy of the N,
S, F, V, and Q are 93.16%, 96.92%, 98.84%, 95.98%, and
99.58%, respectively. On the other hand, WT based feature
extraction method provides an accuracy of N, S, F, V, and Q
are 91.29%, 95.17%, 98.80%, 95.36%, and 99.49% respectively.
�e WT based feature extraction method [20] shows less
average performance accuracy compared to Proposed-1 and
Proposed-2 methods.

6. Discussion

�is paper discusses the ECG beat classi�cation using three
feature extraction based techniques with MLP-NN classi�er.
From Table 3, it is seen that the sensitivities of F and Q
are comparatively less than other classes because F beats are
misclassi�ed as N and V. F beats are di	cult to distinguish
from N and V beats because F beats are the union of
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Table 3: Performance comparison of the WT based feature extraction method, Proposed-1, and Proposed-2 methods using MIT-BIH
database.

Method
N S F V Q

Acc Sen Acc Sen Acc Sen Acc Sen Acc Sen

WT based feature extraction 91.29 92.67 95.17 73.60 98.80 34.42 95.36 83.29 99.49 2.08

Proposed-1 93.16 94.55 96.92 74.82 98.84 37.01 95.98 88.55 99.58 20.00

Proposed-2 94.45 95.70 97.68 78.05 99.11 49.60 96.42 89.68 99.63 33.89

Table 4: Summary of the studies on the di
erent ECG classi�cation technique using MIT-BIH database.

Literature Features Classi�er Classes Accuracy

Übeyli [5] Lyapunov exponents and wavelet coe	cients ANN classi�er 4 93.9

Korürek and Doǧan [6] Temporal feature set PSO and RBFNN 6 96.3

de Chazal and Reilly [7] Morphology and heartbeat interval Linear discriminant 5 85.9

Inan et al. [9] WT + timing interval ANN 3 95.2

Jiang and Kong [8] Hermite transform coe	cients and time intervals Block based NN 5 96.6

Proposed-1 ST + Temporal MLP-NN 5 96.9

Proposed-2 ST +WT + Temporal MLP-NN 5 97.5

ventricular and normal beats and their morphology and
timing information closely resemble N and V beats [8]. �e
performances of the Proposed-1 and Proposed-2 methods in
detecting class Q beats are worse because Q beats are less
compared to other class in the training data and, hence, more
Q beats are misclassi�ed as other beats. On the other hand,
the sensitivity of S class is less than the sensitivity of N class.
�e reason is that the QRS complex associated with an atrial
premature beat in the S class has normal QRS duration and
the samemorphology as that of the sinus beat. Table 4 yields a
summary of studies on automated classi�cation of ECG beats
using the data obtained fromMIT-BIH arrhythmia database.
It is seen from the table that the average detection accuracy
of the S-transform based feature extraction technique shows
best performance compared to other existing techniques in
the literature.

In this work, the classi�cation performance is compared
with WT based feature extraction method, Proposed-1 and
Proposed-2 methods. �e three di
erent feature sets are
applied separately on MLP-NN classi�er. �e WT based fea-
ture extraction method provides classi�cation performance
with average accuracy of 96.0% whereas Proposed-1 yields
classi�cation performance with 96.9% average accuracy. On
the other hand, the Proposed-2 method shows the best
performance with 97.5% average accuracy compared to other
methods.�e detection sensitivity of F andQ are comparably
very less than the other classes. �e reason for the worse
classi�cation performance in detecting the F and Q are that
both classes are underrepresented in the training data, and,
hence, more F and Q are misclassi�ed as other classes. It
is worthy that the less number of training beats are used
for each patient’s classi�er which is approximately 2% of all
beats in the training dataset. �e proposed methods achieve
better performances over other existing method for all the
metrics used in �ve class detections. It is seen from Table 1
that the ECG arrhythmia is divided into �ve types of ECG

class according to AAMI standards. For real time application,
the proposed method detects the patient’s arrhythmia as an
AAMI class. For example, a patient has le� bundle branch
block (LBBB) arrhythmia but our algorithm detects it as
AAMI N class.

�e relationship between sensitivity and speci�city are
described by the receiver operating characteristic (ROC)
curve which alleviates improved analysis in terms of the
classi�cation performance of a diagnostic technique [8].
Figure 14 ismarked as a ROC curve of N, S, F, V, andQ classes
detection for 44 ECG records where the  -axis represents the
false positive rate (FPR) and the !-axis represents the true
positive rate (TPR). For accurate classi�cation, TPR = 1 and
FPR=0 correspond to the upper le� corner of theROCcurve.
�erefore, the combination of TPR-FPR is considered better
when it is more near to the upper le� corner. It is observed
that, for �ve types of AAMI class detection, proposed features
provide higher TPR but lower FPR compared to wavelet
based features.

7. Conclusion

In this work, ST based feature extraction and combination
of ST andWT based feature extraction method are proposed
separately to classify the ECG beats for each patient individu-
ally. In the proposed technique, the ST is e
ectively employed
to extract the signi�cant features which are combined with
temporal features whereas the combined feature set is formed
using the combination of WT, ST, and four temporal (pre-
RR, post-RR, local RR, and avg RR) based features. �e
interpretation of the important signal information in the ST
is apparent which will be bene�cial to extract the important
features from the ECG signal. On the other hand, WT
is used to decompose an ECG signal according to the
scale which e
ectively isolates the relevant properties of the
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Figure 14: Comparison of true positive rate and false positive rate for three techniques in terms of (a) N class, (b) S class, (c) F class, (d) V
class, and (e) Q class.

ECG signal morphology from the noise, baseline dri�, and
amplitude variation of the ECG signal. �erefore, proposed
feature extraction techniques enjoy the bene�ts of the above
feature sets. �ese features are very useful for detection,
classi�cation, and quanti�cation of relevant parameters of
ECG signals. �e performances of proposed features are
compared with the other existing methods. Experimental
results demonstrate that the proposed features provide better
detection sensitivity than WT based features. �e overall
results of the proposed extracted feature methods also show
an e
ective and e	cient approach in computer-aided diag-
nosis of heart diseases based on ECG signals. �e proposed
system can be used as follows: (i) automated systems provide
clinicians with the tools to be alerted in real time if life
threatening conditions surface in their patients. As a result,

automatic detection and classi�cation of cardiac electrophys-
iology using biomedical signal processing techniques have
become a critical aspect of clinical monitoring.
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