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ABSTRACT Robust authentication and identification methods become an indispensable urgent task to

protect the integrity of the devices and the sensitive data. Passwords have provided access control and

authentication, but have shown their inherent vulnerabilities. The speed and convenience factor are what

makes biometrics the ideal authentication solution as they could have a low probability of circumvention.

To overcome the limitations of the traditional biometric systems, electrocardiogram (ECG) has received the

most attention from the biometrics community due to the highly individualized nature of the ECG signals

and the fact that they are ubiquitous and difficult to counterfeit. However, one of the main challenges in

ECG-based biometric development is the lack of large ECG databases. In this paper, we contribute to creating

a new large gallery off-the-person ECG datasets that can provide new opportunities for the ECG biometric

research community. We explore the impact of filtering type, segmentation, feature extraction, and health

status on ECG biometric by using the evaluation metrics. Our results have shown that our ECG biometric

authentication outperforms existing methods lacking the ability to efficiently extract features, filtering,

segmentation, and matching. This is evident by obtaining 100% accuracy for PTB, MIT-BHI, CEBSDB,

CYBHI, ECG-ID, and in-house ECG-BG database in spite of noisy, unhealthy ECG signals while performing

five-fold cross-validation. In addition, an average of 2.11% EER among 1,694 subjects is obtained.

INDEX TERMS ECG biometric, authentication, segment, off-the-person, on-the-person, Kalman filter,

feature extraction, ECG datasets.

I. INTRODUCTION

Biometric systems are increasingly being adopted to improve

security, convenience, and inclusion in society and to pro-

vide potential applications in various research and industrial

fields. Notable biometric traits that have been successfully

used in practical applications include the face, fingerprint,

and iris. Furthermore, the recent advancement of artificial

intelligent technologies makes them vulnerable to spoof-

ing attacks (or presentation) through their inherent weak-

ness. A common spoofing attack on faces or fingerprints

was explored and discussed in [1]–[4]. In order to com-

bat against presentation attacks and illegitimate user access

to the systems, liveness detection or continuous biomet-

ric authentication approaches should be taken into account

[5]–[7]. Continuous biometric authentication continuously

check the identity of the user by using non-invasive

measurable sensor that can collect users’ biometric data.

The associate editor coordinating the review of this manuscript and

approving it for publication was György Eigner .

Thus, continuous biometric authentication has gained a lot

of attention as a next-generation promising technique due to

unique characteristics of the electrocardiogram (ECG) sig-

nals, it may be very promising trait mechanism for continuous

biometric authentication. Since the liveness nature of ECG

signals is not only ubiquitous and easy to use, but also difficult

to counterfeit, the ECG-based technology is popularly used

for continuous authentication to grant certain access privi-

lege for users to identify a specific person [8]. In addition,

there are other various applications that can be integrated

with a continuously monitor for user’s ECG and derive a

quantitative measurement of their current stress state, fatigue,

and disease, enabling users to understand their body’s true

state and take appropriate actions [9], [10]. In other words,

since ECG signals will be recorded anyway for health appli-

cation purposes, they can also be used for biometric based

authentication and considering the advanced wearable tech-

nologies such as Apple watches, recording real-time ECG

signals has been also dominated in our life to monitor user’s

health.
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Despite the substantial effort that has been made for

developing the ECG as a biometric modality, it has yet to

reach a sufficient level of technological maturity and accep-

tance. The immaturity of ECG development is caused by a

lack of real ECG data. Furthermore, the research community

depends on the small ECG gallery, which leads to good

performance, but high error rates. On top of that, most of

the existing methods often fail to report standard metrics

for analyzing the results of ECG data evaluation in order to

balance several important evaluation metrics, such as false

acceptance rate, false reject rate, and equal error rate. In addi-

tion, most approaches have not even intensively evaluated the

effectiveness of filtering, segmentation, feature extraction,

and matching, which are the main steps to develop the right

algorithm for any application.

In this paper, not only the biggest off-the-person ECG

datasets will be incorporated for the first time, but also,

we will discover and evaluate the effectiveness of differ-

ent techniques in different steps in ECG biometric systems.

This paper proposes a new filtering technique to create a

bio template for biometric authentication while providing a

comprehensive evaluation result for other popular techniques

with diverse ECG data sets including our large new data set.

We provide our insights to the ECG-based research com-

munity through intensive literature reviews and all-inclusive

experiments in ECG biometric systems field. Our main

contributions are described as follows:
• We summarize existing techniques from the literature

on identity recognition systems based on the ECG by

conducting a deep overview and discussion based on

the type of databases, number of subjects, health status,

metrics, and methodology.

• We present a comprehensive study on ECG by

investigating different feature extraction, filtering, seg-

mentation, and matching. Each of these methods of

performance is provided on various ECG databases with

different health states on the data. We also provide

comprehensive metrics such as false accept rate (FAR),

false reject rate (FRR), equal error rate (EER), and

identification rate for the important evaluation metrics.

• The large off-the-person ECG database is introduced

for the first time. The new ECG database contains

68,274 samples ECG recordings that were collected

from 1,119 subjects.

• Various experiments with ECGs from 1,119 different

subjects were conducted to illustrate the efficacy of the

proposed scheme. The result shows that we were able

to achieve 100% accuracy with respect to 1.2%, 1.48%,

and 0%, for EER, FAR, and FRR respectively.

• The impact of segmentation on ECG biometric authenti-

cation is discovered. We found that the optimal segment

and the number of sample per cycle while obtaining high

accuracy.

In addition to this introduction, the background of ECG

signal along with data acquisition is presented in section II;

Section III briefly summarizes recent works on different

FIGURE 1. An electrocardiogram (ECG) waveform. The labels identify the
three normally recognizable deflections (waves) and the important
intervals.

modules of an ECG biometric verification and identification;

Section IV describes pipelines on ECG biometric system

and challenges in signal denoising, segmentation, feature

extraction and matching; Section V demonstrates experimen-

tal results; We discuss the advantages, drawbacks and future

work in Section VI. Finally, we conclude with a summary and

final remarks in section VII.

II. BACKGROUND ON ECG

The electrocardiogram (ECG) is a graphic tracing of the heart

activity that is generated in the heart and spread through-

out the body and can be detected with a pair of electrodes

external to the heart called an electrocardiograph. An ECG

is a composite of several action potential generated by sinoa-

trial (SA) and atrioventricular (AV) node at a given time. The

five distinguishable major deflections on a normal ECG are

designated by the letters P,Q,R, S, and T waves – which

make up the PQRST complex. As can be seen in Fig. 1, the P

wave is smallest, lasts about 0.08s and results frommovement

of the depolarization wave from the SA node through the

atria node (The large QRS complex results from ventricular

depolarization and precedes ventricular contraction. The T

wave, caused by ventricular repolarization, typically lasts

about 0.16s. ECG waveform varies due to a range of factors

including the size and shape of the heart, the position within

the chest, and the conductive properties of the torso that

provide a unique pattern per person.
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Recording ECG signals can be classified into two

recording configurations, including ‘‘on-the-person’’ and

‘‘off-the-person’’. On-the-person recording refers to direct

measurements by using body sensors that need to be attached

to the person’s body surface (e.g. the electrode leads), gen-

erally requiring conductive paste or gel. This method is

primarily used in medical equipment at the chest to col-

lect ECG signals. Moreover, it has been almost exclusively

used in the medical industry due to its strength as a diag-

nostic tool, in which the capture method can be highly

controlled. Examples of such devices range from bedside

monitors integrated in medical diagnostics systems used in

a hospital setting, to personal devices for self-monitoring of

1-lead ECG data, such as chest straps or attachable patches

for heart rate monitoring. In addition, most of the biomet-

ric research has shown broad evidence regarding the appli-

cability of ECG signals collected in an ‘‘on-the-person’’

approach. Despite its advantages, this approach is highly

intrusive for the subjects, thus limiting the potential industrial

applications of ECG-based biometrics. On the other hand, the

‘‘off-the-person’’ recording utilizes devices to measure ECG

signals and does not require any special preparation of the

subject with objects or surfaces. Examples of such devices

range from fingertips or wearable devices that have dry elec-

trodes. A major benefit of this technique is the fact that the

sensor placement does not require a corporation from the

user [11]. These novel approaches are actually well aligned

with potential industrial applications of ECG-based biomet-

rics. However, it is noteworthy that this type of ECG database

contains more noise and variability than ‘‘on-the-person’’

databases.

III. LITERATURE REVIEW OF ECG-BASED

BIOMETRIC METHODS

In this section, we discuss several recent works on ECG

verification and identification. For better visualization,

we summarized the most relevant aspects of ECG bio-

metrics, such as the number of subjects, ECG data

(on-the-person vs off-the-person databases), filtering types,

segmentation techniques, feature extraction (handcrafted vs

non-handcrafted extraction. More importantly, we summa-

rized specific evaluative metrics such as an EER, an iden-

tification rate, a false accept rate, and a false reject

rate in Table 1 and 2, to contribute to the biometric

research community for a better understanding of ECG

analysis results and the best selection of methods for

their applications. Over the past decade, various hand-

crafted feature extraction techniques, such as fiducial feature

extraction, discrete cosine transform (DCT), auto-correlation

(AC), and wavelet transform, have been developed for

ECG biometric authentication and identification. In addi-

tion, various public databases including off-the-person,

on-the-person with healthy and no-healthy ECG have been

investigated. From Table 1 and Table 2, the UofTDB is one of

the largest databases among the existing off-the-person ECG

database with 1019 subjects, while PTB is one of the largest

on-the-person ECG databases that consists of 290 subjects.

As shown in these tables, most studies in ECG biometrics

have employed the bandpass (BF) filter for denoising ECG

signal to remove intra-class variation. Moreover, fixed-length

segments for capturing one heartbeat or one cycle of ECG

are a common technique to segment continuous ECG signals.

Furthermore, what is common to the literature shown in

the tables is that single-channel ECG (one lead of sensor)

contains sufficient information to be discriminated between

different subjects for the support of biometric recognition.

There are different types of feature extraction modalities [8],

[15], [18], [19], [27] and various classifiers [12], [21], [23],

[24], [28] have been utilized for ECG-based recognition.

In the following section, we summarize the methodologies

based on the features and classification schemes.

A. FEATURE EXTRACTION CATEGORY

1) ALGORITHMS BASED ON HANDCRAFTED FEATURES

Handcrafted feature extraction can be classified into two

categories: fiducial and non-fiducial. Algorithms based on

fiducial features use the characteristic local features of

ECG beats such as temporal or amplitude onset, peak

(minimum or maximum), and offset, extracted from single

ECG beat or segment. For example, the P, Q, R, S, and T peak

wave, the time difference between the peaks of the Q and T

waves, and the QT interval are considered as fiducial features.

Several subsets of these fiducial features have been used in

the literature [15], [45], [49]. On the other hand, non-fiducial

feature extraction does not rely on characteristic points for

generating the feature set. Instead, some of the algorithms

rely on holistically analyzing an ECG, typically by applying

time or frequency analysis to obtain other statistical features.

This method aims to extract discriminative information from

the ECGwaveformwithout having to localize fiducial points.

Several subsets of these non-fiducial features have been used

in the literature such as autocorrelation [19], [27], discrete

cosine transform [18], [44], [46], [47], NCN [8], [28], [35],

and wavelet transform [8], [22], [40], [47].

2) ALGORITHMS BASED ON NON-HANDCRAFTED

FIDUCIAL FEATURES

Most handcrafted feature extraction approaches involve a

pre-processing phase for preparing the ECG (e.g., a statistical

analysis such as fiducial or non-fiducial features extraction).

With the advent of deep learning, researchers have started

to explore non-handcrafted features based on the use of

deep learning methodologies to achieve better performance

and robustness. The reason is that the handcrafted approach

relies on separate steps and preparation such as feature

transforms and/or noise removal along with its optimization

task, which leads to low performance. Thus, deep learn-

ing helps to boost performance by bypassing the aforemen-

tioned restrictions. Hong et.al [12] uses a 2D convolutional

neural network (CNN) model in which the ECG signal

is converted to an image using spatial correlation-based,

temporal correlation-based, and raw signal as an input of
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TABLE 1. Summary of the state-of-the-art approaches for ECG biometrics. OFP - off-the-person, ONP - on-the-person, NS - number of subject,
HC - handcrafted, NHC - non-handcrafted, SE - subject exclusive, Y - Yes, N - No, SG - Savitzky-Golay, DCT- discrete cosine transform, CWT - continuous
wavelet transform, CNN - convolutional neural network, AC - normalized autocorrelation, LDA - linear discriminant analysis, BP - band pass filter,
BN - Bayes networ, MLP - multilayer perceptron, RBF - radial basis function, kNN - k nearest neighbor, SVM - support vector machine,
and NCN - normalized convoluted normalized.
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TABLE 2. Summary of the state-of-the-art approaches for ECG biometrics. Here are the symbols for each: OFP - off-the-person, ONP - on-the-person,
NS - number of subject, Y - Yes, N - No, HC - handcrafted, NHC - non-handcrafted, SE - subject exclusive, DCT- discrete cosine transform, CWT - continuous
wavelet transform, CNN - convolutional neural network, AC - normalized autocorrelation, MLP - multilayer perceptron, RBF - radial basis function, kNN - k
nearest neighbor, SVM - support vector machine, NN - neural network, PAR - pulse active ratio, IIR - infinite impulse response, MD - Median Filter,
DTW - Dynamic Time Warping, PLR - Piecewise Linear Representation, DT - decision tree, NCN - NormalizeConvoluted Normalize, IIR - finite impulse
response, LSTM - Long short-term memory, KPCA - kernel principal component analysis, GNMF - graph regularization non-negative matrix factorization
decomposition, FLDA - Fisher linear discriminant analysis.
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CNN model. Specifically, the author uses the Inception-

v3 model and transfers learning for the implementation. The

drawback of this work is that, not only are 90 subjects

excluded from experimental setup, but also the metric is

not comprehensive and the accuracy of only 98% has been

reported. Labati et.al [13] also used 2D CNNwhere raw ECG

signal is segmented and fed as an input. The author reported

100% accuracy with a 2.90% equal error rate (EER) while

only healthy ECG from the PTB database has been studied.

More work on deep learning can be found in [14], [20]–[23],

[25], [26], [38], [41], [42] which the detail has been described

in Table 1, and Table 2. The heavy computational and large

size of database requirements for deep learning models still

restrain it from being realistic.

B. CLASSIFICATION CATEGORY

Since ECG biometric systems can be considered either

as identification or verification, and we discuss the ECG

biometric systems into two categories: verification and

identification.

1) ECG VERIFICATION

Most of the algorithms in this category depend on the

computation of matching scores based on the similarity and

dissimilarity between a query feature vector and a template.

During authentication, the score is compared to a prede-

fined threshold, and the claimed identity is accepted, if the

score is greater. There are different types of classifiers such

as Euclidean distance, support vector machines (SVMs),

dynamic time warping (DTW), and hamming distance uti-

lized in the literature [8], [15], [18], [19], [21], [23], [24],

[27], [35], [41], [44], [46].

2) ECG IDENTIFICATION

Most of the deep learning approaches for ECG biometric

systems have been studied in the literature review used a

fully connected layer and softmax for a classifier. During

identification, the template that gives the highest matching

score is associated with the query signal. A neural net-

work is especially applied in non-linear classification prob-

lems. Various types of these classifiers were used in ECG

identification, especially the Multilayer Perceptron (MLP)

[12]–[14], [20]–[23], [25]–[28], [32], [36], [38], [42], but

also the Long short-term memory (LSTM) [17], the Dynamic

Time Warping (DTW) [31], the Radial Basis Function Neu-

ral Network (RBFNN) [28], [32], and k nearest neighbor

(KNN) [28]. Most of the aforementioned classifiers used a

similar approach for the loss function, optimizationwith a dif-

ferent node activation function. In addition, there has been a

few research that investigates decision-based on discriminant

and component analysis which can be found in [45], [47].

It can be clearly seen in literature that there is no standard

technique to demonstrate and evaluate the effectiveness of

each approach and algorithm in the ECG biometric system,

such as the impact of filtering, segmentation, feature extrac-

tion, and matching and type of database. In this paper, we will

discuss and evaluate each of the aforementioned problems.

FIGURE 2. High-level overview of an ECG biometric authentication
system. It contains of filtering, segmentation, feature extraction, template
and matching module.

IV. OUR APPROACH: ECG BIOMETRIC

ECG based biometric systems, in general, are comprised

of five major components: sensing, filtering, segmentation,

feature extraction, and matching. Fig. 2 provides a high-level

overview and flow of the ECG based biometric authentication

process, which constitutes of the enrollment and authentica-

tion phases. In the enrollment phase, the user’s ECG signal

is registered to generate the template, and in the authentica-

tion phase, raw data from a user is provided and compared

to the previously stored template to determine the access

permissions. In what follows, we explain our approach to

implement the ECG-based biometric authentication algo-

rithm while describing the various steps of the authentication

algorithm.

A. PRE-PROCESSING

The goal of pre-processing is to separate the required

biometric trait from the background noise. In the con-

text of ECG, both low and high-frequency noise compo-

nents are combined, commonly referred to as baseline drift

and power-line interference respectively. High-frequency

noise contains muscle artifacts and external interference.

Electromyogram (EMG) is generated from the electrical

activity of the muscles and appears as rapid fluctuations

which are much faster than the ECG waves. Low-pass filters

on the ECG are used to remove high-frequency noise. A high

pass filter can remove low-frequency components such as

motion artifacts, respiratory variation, and baseline wander

noise. In the pre-processing stage, ECG signals are filtered to

remove noise which can impact the biometric signal. In this

study, we have employed two filters, namely Kalman and IIR.

Details are discussed below.

1) KALMAN FILTER

The Extended Kalman Filter (EKF) is used for a nonlinear

problem for many applications which is the extension

of the standard Kalman Filter. Since ECG signal is

non-stationary discrete-time series signal, thereby it can be

model with unobserved underlying state vector (original

ECG signal) zt and observation vector (filtred ECG) yt
at time instant t . Thus, the model can be represented as

follows:

zt+1 = f (zt ,wt , t)

y = g(zt , vt , t) (1)
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where f (·) is the state evolution function and g(·)represents

the relationship between the state vector and the observations.

wt and vt aremeasured noise vectors with covariancematrices

Qt = E{wtw
T
t } and Rt = E{vtv

T
t }. In order to transfer into a

linear equation for using the KF formalism, it is necessary

to derive a linear approximation of 1 near a desired refer-

ence point (ẑt , ŵt , v̂t ) [52], [53]. Thus, the following linear

approximate model is derived:

zt+1 ≈ f (ẑt , ŵt , t) + At (zt − ẑt ) + Ft (wt − ŵt )

yt ≈ g(ẑt , v̂t , t) + Ct (zt − ẑt ) + Gt (vt − v̂t ) (2)

where

At =
∂f (z, ŵ, t)

∂z

∣

∣

∣

∣

z=ẑ

Ft =
∂f ( ˆOECG,w, t)

∂w

∣

∣

∣

∣

∣

w=ŵt

Ct =
∂g(z, v̂, t)

∂z

∣

∣

∣

∣

z=ẑ

Gt =
∂g(ẑ, v, t)

∂v

∣

∣

∣

∣

v=v̂t

(3)

furthermore, to shorten the matrix notations, the Ft and

Gt matrices are usually smeared into the noise covariance

matrices as follows:

FtQtFt
T −→ Qt , GtRtGt

T −→ Rt (4)

With these notations, the EKF algorithm may be summarized

as follows:

ˆz−t+1 = f ( ˆz+t ,w, t)

∣

∣

∣

w= ˆ̄wt
, rt = yt − g( ˆz−t , v, t)

∣

∣

∣

v= ˆ̄vt

Kt = P−
t C

T
t [CtP

−
t C

T
t + Rt ]

−
,

ˆz+t = ˆz−t + Ktrt

P−
t+1 = AtP

+
t A

T
t + Qt P+

t+1 = P−
t − KtCkP

−
t (5)

where by definition rt is the innovation signal, w̄t = E{wt },

v̄t = E{vt }, z
−
t = Ê{zk |yt−1, . . . , y1} is the a priori estimate

of the state vector in the tn stage using the observations y1 to

yt−1, and z
+
t = Ê{zk |yt−1, . . . , y1} is the a posteriori estimate

of this state vector after using the kth observation yt .

2) INFINITE IMPULSE RESPONSE (IIR) FILTER

The infinite impulse response (IIR) filter is a recursive filter

in that the output from the filter is computed by using the

current and previous inputs and previous outputs. The transfer

function of the IIR filter is defined as follows:

H (z) =
Y (z)

X (z)
=
b0 + b1z

−1 + · · · + bM z
−M

1 + a1z−1 + · · · + aN z−N
(6)

where is can be described using the difference equation as

follows:

y(n) = b0x(n) + b1x(n− 1) + · · · + bMx(n−M )

− a1y(n− 1) − · · · − aN y(n− N ) (7)

where bi and ai are the (M+ 1) numerator and N denominator

coefficients, respectively. Y(z) and X(z) are the z-transform

FIGURE 3. Show the ECG signal along with fixed window and RR interval
segmentation.

functions of the input x(n) and output y(n). In this paper,

we employed IIR butterworth filter with cut of frequency

of 1-40Hz.

B. SEGMENTATION

ECG waveforms occurring in a repetitive order that are

comprised of five major peaks such as P,QRS, and T . Since

each ECG heartbeat contains the same information it is not

efficient to repetitive heartbeat heartbeats that has a corre-

lation. ECG segmentation is the most popularly used signal

preparation method for limiting the signal size for feature

extraction. In other words, the segmentation goal is to find

repeating patterns in the ECG signal known as P, QRS, and T

waves. Thus, it helps to reduce the template size significantly

in order to simplify template matching. In ECG biometric,

the segmentation follows the reference point (identifying a

R-peak) and fixed distances before and after the identified

R-peaks. Taking the partial ECG signal (R− t , R+ t ′) instead

of the entire signal called Fixed Length Segmentation where

the t and t ′ are a pre-defined fixed time that covering the

majority of P-QRS-T fragment. On the other hand, taking

wholewaveform of ECG signal (Ri,Ri+1 calledRR segmenta-

tionwhere, the Ri is the ECG R peak at cycle t and Ri+1 is the

ECG R peak at cycle t+1. Fig. 3 demonstrates our technique

for segmenting ECG signals using sliding windows into the

different heartbeats.

C. FEATURE EXTRACTION

The feature extraction stage translates the segmented ECG

into a representation that further reduces the effects of

intra-subject variability while emphasizing discriminative

and intra-class variations to obtain better performance. ECG

handcrafted feature extraction can be categorized as a fiducial

point or non-fiducial point.

1) FIDUCIAL FEATURE EXTRACTION

In the fiducial feature extraction technique, the features of

focus are the local features of heartbeats such as tempo-

ral or amplitude difference between consecutive fiducial

points [8]. Fiducial methods rely on accurate detection of

the main ECG characteristic points such as P,Q,R, S, and T

waves as shown in Fig. 4, to obtain their relative amplitude,
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FIGURE 4. Show single ECG beat with fiducial features that has been
studied in this paper.

temporal intervals, and morphological features. In fact, each

temporal and amplitude of each waveform are distinctive

from each individual user. However, fiducial feature extrac-

tion relies on accurate detection of each waveform, which is

a very challenging task in ECG since they are very sensitive

to noise. Moreover, it may not be considered as a universal

characteristic due to a lack of fiducial points in abnormal

signals, resulting in significant errors. Thus, non-fiducial

methods have become preferred in ECG based biometrics

systems. Therefore, we also study and evaluate non-fiducial

feature extraction for comparison.

2) NON-FIDUCIAL FEATURE EXTRACTION

In the non-fiducial feature extraction technique, the features

of focus are the holistic analysis of an ECG, typically con-

sisting of applying time or frequency analysis to obtain

other statistical features. In this paper, we used different

wavelet families, such as Symmlet and Daubechies. The

reason for using Symmlet and Daubechies mother wavelet

is that the function is similar to the ECG signal. In order

to evaluate the effectiveness of the aforementioned mother

wavelet transformations, different levels of decomposition

have been examined, however, we only report a level of four

decompositions.

D. MATCHING

In the matching stage, identification and verification

functions can be performed. The purpose of matching is to

compare the query ECG feature sets against stored templates

to generate match scores. Thematching score is a quantitative

measurement that checks the similarity between template and

query ECG feature sets. A Higher match score indicates that

the template and query have a high correlation. In this paper,

two different matching methods are studied.

1) EUCLIDEAN DISTANCE

In this part, we focus on authentication and employ Euclidean

distance as a matching technique between the features’ vec-

tors to decide whether to accept or reject the identity claim.

Given claimed identity I and a query feature set Xq, we need

to determine if (I ,Xq) belongs to genuine or imposter user.

The Euclidean distance D between two feature vectors Tj and

qj is defined as

D({XT
I }, {Xq}) =

√

√

√

√

√

K
∑

j=1

(XT
I [j] − Xq[j])2 (8)

in which XTI is a stored template corresponding to

identity I . So, we compare XTI and Xq to measure similarity

for verification. If the distance D or score above a predefined

threshold (t), the claimed identity is accepted as a genuine

user, otherwise, it is rejected and considered an imposter.

2) DYNAMIC TIME WARPING (DTW)

Dynamic Time Warping (DTW) is a technique that compares

two sequences that do not necessarily need to be the same

lengths [54], [55]. The DTW algorithm finds the optimal

alignment between two sequenceswith different lengths, such

that the sum of the differences between each pair of aligned

points is minimal. This method appears to be able to handle

comparison between template and query specifically if they

are not aligned such as fingerprint or they have a different

length such as ECG. This paper shows the RR segmentation

technique depending on the heart rate variability. In short,

each segment of RR is different from each other. Thus, DTW

plays an important role in our case study. The DTWmeasures

the similarity between template and query of ECG feature sets

after aligning them.

V. EXPERIMENTAL SETUP

A. DATABASE

In our study, we utilized five on-the-person public ECG

databases plus an in-house off-the-person ECG database.

We examined the authentication performance of some of the

techniques that have appeared in the ECG biometric litera-

ture. We used only a single ECG lead from collecting ECG

for realistic scenarios. The databases used are summarized

in Table 3, where the maximum duration utilized for both

training is 5 minutes. For example, if the ECG signal duration

is less than 5 minutes, we took the whole signal; otherwise,

we use only 5 minutes. The databases utilized for these

experiments in this paper can be listed as follow based on

public one-the-person and in-house off-the-person ECG:

1) ON-THE-PERSON

• Combined measurement of ECG, breathing and

seismocardiograms Database (CEBSDB): The cohort in

this database [56] involves 20 healthy subjects, and the

ECG records were collected in a supine position on a

comfortable single bed, while the subjects were awake.

The ECG was collected in the basal state of the subjects

by measuring for 5 minutes and after that, the sub-

jects started to listening to classical music for approx-

imately 50 minutes. Channel 1 and 2 of the system

(lead I and II) were devoted to recording the ECG at

a sampling frequency of 5 kHz. In our work, we used
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TABLE 3. The summary of the four data sets adopted in our experiments.

5 minutes of phase 1 for training our recognition system

while the rest of the data for testing.

• Arrhythmia Database (MITDB): The MITDB [57] is

an ECG database that was collected in the labo-

ratories at Boston’s Beth Israel Hospital and MIT.

It contains 48 half-hour ECG recordings from 47 sub-

jects. Out of 47 subjects, twenty-three recordings were

selected from a mixed population of inpatients (about

60%) and outpatients (about 40%), and the remaining

25 recordings were selected from the same set to include

less common but clinically significant arrhythmias. The

recordings were digitized at 360 samples per second per

channel with an 11-bit resolution over a 10 mV range.

This database is unknown as abnormal ECG data, which

would be ideal to test it for the ECG recognition system

for universality characteristics.

• PTB Diagnostic ECG Database (PTDB): This database

is obtained by the Physikalisch-Technische Bunde-

sanstalt (PTB), National Metrology Institute of Ger-

many [58]. The database contains 549 records with

diverse profile information such as gender, age, health

information, and different lengths of ECG obtained from

290 subjects sampled at 1 kHz, which mimics real-world

scenarios. Among the 290 subjects, 148 subjects suffer-

ing from myocardial infarction, and 18 have cardiomy-

opathy or heart failure, whereas it has only 52 healthy

subjects. All channels were involved, where only 14 are

for ECG. However, in this work, we only used lead 1 as

our experimental setup.

2) OFF-THE-PERSON

• ECG identification database (ECG-ID) were recorded

for biometric identification purpose [59]. Each raw ECG

record was acquired for about 20 seconds with a sam-

pling rate of 500 Hz and a 12-bit resolution. The first

two records acquired from the same day were used for

each subject. The database consists of 310 one-lead ECG

recording sessions obtained from 90 volunteers during a

resting state. The number of sessions for each volunteer

varied from 2 to 20with a time span of 1-day to 6-months

between the initial and last recordings. The challenges

in this database are the number of noisy environment

condition in which two records such as filtered and noisy

ECG signal mimics real-world scenarios.

• Check Your Biosignals Here initiative (CYBHi) belongs

to the off-the-person category and is publicly available,

which makes them most suitable for ECG recognition.

Data was recorded using two differential lead electrodes

at hand palms with dry Ag/AgCl electrodes and at the

fingers with Electrolycras [60]. The acquisition was dig-

itized at 1K Hz samples per second per channel with

a 12-bit resolution using the biosignalsPLUX device.

The database (128 subjects) is divided into two types of

experimental protocol namely short-term and long-term.

The short-term was recorded from 65 people at intervals

of two days. The demographics of 65 subjects from

short-term 49males and 16 females, with an average age

of 31.1 ± 9.46 years old. The long-term dataset was col-

lected over a period of several days and different settings

which acquired from a total of 63 healthy subjects. The

demographics of 63 subjects from the long-term are

14 males and 49 females, with an average age of 20.68

± 2.83 years.

• In addition to the public off-the-person dataset, we also

studied the largest off-the-person database called

ECG-BG, containing data collected from 1,119 individ-

uals, with 386 females and 733 males of 38 to 80 years

of age. The database was collected by the Research

Center for Applied Sciences, Academia Sinica, Tai-

wan based on the following protocol. Each subject

participated in two sequential recording sessions, both

taken in the morning. ECG was acquired using Analog

AD-8232 with a sampling rate of 1K Hz. This

off-the-person ECGdatabase beside other off-the-person

ECG databases contains healthy and unhealthy which

makes it suitable for real-world scenarios.

B. EVALUATION METRICS

Since our primary focus is verification, comprehensive

metrics such as accuracy, false accept rate (FAR), false reject

rate (FRR), and equal error rate (EER) have been evaluated

with the various databases. FPR is the percentage of genuine

users who were denied access to the ECG recognition sys-

tem whereas FAR is the percentage of an imposter who has

successfully gained access to ECG recognition. The two error

rates FRR and FAR can be traded-off with each other in order

to find the optimal and desired EER. EER is the location on

the receiver operator characteristic (ROC) curve where the

FAR and FRR are equal. We also calculate the accuracy for

each subject as the number of successful attempts (segments)

by the genuine user divided by the total number of attempts.

Moreover, in order to assess the effectiveness and estimate

how the model is expected to perform in general, 5-fold

cross validation was used, so the 5 blocks from each task

were split into 4 training blocks and 1 test block. Each block

contains 10 segments of feature sets from each user. For each
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TABLE 4. A performance comparison of ECG biometric authentication using different segmentation, filtering, feature extraction. Seg. - segmentation,
FW - Fixed window, DWT - Dynamic Time Warped, ED - Euclidean distance.

training block, we used average segments from each block.

This was repeated 5 times with non-overlapping windows to

obtain 50 results per task, per subject.

1) EXPERIMENTAL RESULTS

The results presented were obtained based on implementing

the methodologies as described in Section IV. Table 4

shows the experimental results obtained from different

databases using different techniques. In this work, our tem-

plate is constructed using a single ECG beat (segment).

In fact, we collected 10 segments of ECG signal from each

user and calculated the average tomake a template for authen-

tication. A single ECG segment (average of multiple ECG

segments) as a template provides advantages for storage size

and computational cost to match a new input with the tem-

plate. In a verification process, the number of ECG segments

varies and depends on the database. Thus, unless otherwise

stated, one can assume the presented results represent an aver-

age in Table 4.Unlikemost of the work in the literature, we did

not exclude any subjects in our evaluation process for fair and

realistic evaluation even though the data includes noises and

uncertain values. One of the reasons the subjects are excluded

in the literature work is that their filtering, segmentation,

and feature extraction techniques were not performed very

well and as a result, they had to eliminate some of the users.

We have conducted our experiments over different filtering,

segmentation, feature extraction, and matching. In particular,

we have tested different ECG database on fixed window

segmentation, RR interval segmentation, FIR filter, Kalman

filter, fiducial, non-fiducial feature extraction, Euclidean dis-

tance, and dynamic time warping. It should be noted that

the results of DTW are superior to Euclidean distance for

matching and the FAR and FRR is lower than Euclidean

distance. In the Euclidean distance as a matching, one should

be assumed is the ith point in the template feature vector

is aligned with the ith point in the query feature vector,

will produce a pessimistic dissimilarity measure. In con-

trast, the non-linear DTW alignment allows a more intuitive

distance measure to be calculated in which every index from

the template feature vector must be matched with one or more

indices from the query feature vector and vice versa. As

shown in Table 4, from the ECG-ID database, fixed window

segmentation along with FIR filter achieved 100% accuracy

with 1.86% FAR based on fiducial feature extraction. While

non-fiducial feature extraction, the FAR 4 times higher than

the fiducial. Note that the reason FAR of non-fiducial fea-

tures is higher than fiducial is because non-fiducial feature

extraction relies on the entire ECG waveform which may

contain more noise than fiducial features where temporal and

fiducial points (a small number of features) are extracted.

Moreover, for the MITDB database which has arrhythmia

ECG, we were able to obtain 100% with 4.1% FAR. For

the sake of clarity, it should be noted, fixed window seg-

mentation methods showed a good performance for most of

the databases except the PTB database. The reason is that

the PTB database has various diagnostic classes including

Myocardial infarction, Cardiomyopathy/Heart failure, Bun-

dle branch block, Dysrhythmia, Myocardial hypertrophy,

Valvular heart disease, and Myocarditis. Therefore, it should

be expected changes/loss on the ECG waveform while sens-

ing the ECG signal. Thus, the fixed window may not capture

all the ECG waveforms such as P, QRS, and T waveforms.

As a result, RR interval segmentation accomplished better

performance compare to fixed interval segmentation in the

PTB database. In addition, we can observe that the CYBHI

database also derives a benefit fromRR interval segmentation

since most of the ECG waveform has been captured dur-

ing RR segmentation. Unlike the PTB database, the CYBHI

database has only a normal ECG signal but the sample rate

is much higher than the PTB database which has 1000Hz.

Hence, a fixed window may not be an appropriate technique

to cover the entire important ECG waveform such as P,

QRS, and T waves. Compared to the work in the literature

[12]–[14] which excludes some subjects from the original

PTB database for their experiments, we achieved 100%

accuracy with 0.5% EER, 0% FRR and 0.47% FAR without
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FIGURE 5. ROC curves for different hand-crafted features extraction such as fiducial features, non-fiducial features; filter including Kalman filter,
IIR filter; segmentation such as fixed window and RR interval. (a) on-the-person MITDB, (b) on-the-person PTB, (c) on-the-person CEBSDB,
(d) off-the-person CYBHi, (e) off-the-person ECG-ID, and (f) off-the-person ECG-BG respectively.

excluding any subject from the original database. The exten-

sive experimental results on the three on-the-subject and

three off-the-subjects datasets demonstrated that our method

outperforms several state-of-the-art methods. In addition,

our features extraction methods provided a lower EER,

FAR, FRR, and high accuracy for ECG biometric systems.

We also implemented our several new methodologies and

evaluated them using a new large scale off-the-person ECG

database (ECG-BG) based on 1,119 subjects with healthy

and unhealthy status as a significant contribution in this

research community. The proposed methods demonstrated a

100% recognition rate with 1.2% EER, 1.28% FAR, and 0%

FRR for authentication. Moreover, it can be seen in Table 4,

for most of the cases, the fiducial feature extraction outper-

forms comparing to non-fiducial techniques. We also pre-

sented the receiver operating characteristic (ROC) curve for

each database along with different ECG biometric algorithms

in Fig. 5.

We also evaluated the performance of our algorithm

over different databases for various fixed window segmen-

tation (R − t , R + t ′) using different combinations of

t and t ′, the time periods before and after the R peak:

(1) t = 0.1s and t ′ = 0.1s, (2) t = 0.1s and t ′ = 0.3s,

(3) t = 0.12s and t ′ = 0.46s, (4) t = 0.16s and t ′ = 0.41s,

(5) t = 0.2s and t ′ = 0.36s, (6) t = 0.2s and t ′ = 0.4s,

(7) t = 0.2s and t ′ = 0.46s. Fig. 6 shows the accuracy of

various algorithms averaged for six different databases.

As can be seen from Fig. 6 for the above seven cases,

the consequence of the larger windows such as cases (5),

(6) and (7) are neutral in terms of accuracy, since most of

ECG waveforms such as P, QRS, and T waves are included.

The remaining cases such as (1), (2), and (3), where partially

ECG waveforms have been discarded, the accuracy rate is

degraded. Even though the majority parts of ECG wave-

forms like the QRS complex were captured, the performance

was finally degraded because of discarding the P and T

waveforms. From the results demonstrated in Fig. 6, it can

be noticed that cases (1) and (2), the t = 0.1s, while t ′

changes, the accuracy does not change. Therefore, we can

cautiously conclude that the effect of the t where the P wave

is included is higher than the t ′ where the T wave is included.

We can draw the conclusion from a test result that, the best

segmentation for ECG among all the database is the case (4)

where t = 0.16s and t ′ = 0.41s. In other words, the accuracy

is already saturated from these window segments. Thus, not

only we can reduce the time for enrollment/authentication

phase, but also the memory space for storing the template will

be decreased.

VI. DISCUSSION

In this section, we are discussing the advantage and

drawbacks of the proposed system. Besides most of the

proposed ECG-biometric authentication system used mul-

tiple segments in the template, in this work, only a sin-

gle ECG segment for each user is stored in the template

for comparison in the authentication phase. Moreover, most

of the previous work reported, evaluation metrics are not

comprehensive. However, in this work, all the metrics such
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FIGURE 6. The average accuracy under different segmentation. (a) on-the-person MITDB, (b) on-the-person PTB, (c) on-the-person CEBSDB,
(d) off-the-person CYBHi, (e) off-the-person ECG-ID, and (f) off-the-person ECG-BG respectively.

as FAR, FRR, and EER has been reported. Our proposed

work has been evaluated under both on-the-person and

off-the-person ECG databases from diverse poll without any

subject exclusion.While other works limited diverse database

along with subject exclusion has been examined. As can be

seen in the result, the DTW matching algorithm achieved

the best performance for different types of feature extrac-

tion and segmentation. Nevertheless, the authentication pro-

cess is slower than Euclidean distance and it requires more

power consumption. Although the ECG-based biometric sys-

tem has long been deemed as unclonable, the vulnerabil-

ities of the ECG biometric systems have been studied by

Karimian et al. [61]. While, The ECG biometrics spoofing

area has not received much attention in the existing work,

but it serves as a warning to researchers to develop a coun-

termeasure for prevention. Recently, Karimian et al. [62]

proposed countermeasure by using heart rate variability and

photoplethysmogram (PPG) to combat against spoofing. This

paper can incorporate countermeasures suggested in [62] for

anti-spoofing.

VII. CONCLUSION

Despite the considerable effort for developing ECG-based

biometric modality, several important issues have not been

properly addressed in the efforts to make a new algo-

rithm. First, the database for ECG is limited and includes

unhealthy data with noises. Second, the previous developed

algorithms have not been intensively investigated for each

of the well-known main techniques: filtering types, segmen-

tation, and feature extraction and ECG data quality. In this

paper, we completely evaluate the impact of filtering type,

segmentation, feature extraction and health status on ECG

biometric by using the evaluation metrics: accuracy, FAR,

FRR, and ERR. In other words, several experimental results

were conducted to evaluate the impact of such important

techniques for ECG biometric systems. In addition, we cre-

ated large gallery off-the-person ECG data-sets, that opens

up a state-of-the-art of challenges and opportunities for the

ECG biometric research community. The large datasets will

significantly contribute to other ECG research areas in the

future. We have also provided a comparative analysis of

the authentication performance of existing on-the-person

ECG databases and new off-the-person ECG. While dis-

cussing the limitations of the previous works, this paper

presents that our new proposed approach shows better per-

formance in terms of FAR, FRR, EER, and identification

rate.
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