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ECG Coding by Wavelet-Based Linear Prediction

A. G. Ramakrishnan,Senior Member, IEEEand Supratim Sah&tudent Member, IEEE

Abstract—This paper presents a novel coding scheme for within beat. Another limitation of [9] and [10] rises from
electrocardiogram (ECG). Following beat delineation, the peri- the fact that, since the period of a beat changes constantly,
ods of the beats are normalized by multirate processing. After points that are equidistant and farther from fhevave in two

amplitude normalization, discrete wavelet transform is applied diff ¢ | t al I lated. Furth 9
to each beat. Due to the period and amplitude normalization, ifferent cycles are not always well correlated. Further, [9]

the wavelet transform coefficients bear a high correlation across requires detection of the end points of each cycle, in addition
beats at identical locations. To increase the compression ratio, to QRS detection and the correlation of QRS complex of each

the residual sequence obtained after linear prediction of the peat with a codebook of complexes. Similarly, the methods
significant wavelet coefficients is transmitted to the decoder. based on modeling, such as [11] and [12] require component

The difference between the actual period and the mean beat . L .
period, and that between the actual scale factor and the average identification for both model order selection and proper cycle

amplitude scale factor are also transmitted for each beat. At Separation. Parametric techniques [12] have minimized only
the decoder, the inverse wavelet transform is computed from the intrabeat redundancy and not the other. The technique in

the reconstructed wavelet transform coefficients. The original [11] exploits both, but the authors clearly say that heart rate

amplitude and period of each beat are then recovered. The \apapility makes it difficult to assign a fixed number of bits
approximation achieved, at an average rate of 180 b/s, is of high to the differences in model parameters

quality. We have evaluated the normalized maximum amplitude . ) .
error and its position in each cycle, in addition to the normalized ~ The technique proposed in this paper accounts for the
root mean square error. The significant feature of the proposed variations in the beat periods and then exploits both the

technique is that, while the error is nearly uniform throughout intercycle and the intracycle correlations. The method requires
the cycle, the diagnostically crucial QRS region is kept free of {he getection of no component other than fevave. We first
maximal reconstruction error. . .
make the period of each beat constant by a nearly reversible
Index Terms—Cyclostationarity, discrete wavelet transform, transformation, in which the original periods can be restored
ECG compression, multirate processing, period normalization. without any loss. We perform amplitude normalization on
these period-normalized beats. On these “period and amplitude
|. INTRODUCTION normalized (PAN) beats,” discrete wavelet transform (DWT)

LECTROCARDIOGRAM (ECG) coding is required in is applied. Linear prediction of select_eq wavelet coefﬂment_s
L o is then performed and only the prediction error sequence is
several applications such as ambulatory monitoring, p,

tient data bases, medical education systems, and transmissﬁi%'ﬂsm'tted'

over telephone lines. ECG is oscillatory in nature, although
not periodic in the strict mathematical sense. Looking at the [l. PERIOD AND AMPLITUDE NORMALIZATION

time evolution of this signal, we can observe a concatenationFor delineating cycles, we define a cycle as the signal from
of similar events or periods, which almost never reprodugge R-wave to the next. We used the technique reported in [13]
themselves identically. For the same subject, the cycle-fey QRS detection. We normalize the period of each isolated
cycle variation in the beat period is, in general, much highgeat by multirate techniques [14]. This involves sampling
than the occasional variations in the amplitude, position, apgte change by different fractional factors for different cycles.
width of the constituent waves. However, most techniques dhis converts the beats of differing periods into beats of
ECG compression reported till now have not exploited thig constant period, thus eliminating the effect of heart rate
correlation between cycles (interbeat correlation). There is ak‘i&’riability. The fixed length of the cycles is selected based
some redundancy within each ECG cycle. Direct time-domagh the maximum possible period of any cardiac cycle and
techniques such as [1]-[3], and transform-domain techniqu@g sampling frequency. The modified sampling rate must still
such as [4]-[8] have considered only this intrabeat correlati@@tisfy the Nyquist criterion. We have selected a length such
between successive samples. Whereas, long term predicigit the new sampling rate is always higher than the original
[9] and average beat subtraction [10] techniques have usgtk, ensuring that there will be no distortion of the signal. The
only the beat to beat correlation, ignoring the redundangyean beat period (MBP) is estimated from some initial cycles

of the data being coded. This value is initially sent to the
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1 (n) 23(n) being coded, the difference between the maximum amplitude
1L H(z) I M ———ui(n) of that cycle and the AASF is transmitted to the decoder.

z,(n)

Fig. 1. Period normalization. I1l. WAVELET-BASED LINEAR PREDICTION OF PAN BEATS

In any ECG waveform, the QRS complex is a well-
becomes uniform. In our case, only the interpolation filter andcalized, high-frequency region. Th2 and 7" waves are
downsampling are required. Since ECG is a highly correlat@siv-frequency components, and the PQ and TP segments are
signal, and since it has been interpolated by a sufficientgarly isoelectric with limited information. The ST segment
high value, no error occurs in downsampling. The details & a very low-frequency, time-localized component. These
implementation are given below. time-localized components affect the entire spectrum of the

If 2(n) is the input to an interpolation filter with anECG, and hence, the Fourier transform is not quite adequate
upsampling factor, and an impulse responsgn), then the to characterize it. In fact, accurate representation of such

output y(n) is given by localized components would require a linear combination
00 of a large number of sine and cosine waves. Conventional

y(n) = Z z(k)h(n — kL). (1) transforms [such as Karhunen-Loeve transform (KLT),

k=—o00 discrete cosine transform (DCT), or DFT] can perform

é/vell only when the signal is stationary, and the energy
is exclusively concentrated in certain bands. Thus, coding
higher than that of the input signal, replaces the insertgar;lergesf based 0{155uch ére(\jljsforl;nsl_have SOt ree}lly perf?rntled
zeros with interpolated values. Polyphase implementation e (te;arer:ﬁe [15] ltjsf '.StcrefeECegGerE) ret po ygon;tas 3
this filter [14] ensures efficient interpolation. The outp(t ) account for the nonstationarity o €als and ovtaine

i o W o i 5 [ S e e e o e
downsampling factod, is given by P ry signals. .

signal, being highly nonstationary within each beat, lends

The upsampler simply inserts-1 zeros between successiv
samples. The filtefz(n), which operates at a raté times

> itself quite well to wavelet transform-based coding. Senhadiji
y(n) = Z w(k)h(nM — k) @ etal [16] first proposed the use of wavelets for the analysis
h=—oo of ECG. Thakor [17] and Bradie [18] applied DWT for

where h(n) is a lowpass filter used to remove the aliasinfCG compression, but neither attempted to make use of the
caused by the downsampling of the signal. In case the sigitgkrbeat correlation.

does not contain frequencies abavgV/, there is no need for

the decimation filter; downsampling alone will do. The changk. Wavelet Transform for Signal Decomposition

of sampling rate thus achieved is a reversible process, provideqln wavelet analysis, a mother functioh
Nyquist condition is satisfied; if the resampled beat is brouQ%mbination of its dilated and/or shifted
back to the original sampling rate by multirate processingepresent a given signal

there will be no distortion. The output of our system is given

(z) and a linear
versions are used to

by F@) =2 winln(@) @)
-1 ik

Yi(n) = > Xi(k)h(nM; — kL) (3) wheref(x) is the signal to be analyzed; ;(x) is the dilated

k=0 and shifted version of mother wavel&(x), j, £ € Z, and

where X;(n), Y;(n) are thenth samples of theith input determine the dilation and shift factor, respectively, , are
beat and output PAN beat, respectivelyy) is the impulse the wavelet coefficients, and

response of the filterp; is the total nqmber of samples_in U (z) = (2 — k). )

¢th original beat, and., M; are, respectively, the upsampling ’

and downsampling factors for th¢h beat vector. The block It is desired that the wavelet basis functions be orthonormal
schematic for this operation is shown in Fig. 1. The interp§19] in order to simplify the computation of the coefficients.
lation is efficiently accomplished in multiple stages as showfrom (4) and orthonormality of basis functions, we get the

in Fig. 2. (cf., [14]). wavelet coefficientsy;;, as

Amplitude normalization brings about further similarity
between the beat patterns. Each sample of a beat is divided by wj, e = (f(2), Uy, 1(2)) 6)
the magnitude of the largest sample of that beat. This makgs
the highest amplitude sample(s) of each beat equal to unity. Lo
Thus, the variations between the magnitudes of different cycles wy g = / f(@)V; w(z) d. (7)
are minimized. Fig. 3 shows that PAN does not introduce any —00

distortion in the signal and also demonstrates its efficacy ftom (4) and (5) we get

enhancing the interbeat correlation. To begin with, the average )

amplitude scale factor (AASF) is obtained from a few initial F@) =37 w  U(2w - k). 8)
beats and is sent to the decoder. Subsequently, for each cycle Jjok
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Fig. 2. Multistage implementation of interpolation.
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Fig. 3. PAN: A nearly distortion-free transformation: (a) Original beats, (b) PAN beats, and (c) reconstructed beats.

While setting up a discrete wavelet transform algorithm, Ehen, from (9) and (10) we get
is convenient to limit the range of the independent variable
x to one unit interval so thaf(z) is defined only for0 <

fx) = X(0)p(x) + X (1)¥(z)

z < 1 [20]. Here,z is a nondimensional variable; so if the +IX(2) X(3)] U(2r)
independent variable is tinteand we are interested in a signal U(2r —1)
over duration7’, thenz = ¢/T. U(dx)
Of the many available orthogonal basis functidns, (z) € . U(dr — 1)
L?(R), we have used Daubechies-4 (D4) functions [21] for +[X(4) X(5) X(6) X(7)] U4z — 2)
representing each PAN beat. The D4 wavélgl,(x) occupies W4z — 3)
three unit interval®d < z < 3. The expansion off(z) in +---+X(2j _,_k)\p(ij —k) (11)

0 < z < 1 can be written [20] as

f(a:) :wO1¢($) + wllllf(a:) + [w21 w22] |:\I/

U(4z)
U(dr —1
+ [w31 w32 w33 w34] ‘I/E‘li _ 2;

W4z — 3)

where¢(z) = 1, 0 < & < 1 andwjy, refers to the wavelet

i)

(9)

coefficient at scalg and locationk. Let us form a vectorX
by stacking the wavelet coefficients at scales 0, 1,-2,7

as defined below

X = [wor w11 w21 Wa2 W31 W32 W33 W34 - -]

(

10)

where X (j) is the jth element of the vectaX.

To compute the wavelet coefficients for the signal (sampled
at equally spaced intervalsin< z < 1) of each PAN beat, we
use Mallat's pyramidal DWT algorithm [22], which requires
that the number of samples in the sequence be a power of 2.
The normalized beat is 256 samples long and therefore, DWT
entails an eight level dyadic decomposition. Here, each beat
is shifted to the origin before it is processed, since DWT is
not time-shift invariant. If the above transform is applied to
a PAN beat, owing to the nonstationary nature of the latter
and because of nonuniform distribution of energy across the
different scales, it turns out thabt all the wavelet coefficients
are required for a reasonable quality of reconstruction. It has
been observed that only the highest 20% of the coefficients
are necessary for reconstruction without loss of any significant
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rhythm or morphological information. Thus, antermediate grouping the corresponding coefficients from all the beats
compression of roughly 5:1 is achieved by retaining only _ _
some (in fact, a chosen set as explained later) of the wavelet Up ={V(0), V(N), V(2N), ---, V[(Nz — )N]}
coefficients and neglecting the rest. Uy ={V(@), VIN+1), V2N +1), ---

V[(Nt —1)N +1]}

B. Linear Prediction of DWT Coefficients

_ Since there is a_d_efmlte correlanon between the corre:spond—UN_1 —{V(N-1), V(2N 1), ---
ing wavelet coefficients of different normalized cycles, the
current one can be estimated from a certain number of past V[(Nt - 1)N+ N -1]}.

coefficients, and only the residual need be transmitted. Thifacause of the near-wide sense stationary nature of these in-
precisely, is the principle of linear prediction (LP), using lineagiyidual sets, the use of time-averaged autocorrelation, which
mean squared criterion. Ruttiman and Pipberger applied LP @Bpends only on the lag, is justified. The above LP enables us

raw ECG samples without any preprocessing and obtaineqiransmit only the residual wavelet coefficients, and with a
reduction in the variance [23]. However, we perform LP ofaller number of bits.

wavelet coefficientsacross beatsat corresponding scale and

location. The variance of the residuals obtained is less than t@t

Choice of Significant Wavelet Coefficients

of the original coefficients. Thus, we are able to allocate three - — ,
bits less to each residual than the number of bits required forT he fact thanotall the wavelet coefficients are significant in

each wavelet coefficient.
The wavelet coefficient for théth beat at scalgj and
location n, w;,(¢) is estimated by

Win (i) = a1, jnwin(i — 1) + ag, jnwin(i —2) + -
+ ap, jnwjn(i = p) (12)

wherep is the order of prediction ang, ;,,, -- -, a,, ;- are the
LP coefficients. The prediction error for scgleand location
n is then given by

(13)

&jn (i) = win (1) = Wjn(3)-

the reconstruction of any beat, is because of the high suitability
of time-localized basis functions for representing the locally
nonstationary ECG cycle. By choosing a fixed set of significant
coefficients to be transmitted from each beat, we can eliminate
the overhead of bits required to send the positions of the
coefficients retained in each beat. This, however, needs to
be done without losing important rhythm and morphological
information. PAN beats enable us to achieve this end. We
choose theN, highest amplitude wavelet coefficients from
each of the firstK' PAN beats, and keep their locations
in different setsF;,¢ = 1,2,.--, K, in descending order

of significance. The algorithm used for deciding the set of
locations of significant wavelet coefficients to be retained in
each cycle follows.

The LP parameters in (12) are chosen according to minimumi)
mean square error criteria, which is equivalent to the orthogo-
nality of the error with respect to the data used in the prediction
[24].

We stack the wavelet coefficients at all the scales for each
PAN beat as a vector. These vectors concatenated together
form a near-cyclostationary sequence. This occurs despite thg)
fact that DWT is time-shift invariant, since the beats are shifted 4)
to origin. Let X; be the vector formed by all the wavelet &)

2)

P = {pij}v i=1,2,---, K;5=1,2,---, N;; N. <

Ng where Ny is the final number of coefficients to be
retained in each beat.

Initialize N = N,, < N., where V,,, is the minimum
number of highest amplitude wavelet coefficients to be
retained in each beat.

‘PiN = {pU}vL: 17 27 ) K?J: 17 27 ) N.

SN = Uf;l PN

If |Sy| = Ng, stop.
If |[Sv| < Ng, N =N +1 and go to Step 4.
If |Sy| > Ng, then from the last set of locations

added, remové|Sxy| — Ng) entries corresponding to
coefficients of least magnitude.

Sn is the set of locations of wavelet coefficients to be
retained.

Thus, the selection ensures that at least the fivstl

coefficients of thejth PAN beat [refer (10)]. i.e., 6)
X; =[wor(y) wi1(4) war(4) waz(j)ws1(s) "
- wa2(J) was(f) wsa(f) -] (14) 8
Then
V=[X:Xs - Xn,] (15)

highest-amplitude coefficients are retained in each cycle,

N,, < N —1 < Ng. The results reported in this paper

is the near-cyclostationary sequence, whéfe is the total
number of beats being processed. Component¥ afiearly
satisfy the wide-sense cyclostationary conditioni,. the
mean i, () = Efv(n)] ~ Elv(n+N)], whereN is the period
andR,(n1 + kN, na+ kN) ~ R, (n1, ng) for any integerk.

have been obtained usimg,, = 30, Ng = 50, and K = 15.
Thus LP needs to be performed only for the défsi € Sy
The block schematic for the encoder is shown in Fig. 4.

D. Beat Reconstruction

From this sequence, independent linear predictions are perThe block schematic of the decoder is shown in Fig. 5. The
formed on the following data sets, each of which is formed lrgceived residual coefficients are processed by independent
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AASF Residual Sequence | LP of Sig. Coeff.
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Fig. 4. Block schematic of the encoder.
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Fig. 5. Block schematic of the decoder.

inverse filters, whose impulse response depends only on teen computed as follows:
respective forward LP filters. The reconstructed coefficients

across the PAN ECG beats are reordered to get the DWER = .
coefficients for each beat. Inverse DWT of these coefficients KAT T
is computed to obtain the reconstructed PAN beats. The actual Z g
period of each cycle is obtained from the period difference =1
and the MBP. The original period beat is then recovered
from the reconstructed cycle by the method discussed in
Section Il with appropriate parameter changes. The origi%
scale factor is obtained from the scale factor difference a
the AASF. The period-recovered beats are then multiplied
the corresponding scale factors to get the reconstructed b
and consequently, the reconstructed ECG.

Nr(Nrb+ aq + ap) + {Nr(pbp + bpnz) + bap + baa}
(16)

ere K is the number of b/sample in the original sigra],

the period ofith beat, N is the total number of beat¥ g

the number of coefficients whose residuals are transmitted

ef’oﬁseach cyclep, aq, anda,, are the number of bits used for
transmitting each residual, scale factor difference, and period
difference, respectively, is the order of the LP filter,,, b,,.,

IV. RESULTS AND DISCUSSION bap, @andb,, are the number of bits used for transmitting each

The proposed method was tested on ECG data obtained frlﬁ% parameter, each element §f, the MBP, and the AASF,

a hospital. The signal was sampled at 250 Hz and quanti reegpectlvely. The terms within braces in the denominator need
. . . ; o 0 be sent to the decoder only once.

with 12-b resolution. During period normalization, the lengt

of each cycle was changed to 256 samples. The technique was .

also applied on some abnormal data from the MassachuséitgNormalized Root Mean Square Error (NRMSE)

Institute of Technology (MIT) database. Figs. 6-8 give the The expression for this common error measure is

original, reconstructed, and the error waveforms, respectively

for three of the subjects. Fig. 6 shows the performance of our N-1
technique on an arrhythmic data and one can clearly notice that Z [70(7) — z,-(4)]?
the technique really performs very well with variable interbeat NRMSE = | =0 17)
intervals. Figs. 7 and 8 show the results on other types of data. Nl
The performance of the method is evaluated using the Z x3(4)
measures discussed below. The compression ratio (CR) has =0
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Fig. 6. Results of our technique on one subject. (a) Original ECG, (b) reconstructed signal, and (c) reconstruction error.
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Fig. 7. Results of our technique on another subject. (a) Original ECG, (b) reconstructed signal, and (c) reconstruction error.

where N is the total number of samples, ang (i) and Since the distribution of error within a cycle is also important
x.(¢) are theith samples of original and reconstructed ECGn determining the clinical acceptability of the reconstructed
respectively. Since NRMSE is only amveragemeasure, it data, we find out the maximum error and determine its position
alone cannot adequately quantify the performance of an E@@hin each cycle.

compression algorithm. This is because the QRS complex of . ) )

the ECG carries significant morphological information, ang: Normalized Maximum Amplitude Error (NMAE)

error in this region must not be excessive. NRMSE does notThe maximum amplitude of reconstruction error in each
give any idea about how the error is dispersed within any cycleycle is normalized by the dynamic range of the signal. The
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Fig. 8. Results of our technigue on subject 3. (a) Original ECG, (b) reconstructed signal, and (c) reconstruction error.

expression for NMAE for theth cycle is

—= 1 250
d X ; X 7 >
NMAE, = 2% Xoi = X0 (18) {
max X,; —min X; ] 200
The mean NMAE for a subject is obtained by averaging over
all the cycles. . : 150
C. Position of Maximal Reconstruction Errors ] 100
It is interesting that the proposed approach entails nearly
uniform distribution of error across the cycle. Besides, the I 50
maximum error in any cycle does not lie in the QRS region.
Fig. 9 shows the positions of maximum errors in different
0

cycles for a subject, plotted against the cycle number. The — &4 & 0 40 60 80 100
technique has performed well for different types of ECG e cycle number

waveforms due to: ) N o ]
Fig. 9. Position within cycle of peak reconstruction error, plotted as a

1) period and amplitude normalization; function of beat number, for one of the subjects. The PAN ECG beat,
2) capability of wavelets to adapt to changes in morphaduperimposed along thg-axis, aids in identifying the location with respect
ogy; to the QRS complex.
3) application of LP on wavelet coefficients across cy-
cles rather than on the consecutive samples or wavelgj: achieved this, with the exception of Philips [25]. Since
coefficients of a cycle. the signal amplitude levels in the QRS region are very high,
Table | gives the performance figures for five differenthe QRS complex has been reconstructed with less relative
subjects. It can be seen that the bit rate achieved varies fremor, than the other regions of the ECG. Thus the performance
135-225. The method proposed is elegant. It does not requifethe method can be considered good because it retains
anya priori knowledge of the ECG waveform. The significanmore clinically relevant information with high fidelity. This
advantage of the method is that thenerallydiagnostically vi- is because in wavelet based decomposition, multiresolution
tal QRS complexes are recovered with a fidelity as good as thealysis is performed and the localized high-frequency region
other regions. In addition, the maximum error never occurrés reconstructed well, as the wavelet coefficients contributing
in the QRS regions, even while achieving a good CR and &mthe QRS regions are unaltered (except for quantization loss).
overall error within limits. The distribution of reconstructionThus, all important morphological information is retained.
error is almost uniform, and thus the morphology of all th8ince the beats considered are R-wave to R-wave (R-R),
components are preserved. Most of the previous authors hawel the periods are transmitted, and since the wavelet bases
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TABLE |
PERFORMANCE FIGURES FORFIVE OF THE SUBJECTS

correlation is exploited [9], [10]. This preprocessing converts
the ECG data into a near-cyclostationary sequence and enables

CR | Bit Rore | NIMSE% | NM AR the uniform choice of wave_let coe_ff|(_:|ents to be r_etalned in
each beat, and hence, their prediction. The earlier wavelet
16761 1789 10.07 5.03 based compression schemes have not attempted this [17], [18].
19.1 157.1 11.27 9.77 With the proposed technique, a mean transmission rate of 180
15.24 196.8 11.73 5.22 b/s has been achieved (for the data tested) with no compromise
993 134 5 13.34 6.81 on the fidelity of reconstruction. It exploits both interbeat and
- 993 8 9.89 196 intrabeat correlations. Further, the clinicaltyore significant

QRS complexes are coded with an error equal to that in the
other regions in each cardiac cycle.

are time-localized, all rhythm information is also preserved.
Normalization (PAN) of ECG cycles leads to LP that performs

better, than is the case with nonnormalized cycles. The authors would like to thank Prof. B. N. Gangadhar,
The computational complexity of the technique, while beingational Institute of Mental Health and Neurosciences, Banga-
comparable to those of [11] and [25], is higher than mofire, India, for providing the ECG database; Prof. T. Chacko,
methods. Thus, currently, the technique can be utilized fghairman, Foreign Languages Section, for copy editing this
off-line applications such as patient databases and medig@nuscript; the reviewers for improving the precision of their
education systems. However, one can conceive of alterngifssentation; and to A. Bavisi for his help in manuscript
faster techniques for period normalization, in which case, wiiteparation.
suitable dedicated hardware for normalization and DWT, and
parallelization of possible steps (such as LP and amplitude
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