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Abstract—This paper presents a wavelet-based low-complexity
Electrocardiogram (ECG) compression algorithm for mobile
healthcare systems, in the backdrop of real clinical requirements.
The proposed method aims at achieving good trade-off between
the compression ratio (CR) and the fidelity of the reconstructed
signal, to preserve the clinically diagnostic features. Keeping
the computational complexity at a minimal level is paramount
since the application area we consider is that of remote cardio-
vascular monitoring, where continuous sensing and processing
takes place in low-power, computationally constrained devices.
The proposed compression methodology is based on the Discrete
Wavelet Transform (DWT). The energy packing efficiency of the
DWT coefficients at different resolution levels is analysed and
a thresholding policy is applied to select only those coefficients
which have significant contribution to the original signal total
energy. The proposed methodology is evaluated on normal and
abnormal ECG signals extracted from the MIT-BIH database
and achieves an average compression ratio of 16.5:1, an average
percent root mean square difference of 0.75 and an average cross
correlation value of 0.98.

I. MOTIVATION

Continuous ascendancy of Cardiovascular Diseases (CVD)
- the number one cause of death (30% of the global total of all
deaths) according to World Health Organization (WHO) - have
put current healthcare systems worldwide, under serious strain
in terms of quality of care delivery and its associated cost
[1]. A significant drawback of current healthcare systems has
been the post-incident strategy they follow; that is, healthcare
actions are delivered after an occurrence of a critical event.
In recent years, this has been countered with the develop-
ment of next-generation 24-hour remote CVD monitoring and
management systems, facilitated by breakthrough advances
in Wireless Sensor Networks (WSN) technology, capable to
monitor the patients’ vital signs continuously in a nomadic
environment.

A number of battery powered wireless sensors are consid-
ered to be placed on the patient’s body in order to capture the
vital clinical information and transmit data to a centralized
service for further analysis allowing remote patient’s moni-
toring and disease prognosis. The clinical feature extraction
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and information fusion processes, necessary to attain clinical
diagnosis, are computationally intensive tasks and thus are
typically carried out in the main-frame computational facilities
for prolonging the battery life of the body-worn sensors.
However, a long-term sustainable operation of this system
is severely affected by the significant energy expenditure
required by the radio front-end for supporting continuous data
transmission [2].

In contrast to this, the emerging trend in the field of
telemedicine, advocates that the capturing of the vital data and
the feature extraction and information fusion operations are
carried out at the on-body battery powered WSN nodes them-
selves, while transmission of the clinically relevant parameter
to the centralized facility takes place only when required.
In this approach the raw data is stored on the node itself
and can be transmitted, on the clinician’s demand or at pre-
set intervals, in burst and therefore negate the necessity for
continuous transmission while fully maintaining the notion
of continuous monitoring. This system requires an efficient
compression technique for storing the raw data as well as the
clinically extracted cardiac features on the sensor node and for
transmitting them to the remote server on request.

The application scenario that we consider is that of remote
CVD monitoring applications, where capturing the patients’
ECG signal, with considerably high-sampling frequencies
(250-500Hz), is paramount. The on-body storage require-
ments coupled with the energy expenditure during processing
and transmission, necessitates the development of a low-
complexity compression methodology that is less computation-
ally demanding and thus implementable on ultra low-power
hardware suitable for integration in a WSN node in the form
of a dedicated ASIC. This prompts us to investigate the trade-
off between the degree of compression and the level of fidelity
of the reconstructed signal at the clinician’s end.

The main aim of ECG compression is to minimize the
number of samples required to store or transmit, without
losing the significant signal information, allowing for a near-
accurate reconstruction, which is a requirement for proper
clinical diagnosis. Typical compression methodologies can be
broadly classified as lossy or lossless. Lossy compression tech-
niques are mainly applicable in image or video compression
applications, whereas when dealing with critical vital sign data



like ECG, maintaining the fidelity of the signal during recon-
struction is deemed to be more important. Therefore lossless
and near-lossless compression techniques are considered more
applicable.

Lossless ECG compression methods explored in recent
years mainly include block-sorting transformations of context-
depth one (linear order transformation (LOT)) or context-
depth “n” (BurrowsWheeler transformation (BWT)), followed
by Move-to-Front (MTF) and a suitable arithmetic coder [3].
However, these methods result in low compression ratios,
which resulted in various lossy techniques to be considered
for ECG compression.

In the relevant literature [4], [5] and [6] lossy ECG com-
pression algorithms are grouped into three distinct categories;
namely a) Direct Methods - Heuristic algorithms like AZTEC,
FAN algorithm, TP, CORTES, SAPA and Entropy Coding,
b) Transform Based Methods in which the original signal is
transformed to a new domain where compression is performed,
for example DCT, STFT, KLT and the more recently Wavelet
Transform (WT). Most of these methods, transform the signal
into a number of coefficients which represent the contribution
of each frequency component in the signal’s total energy.
Obviously a considerable amount of coefficients will have
minimal energy contribution and can be discarded resulting
in a smaller-compressed amount of coefficient required to
reconstruct the signal with acceptable accuracy. ¢) Parametric
methods like Linear prediction.

WT based methods, are lossy compression techniques but
yield a significantly high degree of compression. In this paper,
we explore a computationally efficient compression method-
ology, using Discrete Wavelet Transform (DWT) combined
with a thresholding technique based on the investigation of
the Energy Packing Efficiency (EPE) of the resulting DWT
coefficients. The compressed coefficients are then used to
reconstruct the ECG signal using the Inverse Discrete Wavelet
Transform (IDWT). We establish the fidelity of the recon-
structed signal by applying the Time Domain Morphology [7]
for extraction of the clinical features from the original ECG
signal as well as on the reconstructed ECG signal in addition
to the endorsement by practising clinicians.

The choice of the Wavelet function is of utmost importance
since it decides on the computational complexity of the DWT
process. For ECG compression, Daubechies, Biorthogonal
and Symlet mother wavelets have been previously used [8]
and [6]. Nevertheless the mathematical complexity of the
aforementioned mother functions does not favor the design
of a low-power architecture, let alone any ASIC implemen-
tation. Hence, we select the Haar function, the simplest in
terms of complexity of the wavelet functions, for our DWT
decomposition. Although this function has its own limitations,
we hypothesized that it still may be sufficient for the present
purpose of ECG compression. Primary aim of this work is
to investigate to what extent Haar DWT analysis combined
with multiple resolution level EPE based coefficient selection,
can result in an efficient ECG compression scheme that
achieves a good trade-off between, computational complexity,

compression ratio and fidelity of the reconstructed signal. In
our analysis, the proposed compression algorithm has been
tested on a large number of records from the MIT-BIH ar-
rhythmia database and also on 12 digitised Paper ECG signals
supplied by the Southampton General Hospital’s Cardiology
Department (SGHCD). In all cases the reconstructed signal
has been endorsed by expert cardiologists from SGHCD.

The rest of the paper is structured as follows: Section II
presents a theoretical background of DWT and compression
parameters, we describe our exploration on EPE based thresh-
old selection in Section III. Section IV is devoted on the
validation of the compression methodology and simulation
results. The conclusions are drawn in Section V.

II. THEORETICAL BACKGROUND
A. DWT

DWT is used to analyse the signals in both time and
frequency domain making it suitable for the analysis of time-
varying non-stationary signals such as ECG. The frequency
and time localization property of DWT offer a great advantage
since fewer basis functions are required to represent the
signal to a given level of approximation [5]. In the proposed
compression scheme, the multi-scale DWT decomposition is
implemented as a cascade filter-bank structure (known as
Mallat’s Algorithm), illustrated in Figl featuring high and
low-pass filters. Downsampling is performed after filtering, to
remove redundancy. As DWT transforms the original signal
into multi-resolution bands each having a reduced number of
coefficients, it can be effectively used for compressing the
samples. The output of the high pass filters (H1(z)) provides
the detailed WT coefficients (cD_Ix) at the 2* scale, while the
approximate WT coefficients (cA_Ix) are obtained from the
output of the low-pass filters (HO(z)). The higher the scale, the
higher the temporal resolution of low frequency components
become. Thus high frequency components are expected to be
represented with higher resolution in the lower scales (2', 22)
while low frequency components in the higher analysis scales
(24, 25).

f=m/d~m/2

L2
f=m/8~ml4

H1(z » D_L3

A L2 f=m/16~m/8

c
H1@) @ D_L4
f=0~m4
Lot (B o

1 cD_L5
HO(z) = z'+1) H’
\/3 ( f=0~m/8
Hi@) = L (= +1 .HD(Z) @ ch L4
V2 f=0-m6 . A LS
HO(z) e —

f=0~n/32

f=m/32~m/16

Scale 2' Scale 2* Scale 2° Scale 2* Scale 2°

Fig. 1. Cascade filter-bank Implementation of DWT
B. Compression Performance Parameters

The performance of the compression methodology is mea-
sured in terms of the following parameters mentioned below:



a) Compression Ratio (CR) - It is a ratio of the number
of samples representing the original ECG signal and the
compressed ECG signal and is expressed as :
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where Ny, and N,. are the number of samples in the
compressed signal and the original ECG signal respectively.

b) Percent root mean square difference (PRD) - It is a
measure of expressing the error or the distortion in the
reconstructed signal as compared to the original ECG signal,
and hence establishes the effectiveness of the compression
methodology and is expressed as :
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where z(n) and Z(n) are the original and the reconstructed
ECG signal respectively.

¢) Cross correlation (CC) - It is used to evaluate the
similarity between the original and the reconstructed ECG
signal and establishes the fidelity of the reconstructed signal,
it is expressed as :
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where = and Z are the original and the reconstructed ECG
signal respectively and  and & are their respective means.
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C. Energy Compaction and Thresholding

After the ECG signal is decomposed through DWT, se-
lective thresholding is applied in its coefficients, in view of
their energy compaction, at the respective resolution levels.
The energy contribution of each wavelet decomposition sub-
band with respect to the original signal as well as the other
coefficients is analysed using EPE [9]. This is a quantitative
figure, expressed in terms of percentage, which represents a
measure of the energy content of the coefficients of a certain
sub-band after thresholding with respect to the total energy in
that sub-band before thresholding.
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where L; and L are the number of coefficients in the i;, sub-
band after and before thresholding respectively.

The performance, in terms of compression ratio, of the
compression methodology and the fidelity of the reconstructed
signal also have a direct relationship with the resolution

scale(s) of DWT that we choose for compressing the signal.
The higher the resolution level the smaller the number of DWT
coefficients, due to subsampling. It is then normal to achieve
higher CR and PRD values by focusing on the high (24, 2°)
resolution scales. Conversely, compressing the ECG using the
low resolution scales (22, 23) results in low CR and PRD
but achieves a more accurate reconstruction of the original
signal in terms of the cross correlation between the original
signal and the reconstructed signal. To present a complete
investigation on the trade-off between CR and accuracy that
can be achieved, we decompose the ECG signal using DWT
upto resolution level 25 and we study the energy content
variation among the detail and approximate coefficients at
various resolution levels while also exploring various threshold
ranges to be selected on the coefficients at the respective
dyadic scales. This analysis allows to select the resolution
level(s) that achieve the optimum trade-off between CR and
reconstruction fidelity. Resolution scale 2! is disregarded in
our investigation since it is considered to be dominated from
the high frequency noise components.

The threshold value also influences the level of data com-
pression, since a high threshold can result in high CR but poor
signal fidelity after reconstruction and on the contrary, a small
threshold would produce low data reduction but high signal fi-
delity. The optimal choice of the threshold value is a key point
of ECG data compression. To determine the threshold level in
each resolution level, the energy packing efficiency (EPE) [5],
[10] of the coefficients in each sub-band is calculated. Since
DWT transforms the signal to multi-resolution bands, the one
that has the lowest frequency components, the approximation
band, contains high-amplitude coefficients, thus carrying the
majority of the original ECG signal energy. Hence, we have
selected not to threshold the approximate coefficients and
consider all of them in the compressed signal [8]. The detail
coefficients, the output of the high-pass filter, are of lesser
magnitude which signifies that they carry a smaller percentage
of the signal’s energy. These are also vital and need to be
used, in combination with the approximate coefficients, for
reconstruction however we choose to store only the detail co-
efficient which exceed the EPE based threshold, thus represent
component with significant energy and disregard the remaining
one’s.

Selective thresholding is achieved by detecting the maxi-
mum and minimum value of each detail sub-band and consid-
ering only those coefficients which have a higher or lower
magnitude from a certain percentage of the maximum or
the minimum value respectively. Different to various other
methods in the relevant literature [9] that only consider the
maximum value, to define the threshold, we additionally
consider the minimum coefficient value since it also plays
an important role in retaining those samples which repre-
sent the characteristic waves (like the S-wave) of an ECG
signal which are negative, compared to the isoelectric line,
deflections. In our exploration, we avoid steps that involve
any real divisions or multiplications and we only employ
divisions/multiplications that can be represented as a dyadic



fraction (to a power of 2) and implemented in the form of
hard-wired shifters. It is our belief that following this approach
the resulting compression algorithm can have a potential for
low-power architecture implementation.

After the selective thresholding process is completed, the
remaining coefficients represent the compressed version of
the original ECG sample. The compressed signal can then be
transmitted and reconstructed with IDWT at the clinician’s
end, using only the approximate and thresholded detail coef-
ficients.

III. SELECTIVE THRESHOLDING BASED ON EPE

We decided to explore four different sets of thresholding
and compressing methodologies, based on an analytical study
of the EPE values of the approximate and detail coefficients
at resolution levels 2 and 2°. To quantify the percentage of
energy contained in these two resolution scales, we average
the EPE values of 17 ECG signals tested from MIT-BIH
arrhythmia database. The EPE results are provided in Table 1.

The significant bands of coefficients, produced as a result
of the DWT decomposition and considered for our case are :
cA_l5 (level 5 approximation coefficient), cD_15 (level 5 detail
coefficient) and cD_14 (level 4 detail coefficient), cA_I3 (level
3 approximation coefficient), cD_I3 (level 3 detail coefficient),
cD_I2 (level 2 detail coefficient) and cD_11 (level 1 detail
coefficient).

EPE for different sub-bands | EPE values(%) |

EPE_D1 0.00267%
EPE_D2 0.00925%
EPE_D3 0.02545%
EPE_A3 99.96262%
EPE_DID2D3 0.03738%
EPE_D3_D1D2D3 60.89235%
EPE_D2_D1D2D3 29.31935%
EPE_DI1_D1D2D3 10.80832%
TABLE 1
EPE VALUES FOR APPROXIMATE AND DETAIL SUB-BANDS IN RESOLUTION
LEVEL 23

1) Analysis of 23 scale coefficients: EPE_A3 represents the
energy content of the samples in the level 3 approximation
band as compared to the the energy of the original signal and
it accounts for 99.96% of the signal energy. The combined
energy content of the detail coefficients of levels 3, 2 and
1 represented by EPE_D1D2D3 is 0.037%. As discussed in
the previous section, the cA_13 coefficients are left without
thresholding due to their high energy content and then we
separately select distinct threshold values for each of the
detail level coefficients. The energy contribution of the detail
coefficients to the total energy of the signal reduces from
that in detail level 3 to level 1 as illustrated by the values
EPE_D3, EPE_D2, and EPE_DI1. Before thresholding the
detail coefficients, we investigate their energy content at each
level with respect to the combined detail energy.

The energy content of cD_I3 to the combined detail
level energy, EPE_D3_D3D2DI1 is 60.89%, similarly that

of ¢D_I12, EPE_D2 D3D2D1 is 28.29% and for cD_II,
EPE D1 _D3D2D1 is 10.80%. The selection of thresholds for
the respective levels should ensure that maximum coefficients
are chosen from cD_13 whereas the minimum number of
coefficients are chosen from cD_11.

Experimentally, we choose the threshold values as 32%
and 64% for selecting the coefficients of cD_I3 and cD_I12
coefficient and we completely discard the cD_l1 coefficients
since they have a minimum energy content. We select those
coefficients from cD_13 and cD_I12 which are greater than 32%
and 64% of the maximum value and less than 32% and 64%
of the minimum value of the sample size respectively.

The choice of the threshold value is guided by the following
two observations. Firstly, the number of samples in cD_I2
is double the number of coefficients in cD_I13 and secondly
the energy content of cD_12 with respect to the total detail
sub-band energy (EPE_D2_D1D2D3) is approximately half of
the energy content of cD_13 (EPE_D3_D1D2D3). The chosen
threshold value (32%, 64%) at the resolution levels 23 and 2 is
in the ratio of 1:2, which in effect ensures that we select more
samples with significant magnitude from cD_13 than cD_I2.
The energy contribution of the compressed sample size of
cD_I3 and cD_12 after thresholding to their original sample
size is shown in Table II below :

[ EPE for different sub-bands | EPE values(%) |

EPE_D3_comp 85.10%
EPE_D2_comp 61.85734%
EPE_DI_comp 0

TABLE II
EPE VALUES FOR COMPRESSED DETAIL COEFFICIENTS OF RESOLUTION
LEVEL 23, 22 AND 2!

The high EPE values of the compressed coefficients ensure
that we preserve a majority of the significant detail coeffi-
cients. This sums up our first method of exploration (Method
1) at 23 scale.

2) Analysis of 2° scale coefficients: As discussed before, an
improvement in the CR is expected if coefficients from higher
level of DWT decomposition are used, thus we also analyse
the decomposed coefficients of resolution level 2°. The average
EPE values of the 17 ECG signals are listed in Table III below.

[ EPE for different sub-bands | EPE values(%) |

EPE_D4 0.05621%
EPE_D5 0.09113%
EPE_AS 99.81528%
EPE_D1D2D3D4D5 0.18472%
EPE_D5_D1D2D3D4D5 41.74150%
EPE_D4_D1D2D3D4D5 31.93224%
EPE_D3_D1D2D3D4D5 14.91434%
EPE_D2_D1D2D3D4D5 7.98171%
EPE_D1_DI1D2D3D4D5 3.43019%
TABLE III
EPE VALUES FOR APPROXIMATE AND DETAIL SUB-BANDS IN RESOLUTION
LEVEL 2°

Inspired from our threshold calculations performed in the



preceding subsection for the 23 scale, we keep all the co-
efficients of cA_l5 since it comprises of samples having the
highest energy content (EPE_AS5 = 99.81528%) with respect to
the original signal and subsequently, we decide on three ways
of thresholding the detail coefficients. The threshold value
represents the energy content of the detail coefficients across
all resolution levels and have been experimentally deduced for
each method as presented below :

a) Method 2 - selecting a threshold of 8%, 16% on the
maximum and minimum value of the coefficients of ¢cD_15 and
cD_14 respectively, thus completely neglecting the coefficients
of ¢cD_I3, ¢cD_I2 and cD_11

b) Method 3 - selecting a threshold of 8%, 16%, 64% on
the maximum and minimum value of the coefficients of cD_I5,
cD_I4 and cD_13 respectively, thus completely neglecting the
coefficients of ¢cD_12 and c¢D_11

¢) Method 4 - selecting a threshold of 8%, 16%, 64% and
64% on the maximum and minimum value of the coefficients
of cD_I5, ¢cD_14 and cD_13, cD_12 respectively, thus com-
pletely neglecting the coefficients of cD_l1.

The energy contribution of the compressed (after threshold-
ing) sample size of the detail coefficients with respect to their
original signal is shown in Table IV below :

[ EPE for different sub-bands | EPE values(%) |

EPE_D3_comp 99.14362%
EPE_D4_comp 95.36816%
EPE_D3_comp 66.51193%
EPE_D2_comp 61.8573%
EPE_D1_comp 0

TABLE IV
EPE VALUES FOR COMPRESSED DETAIL COEFFICIENTS OF RESOLUTION
LEVEL 25,24, 23,22 AND 2!

The discarded insignificant samples in the detail sub-bands
are set to zero. Modified run length encoding is used to count
the number of zeroes and their relevant positions which helps
in reconfiguring the detail sub-band signal. Inverse DWT is
used to reconstruct the original signal from the compressed
coefficients. Depending on which compression method is
followed, IDWT might run from the 3™ or the 5" level upto the
original resolution scale for fully reconstructing the original
ECG sample.

IV. RESULTS AND DISCUSSION

In this section we provide and discuss analytical results of
our compression/reconstruction methodology. In our investi-
gation, ECG excerpts from various databases were used. Both
ambulatory ECG databases (MIT-BIH arrhythmia database)
and standard 15-lead ECG (PTB database (PTBDB)) [11].
Finally 12 paper ECG signals from the SGHCD database,
captured through the standard 12-lead ECG machine were used
after being digitised. For our experiment purpose we fix up
a segment length of 2048 samples to work with. The signal
length is of vital importance since a large sample size increases
the variance in the sub-band signal’s distortion and affects the
performance of the compression methodology. For enabling

comparison to other compression approaches, we present here
the average performance of the four compression methods on
the records 100, 101, 102, 103, 116, 117, 200, 201, 202, 207,
210, 215, 220, 221, 223, 231 and 232 having a sampling
frequency of 360 Hz from MIT-BIH arrhythmia database in
Table V.

[ Parameters | Method 1 [ Method 2 | Method 3 | Method 4 |
CR 7.143880044 18.25359633 16.27602544 19.38809456%
PRD (%) 0.587429996 0.905119604 0.753811454 1.220041521%
CC 0.95392222 0.95274911 0.974509213 | 0.937217502%

TABLE V

COMPARATIVE VALUES FOR CR, PRD AND CC FOR THE FOUR METHODS
OF COMPRESSION

The data from Table V clearly reflects the effectiveness of
Method 3 which demonstrated a low PRD and high CR and
CC values, therefore ensuring high fidelity of the reconstructed
ECG signal. A comparative study of the performance of our
algorithm used in Method 3 along with other compression
techniques for record 117 of MIT-BIH arrhythmia database as
reported in [6] is presented in Table VI.

[ Algorithm [ CR [ PRD (%) ]
SPIHT 8:1 1.18%
Hilton 8:1 2.6%
Djohn 8:1 3.9%
CORTEC 4.8:1 7%

WT & Huffman 13.57:1 | 4.87%

Ebrahimzadeh,A [6] | 13.92:1 | 0.97%

Method 3 18.96:1 1.21%
TABLE VI

COMPARATIVE PERFORMANCE OF THE PROPOSED ALGORITHM WITH
OTHER ECG COMPRESSION ALGORITHMS

The original and the reconstructed ECG signal for records
117,221 and 232 from the MIT-BIH arrhythmia database are
shown in Fig 2.

To additionally verify the effectiveness of our method, we
use the previous three ECG samples with our TDMG feature
extraction algorithm [7]. The TDMG algorithm operates on
a single heartbeat and extracts the temporal positions of the
important clinical parameters (wave boundaries, peak posi-
tions). For each record we select the same heartbeat (PQRST
complex) from both the original and reconstructed signal and
compare the TDMG algorithm’s output. The results are given
in terms of the sample number where we detect the respective
ECG feature and are illustrated in Table VIL It is clear that
almost all parameters, from the three records, are detected
within 5 samples. Thus it is evident from Tables VI and
VII that we have been able to conserve the essential clinical
features in pursuit of achieving a high degree of compression.

V. CONCLUSIONS

This work addresses the major challenges of the modern
remote monitoring system wherein the feature extraction and
disease classification takes place at the sensor nodes itself
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Fig. 2. MIT-BIH records 117(a), 221(b), 232(c) original signal and after reconstruction
[ Record [ Feature [ Pon | Ppeak | Poss | @RSon | Rpeak | QRSors | Ton | Tpeak | Tors |
17 original 116 137 156 163 183 211 232 288 322
reconstructed 121 138 154 163 183 213 235 289 327
291 original 66 87 102 126 168 194 218 254 284
reconstructed 75 92 108 126 168 194 217 252 282
232 original 45 63 91 101 136 161 190 231 277
reconstructed 42 59 73 99 137 163 183 234 280
TABLE VII

FEATURE EXTRACTION PERFORMANCE RESULTS ON MIT-BIH RECORDS

placed on the patient’s body thus creating a need for a low-
complexity compression-reconstruction methodology. Here we
performed a comprehensive investigation of the performance
of a compression strategy based on the Haar DWT and on EPE
selection. Due to the inherent linearity property of the Haar
function, the generalized DWT architecture can be realised
wherein the coefficients can be computed directly from the
incoming ECG signal on the fly, by using simple additions and
subtractions using ripple carry adders which in-effect reduces
the complexity and throughput time of calculating the DWT
coefficients. We decompose the signal upto 2° since we have
experimentally verified that a vast majority of ECG frequency
components is contained within these resolution scales.

Four methods of selecting the coefficients have been ex-
plored and their corresponding CR, PRD and CC values
have been used to access their performance. The compression
algorithm along with the threshold percentages have been
developed in view of an architecture implementation and can
be realised as an ASIC. With an average CR, PRD and CC of
16.27:1, 0.75 and 0.975 respectively we have been able to find
the right trade-off between compression ratio and maintaining
the fidelity of the reconstructed ECG signal. From the results,
Method 3 stands out, as it effectively balances the level of
compression (CR value) and the fidelity of the reconstructed
signal (PRD value). Although, with signals having different
sampling frequencies from PTBDB and SGHCD there is a
change in the values of the compression performance param-
eters we conclude that this method still satisfies our objective
for mobile healthcare applications. We further solidify our
argument by demonstrating that the compression process is

capable of resulting in a reconstructed signal that maintains
the same morphological patterns and clinical parameters as
the original one.
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