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Abstract: Cardiac monitoring can be performed by means of an accelerometer attached to a sub-
ject’s chest, which produces the Seismocardiography (SCG) signal. Detection of SCG heartbeats is
commonly carried out by taking advantage of a simultaneous electrocardiogram (ECG). SCG-based
long-term monitoring would certainly be less obtrusive and easier to implement without an ECG.
Few studies have addressed this issue using a variety of complex approaches. This study proposes
a novel approach to ECG-free heartbeat detection in SCG signals via template matching, based on
normalized cross-correlation as heartbeats similarity measure. The algorithm was tested on the SCG
signals acquired from 77 patients with valvular heart diseases, available from a public database. The
performance of the proposed approach was assessed in terms of sensitivity and positive predictive
value (PPV) of the heartbeat detection and accuracy of inter-beat intervals measurement. Sensitivity
and PPV of 96% and 97%, respectively, were obtained by considering templates that included both
systolic and diastolic complexes. Regression, correlation, and Bland–Altman analyses carried out
on inter-beat intervals reported slope and intercept of 0.997 and 2.8 ms (R2 > 0.999), as well as non-
significant bias and limits of agreement of ±7.8 ms. The results are comparable or superior to those
achieved by far more complex algorithms, also based on artificial intelligence. The low computational
burden of the proposed approach makes it suitable for direct implementation in wearable devices.

Keywords: seismocardiography; heartbeat detection; template matching; heart rate; mechanocardiography

1. Introduction

Continuous heart rate monitoring is fundamental in critical medical circumstances
to assess cardiac function. It is a vital task in intensive care units, surgery, post-anesthesia
surveillance, and emergency medicine [1–3]. Heart rate monitors are extensively used
for analysis of heart rate variability (HRV), which is considered a strong predictor of
the outcome in patients with high cardiovascular risk [4,5]. Indeed, people with coro-
nary artery disease, heart failure, valvular heart disease, or after a myocardial infarction,
ischemia, or a stroke need to be continuously monitored to provide them with timely
therapeutic intervention, thus preventing the deterioration of health conditions and the
occurrence of fatal arrhythmic events [1,4,6]. HRV analysis has also been recognized as a
valuable non-invasive tool for identifying cardiac autonomic dysfunction in neurological
(e.g., multiple sclerosis), renal (e.g., end-stage renal failure), or metabolic (e.g., diabetes,
obesity) diseases [6–10]. Moreover, heart rate and HRV indices can be useful: in sleep
medicine to assess sleep quality and detect sleep apnea syndrome, or neonatal distress
syndrome [1,6,8,11]; in fitness and sport science to monitor exercise training and the per-
formance of athletes [8,12,13]; or even in rehabilitation medicine to track the exercise of
chronic patients [1,8]. Furthermore, they can provide valuable information: to evaluate the
effect of drugs [8]; to monitor stress levels and obtain clear evidence of emotion disorders
(e.g., anxiety, depression, etc.) [1,14]; to promote lifestyle awareness in people and improve
their well-being [1,8]; and to enhance road safety by detecting driver fatigue [15].
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Electrocardiography (ECG) records the electrical activity produced by the heart on the
body’s surface and is currently regarded as the gold standard for heart rate monitoring
in clinical routine. Heart rate measurements rely on heartbeat detection, which is usually
accomplished by locating the R-wave of each QRS complex in ECG signals [1,16–21].
The well-known Pan and Tompkins algorithm is the most popular approach for this
purpose [1,22]. However, the ECG has some drawbacks: it is intrinsically affected by
electromagnetic interference, needs stable placement of the electrodes over time (electrode
slipping and detachment may happen) and good skin–electrode impedance (which worsens
with the drying of the electrolytic gel), involves electrical risks. In addition, it must be
performed by skilled clinical professionals and is somewhat uncomfortable. Therefore,
this technique is not well suited to continuous, long-term monitoring, especially in daily
life environments, although some portable instruments, such as the Holter device, have
been proposed as possible solutions for home monitoring (the Holter monitor generally
allows recordings of no longer than 72 h). Furthermore, the ECG does not provide any
information about the cardiac mechanical function [1,16–21].

In addition to the ECG, heart rate monitoring can also be pursued by detecting the pe-
ripheral effect of cardiac contractions through the Photoplethysmography (PPG) technique.
The PPG signal is a non-invasive recording of blood volume changes in a macrovascular bed
of the skin due to arterial pulsations. Particularly, blood volume variations are monitored
indirectly by measuring changes in the light absorption or transmission of human tissues
at characteristic wavelengths. Generally, beat-by-beat heart rate measurement via PPG in-
volves identifying the temporal locations of specific markers on the signal waveform, such
as the systolic peak, which are related to important cardiac cycle events. PPG sensors are
also integrated into wearable devices (e.g., smartwatches). However, despite the simplicity,
low-cost, and unobtrusiveness of this technique, PPG signal quality is very sensitive to
motion artifacts, which impair accurate systolic peak detection. Data corrupted by motion
artifacts are often unusable, thus jeopardizing continuous heart rate monitoring [1,23–28].

Since the second half of the 19th century, a variety of non-invasive, cardio-mechanical
monitoring tools have been proposed to record the small vibrations generated by the
mechanical activity of the beating heart and to obtain a more comprehensive evaluation of
cardiac function. Among these, Ballistocardiography (BCG) [29–34], Phonocardiography
(PCG) [35–38], and Seismocardiography (SCG) [39–46] are the subjects of current research.
On one hand, BCG records whole-body vibrations due to the blood flowing through
the vascular system by means of different instruments, such as weighing scales, systems
embedded in a bed or chair, and even wearable sensors, which are particularly appealing
for continuous monitoring applications. On the other hand, PCG captures the sonic
components of cardiac-induced mechanical vibrations of the thorax, commonly known as
heart sounds, by using modern electronic stethoscopes, while SCG measures infrasonic
precordial accelerations. Specifically, the availability of lightweight, miniaturized, low-cost
accelerometers, manufactured via micro-electromechanical systems (MEMS) technologies,
has led SCG to gain particular attention, especially for the development of wearable devices.
In recent years, novel, non-invasive cardio-mechanical monitoring techniques have been
introduced, namely Gyrocardiography (GCG) [47,48], Kinocardiography (KCG) [49,50], and
Forcecardiography (FCG) [51–57]. GCG records the three-dimensional angular velocities
of the precordium via gyroscopes, which are often integrated into inertial measurement
units (IMUs) that also contain accelerometers. For this reason, the combined use of GCG
and SCG has also been investigated [58]. KCG, instead, results from the simultaneous
acquisition of BCG and SCG signals. Finally, FCG measures the local, cardiac-induced
mechanical vibrations of the chest wall via piezoresistive or piezoelectric force sensors.
Particularly, FCG sensors are characterized by a very broad bandwidth, which allows them
to monitor respiration, ventricular volume variations, an SCG-like component, and heart
sounds, all simultaneously from a single contact point on the chest.

Measurement of the instantaneous heart rate by cardio-mechanical monitoring tech-
niques is based on beat-by-beat localization of important cardiac cycle events (e.g., the
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heart valves opening and closing, blood ejection, isovolumic contraction, cardiac filling,
etc.), which are marked by specific peaks and valleys. This allows for the estimation not
only of the inter-beat intervals (or the instantaneous heart rate), but also further cardiac
time intervals of clinical relevance, such as the pre-ejection period, the left ventricular
ejection time, and the total systolic time [44,45,54,58,59]. Heartbeat localization incardio-
mechanical signals is generally performed by assuming the ECG as a temporal reference,
particularly the R-wave in each cardiac cycle. However, research is currently proceeding
towards the development of automated, standalone (i.e., ECG-independent) methods, most
of which rely on SCG signals. SCG-based heartbeat detectors exploit different approaches,
such as signal envelope extraction, often combined with a thresholding operation [60–69];
continuous or discrete wavelet transform [70,71]; variational mode decomposition [72];
autocorrelated differential algorithm [58]; matched filtering [73]; probabilistic methods,
e.g., the hidden Markov model [74]; machine learning [75]; and deep learning [76,77].
Of these, the heartbeat detection methods reported in [58,63] were performed on SCG
acquisitions combined with simultaneous GCG recordings. It is important to note that
the heartbeat detectors mentioned above, especially those based on artificial intelligence
algorithms, have a rather high computational complexity. It is also worth noting that
they were tested exclusively on signals from healthy subjects, except for [63], in which
12 patients with coronary artery disease were also considered. This aspect is important
because cardiac diseases cause dysfunctions in the mechanical behavior of the beating
heart, which result in morphological changes and/or instabilities in the cardio-mechanical
signals that may impair the performance of heartbeat detection algorithms. Indeed, in [78],
the authors analyzed the waveforms of SCG signals acquired from 90 pathological subjects
with myocardial infarction, heart failure, or a transplanted heart, and found that in 38% of
subjects the SCG waveform and fiducial points were altered with respect to the traditional
references reported in the literature for healthy subjects.

Recently, some authors have presented a template matching approach for ECG-free
heartbeat detection in the FCG signal, along with preliminary results on a small cohort
of healthy subjects [79]. In particular, it has been applied to the high-frequency compo-
nent of the FCG signal, which has been shown to share a very high similarity with the
SCG signal [51,52,54].

This study was aimed at verifying the feasibility of this approach for SCG signals
and achieving an extensive estimation of its performance on a much larger cohort of
pathological subjects. Template matching based on normalized cross-correlation is a well-
known technique for event detection, and its application to SCG signals could provide
a simple, yet effective and robust method for ECG-free heartbeat detection. Indeed, the
template matching approach has an intrinsic ability to deal with the inter-subject variability
in SCG morphology, because it does not rely on any a priori assumption about the signal
shape or specific fiducial points to recognize the signal chunks that match the selected
template. Methods based on template matching have previously been applied to BCG [80]
and PCG [81] signals, but they have been assessed only on a very small cohort of healthy
subjects. The proposed template matching approach, instead, was tested on a publicly
available database of SCG signals acquired from patients with valvular heart diseases
(VHDs). To the best of our knowledge, no heartbeat detection method reported in the
literature has been proven on such a large cohort of pathological subjects. The beat-by-beat
performance of the proposed algorithm was assessed by comparing the inter-beat interval
estimates obtained from the SCG signals with those obtained from simultaneous ECG
recordings. The results of the statistical analyses carried out to compare the SCG- and
ECG-based measures demonstrate that the proposed approach can provide very accurate
measurements of inter-beat intervals, even on a large cohort of patients affected by one or
more VHDs.
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2. Materials and Methods
2.1. Dataset

In this study, SCG signals from a publicly available database [82] were analyzed.
The database includes SCG recordings from 100 patients (59 males and 41 females, age
68 ± 14 years) with VHDs. The data were collected from two medical centers: 70% in
China (patient IDs #CP-01 to #CP-70) and 30% in the United States (patient IDs #UP-01 to
#UP-30). All subjects were diagnosed with one or more VHD conditions, namely moderate
or greater aortic valve stenosis, aortic valve regurgitation, mitral valve stenosis, mitral
valve regurgitation, and tricuspid valve regurgitation. The database also contains ECG
signals, which were assumed as the ground truth for heartbeat detection.

Simultaneous SCG and ECG recordings were obtained from a three-dimensional
MEMS accelerometer and a biopotential circuit, respectively. Both sensors were embedded
in the Shimmer 3 ECG module (Shimmer Sensing, Dublin, Ireland). The device was
firmly placed onto the thorax of the subjects, who were asked to lay in a supine position.
Four ECG electrodes were attached to the skin of the subjects and connected to the device
by cables. The signals from patients #CP-01 to #CP-70 and #UP-01 to #UP-21 were acquired
at 256 Hz sampling frequency, while those from patients #UP-22 to #UP-30 were sampled
at 512 Hz. All the measurements were carried out during quiet breathing.

The SCG signals from the described database were first explored by visual inspection,
and only their dorso-ventral components, corresponding to the z-axis acceleration signals,
were taken into account. Particularly, 22 SCG recordings characterized by poor signal
quality were excluded from the analysis, as they did not allow a clear identification of the
heartbeat waveform. A further SCG signal was also excluded since no ECG recordings
had been simultaneously acquired. Therefore, a total of 77 SCG and ECG signals were
included in this study. Table 1 reports the patient IDs of discarded SCG signals, along with
the reasons for their exclusion.

Table 1. Patient IDs of discarded SCG signals, along with the reasons for exclusion.

Patient ID # Reason for Exclusion

CP-03, CP-06, CP-17, CP-18, CP-24, CP-25,
CP-29, CP-31, CP-35, CP-46, CP-50, CP-51,
CP-54, CP-62, CP-67, UP-02, UP-03, UP-05,

UP-19, UP-22, UP-25, UP-26

Poor SCG signal quality

UP-28 Simultaneous ECG signal not acquired

2.2. Signals Pre-Processing

All the processing operations described in this study were carried out in MATLAB®

R2018b (MathWorks, Inc., Natick, MA, USA). To improve the temporal resolution, the
SCG and ECG signals were first oversampled at 1 kHz via linear interpolation by using
the MATLAB® function “interp1”. Afterwards, the high-frequency component of the SCG
signal was extracted via a 4th order zero-lag Butterworth band-pass filter with cut-off
frequencies of 7 and 30 Hz. This component has been shown to feature short, oscillatory
patterns corresponding to heartbeats [51]. The ECG lead II signal, instead, was first
band-pass filtered in the 0.5–40 Hz frequency band via a 4th order zero-lag Butterworth
filter. Then, a notch filter was used to remove the 50 Hz powerline interference and its
higher harmonics. Finally, the R-peaks were located by means of the well-known Pan and
Thompkins algorithm [22], implemented in the “BioSigKit” MATLAB® toolbox [83]. An
example of the SCG and ECG signals obtained by the pre-processing operations is depicted
in Figure 1.
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Figure 1. An excerpt ofthe pre-processed SCG (black line) and ECG (blue line) signals from subject
#UP-21. The blue points mark the locations of the R-peaks.

2.3. Template Matching

After pre-processing, a template matching technique, which had already been used in
an FCG study [79], was applied to the SCG signals for heartbeat detection. This technique
consists of three steps: (1) selection of a heartbeat template in the SCG signal; (2) computa-
tion of the normalized cross-correlation (NCC) function between the selected template and
the SCG signal chunks; and (3) localization of the NCC peaks.

2.3.1. Template Selection

The template was defined by selecting a single heartbeat in the SCG signal, which
was assumed as a morphological reference. For most of the signals, the typical template
waveform included both the systolic and diastolic complexes in the cardiac cycle. This was
referred to as “case 1”. Figure 2a shows an example of a template comprising both the
systolic and diastolic complexes. However, in a number of SCG signals a clear identification
of the diastolic complexes was not possible. In this case, referred to as “case 2”, only the
systolic complex of the selected heartbeat was eventually included in the template that was
employed for heartbeat detection. An example of a template consisting only of the systolic
complex is depicted in Figure 2b.

In detail, 50 SCG recordings fell under “case 1”, while the remaining 27 recordings fell
under “case 2”. Table 2 reports the template selection criteria adopted in this study, while
also showing the template waveforms recommended for both cases.
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Figure 2. Some examples of the ECG signals (blue lines), SCG signals (black lines), and the selected
templates (red lines) from: (a) subject #UP-21; (b) subject #UP-11. The template in panel (a) comprises
both the systolic and diastolic complexes in the cardiac cycle, while the one in panel (b) includes only
the systolic complex.
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Table 2. Template selection criteria. The templates depicted in the table correspond to those high-
lighted in red in Figure 2.

Case Description Typical Template Waveform

1

The template starts from 2–3 oscillations before the
systolic peak (highest local maximum), where the

amplitude of the oscillations is significantly reduced
with respect to the systolic peak amplitude; the
template ends just after the last oscillation of the

diastolic complex.
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2.3.2. Normalized Cross-Correlation and Peaks Localization

After the template had been selected, the NCC function between the SCG signal and
the template was computed to evaluate their morphological similarity. The NCC function
corresponds to the scalar product between two vectors in the Euclidean space divided by
the product of their norms, and is defined by the following mathematical expression:

NCC[k] =
∑n
(
s[n]− µsk

)
·(t[n − k]− µt)√

∑n
(
s[n]− µsk

)2·∑n(t[n]− µt)
2

, (1)

where s is the SCG signal, t is the selected template, µt is the mean of the template, and
µsk is the mean of the SCG signal over the shifted template interval. The NCC function
has local maxima where the SCG signal reaches the highest similarity with the template.
As the template captures the heartbeat pattern in the SCG signal, the highest NCC values
occur periodically with the heartbeats. Therefore, the temporal locations of the NCC peaks,
which correspond to the heartbeats, were identified via the MATLAB® function “findpeaks”.
Specifically, a minimum peak prominence of 0.5 was set for the SCG signals characterized
by templates of case 1, while a value in the 0.3–0.7 range was considered for the SCG signals
with templates of case 2. These values were selected empirically to fit almost all cases, with
the aim to reduce as much as possible the need for parameter optimization by the user.
Indeed, the same minimum peak prominence of 0.5 chosen for template 1 was used for
50 out of the 77 subjects. In addition, a minimum peak distance of 500 ms was fixed for
all signals. Figure 3 shows some examples of the NCC peak detection. In particular, the
NCC signal in panel (a) was obtained by considering a case 1 template, which comprised
both the systolic and diastolic complexes in the selected cardiac cycle. The NCC signal in
panel (b), instead, was obtained by selecting a case 2 template, which consisted only of the
systolic complex.
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Figure 2b, which consisted only of the systolic complex of the selected heartbeat.

2.3.3. Inter-Beat Intervals Estimation

Once the NCC peaks had been located, the false positives (FP), false negatives (FN),
and detection errors (DE) were identified with respect to the actual heartbeats, provided
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by the reference ECG signals. The false positives were defined as additional NCC peaks
within a single cardiac cycle that were wrongly identified as actual heartbeats (see Figure 4a).
The false negatives, instead, were considered as actual heartbeats that were missed by the
template matching technique (see Figure 4b). The detection errors were referred to as single
NCC peaks occurring in a cardiac cycle, but in a temporal location that was not likely to
correspond to a matched heartbeat template (see Figure 4c). For this reason, the detection
error represented both a false positive, because it marked the presence of a false heartbeat,
and a false negative, because no other peaks were found in the same cardiac cycle that marked
the presence of the actual heartbeat. Therefore, the number of detection errors contributed
both to the numbers of false negatives and false positives. It is noteworthy to underline that
all the NCC peaks corresponding to the ECG heartbeats corrupted by motion artifacts were
discarded before FP, FN, and DE recognition. Finally, the inter-beat interval estimates were
obtained from the ECG signals as the differences between consecutive R-peaks, and from the
SCG signals as the differences between consecutive NCC peaks (see Figure 5).
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2.4. Statistical Analyses

To evaluate the performance of the heartbeat detection using the proposed approach,
the sensitivity and positive predictive value (PPV) were computed according to the
following equations:

Sensitivity =
TP

TP + FN + DE
·100, (2)
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PPV =
TP

TP + FP + DE
·100, (3)

where TP is the number of true positives, FN is the number of false negatives, FP is the
number of false positives, and DE is the number of detection errors. The sensitivity quanti-
fies the ability to correctly identify actual heartbeats in the NCC signals, by considering the
ECG as the reference, while the PPV quantifies the ability to identify the actual heartbeats
among all the detected NCC peaks. Specifically, sensitivity is defined as the percentage
of NCC peaks corresponding to actual heartbeats that were correctly identified over the
sum of the true and missed NCC peaks (it can also be expressed as the number of TP over
the number of R-peaks, which represent reference heartbeats). On the other hand, PPV
is defined as the percentage of NCC peaks corresponding to actual heartbeats that were
correctly identified over the number of all the detected NCC peaks.

Furthermore, the inter-beat interval measurements from the NCC signals were com-
pared with those estimated from the reference ECG signals by means of regression, correla-
tion, and Bland–Altman analyses [84,85]. The statistical analyses were carried out via the
MATLAB® function “bland-altman-and-correlation-plot” [86]. The inter-beat intervals related
to the FN and DE were excluded from the analyses.

3. Results
3.1. NCC Signals with Case 1 Templates

Table 3 outlines the number of R-peaks and NCC peaks detected per subject in the
ECG and NCC signals with case 1 templates, respectively. The table also reports the number
of FPs, FNs, and DEs identified in the NCC signals and the number of inter-beat intervals
considered in the statistical analyses. In detail, a total of 19496 heartbeats were identified
in the ECG signals, while 19,318 NCC peaks were detected in the NCC signals, of which
18,741 were TPs, 156 FPs, 334 FNs, and 421 DEs. Therefore, the proposed heartbeat de-
tection approach achieved a sensitivity of 96% and a PPV of 97%. Furthermore, a total of
18,085 inter-beat intervals were compared via the regression, correlation, and Bland–Altman
analyses. A slope of 0.997 and an intercept of 2.80 ms, with a R2 value greater than 0.999
(p-value < 0.0001), were obtained from the regression and correlation analyses
(see Figure 6a). Moreover, the Bland–Altman analysis reported a non-significant bias
(p-value = 0.36), with limits of agreement (LoA) of ±7.8 ms (see Figure 6b). The results of
the statistical analyses are also summarized in Table 5.

3.2. NCC Signals with Case 2 Templates

Table 4 illustrates the number of R-peaks and NCC peaks detected per subject in
the ECG and NCC signals with case 2 templates, respectively. The table also reports the
number of FPs, FNs, and DEs in the NCC signals, as compared to the reference ECG, along
with the number of compared inter-beat intervals. In detail, a total of 13,769 heartbeats
were identified in the ECG signals, while 13,241 NCC peaks, of which 10,842 TPs, 524 FPs,
1049 FNs, and 1875 DEs, were detected in the NCC signals. Hence, the NCC signals
scored a sensitivity of 79% and a PPV of 82%. Moreover, the statistical analyses were
performed on a total of 8955 inter-beat intervals. The regression and correlation analyses
(see Figure 7a) reported a slope of 0.990 and an intercept of 7.62 ms, with a R2 value greater
than 0.99 (p-value < 0.0001). Furthermore, non-significant bias (p-value = 0.15) and LoA of
±19 ms resulted from the Bland–Altman analysis (see Figure 7b). The results of the
statistical analyses are also outlined in Table 5.
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Table 3. The number of R-peaks and NCC peaks detected per subject in the ECG and NCC signals by
considering case 1 templates, together with the FPs, FNs, and DEs identified in the NCC signals and
the number of compared inter-beat intervals.

Patient
ID # R-Peaks NCC Peaks FP FN DE Compared Inter-Beat Intervals

CP-01 448 448 0 0 0 447
CP-05 509 507 3 5 8 487
CP-08 544 538 0 6 18 502
CP-12 423 433 14 4 13 388
CP-15 630 623 0 7 3 610
CP-20 391 391 1 1 0 388
CP-21 247 247 2 2 1 241
CP-27 130 130 0 0 0 129
CP-28 238 237 0 1 5 225
CP-30 523 510 0 13 2 498
CP-33 449 456 12 5 12 417
CP-34 462 460 4 6 4 444
CP-36 386 377 8 17 101 166
CP-39 518 518 0 0 8 504
CP-41 349 344 1 6 2 332
CP-44 321 320 2 3 0 314
CP-45 357 343 0 14 17 303
CP-47 537 522 6 21 11 476
CP-49 451 457 11 5 47 353
CP-53 562 561 0 1 0 559
CP-57 507 506 0 1 5 495
CP-58 525 524 0 1 1 520
CP-59 405 406 1 0 0 404
CP-60 512 503 0 9 1 493
CP-61 397 403 6 0 1 395
CP-63 610 608 0 2 0 605
CP-64 382 391 9 0 1 379
CP-65 369 366 0 3 1 360
CP-66 468 468 1 1 0 465
CP-68 327 330 23 20 32 231
CP-69 587 585 0 2 0 582
CP-70 422 412 3 13 33 338
UP-04 258 251 5 12 2 233
UP-06 458 400 1 59 28 312
UP-07 376 373 1 4 2 365
UP-08 257 256 0 1 1 252
UP-09 286 278 0 8 0 273
UP-10 165 157 4 12 2 136
UP-13 106 93 0 13 1 84
UP-14 340 338 1 3 4 325
UP-15 214 189 0 25 0 168
UP-16 221 214 1 8 18 172
UP-18 350 349 0 1 1 345
UP-20 617 615 0 2 2 608
UP-21 305 305 0 0 2 300
UP-23 565 567 2 0 0 564
UP-24 349 340 2 11 9 311
UP-27 269 283 16 2 21 224
UP-29 146 142 0 4 1 136
UP-30 228 244 16 0 0 227
Total 19,496 19,318 156 334 421 18,085
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Table 4. The number of R-peaks and NCC peaks detected per subject in the ECG and NCC signals by
considering case 2 templates, together with FPs, FNs, and DEs identified in the NCC signals and the
number of compared inter-beat intervals.

Patient
ID # R-Peaks NCC Peaks FP FN DE

Compared
Inter-Beat
Intervals

CP-02 651 643 18 26 19 571
CP-04 661 654 1 8 46 556
CP-07 451 453 3 1 5 441
CP-09 364 342 15 37 105 139
CP-10 506 505 63 64 113 213
CP-11 656 662 26 20 56 525
CP-13 837 829 0 8 5 814
CP-14 472 477 36 31 163 157
CP-16 355 360 15 10 13 312
CP-19 484 493 18 9 30 414
CP-22 610 595 16 31 51 466
CP-23 235 225 0 10 28 172
CP-26 389 381 5 13 5 353
CP-32 527 486 38 79 95 225
CP-37 342 335 55 62 90 104
CP-38 406 420 18 4 46 309
CP-40 509 505 26 30 233 114
CP-42 346 340 27 33 41 220
CP-43 460 478 37 19 95 266
CP-48 637 626 16 27 50 500
CP-52 728 532 0 196 38 298
CP-55 793 602 15 206 248 127
CP-56 742 693 15 61 145 409
UP-01 239 241 20 18 31 154
UP-11 417 414 17 20 54 305
UP-12 339 347 23 15 64 208
UP-17 613 603 1 11 6 583
Total 13,769 13,241 524 1049 1875 8955

Table 5. Results of the statistical analyses. Non-significant bias is indicated as “NS”.

Template Case
Compared
Inter-Beat
Intervals

R2 Slope Intercept
(ms) Bias p-Value LoA

(ms) Sensitivity (%) PPV (%)

1 18,085 >0.999 0.997 2.80 NS 0.36 ±7.8 96 97
2 8955 >0.99 0.990 7.62 NS 0.15 ±19 79 82
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4. Discussion

This study described a novel algorithm based on template matching for the detection
of heartbeats in SCG signals without the support of concurrent ECG signals. The high
inter-subject and intra-subject variability and the noisy nature of SCG signals make the task
of ECG-free heartbeat detection rather troublesome. Indeed, the use of ensemble averaging
is very common in SCG studies to unveil the underlying waveform corresponding to
heartbeats. Unlike previous studies that proposed rather complex algorithms, this study
focused on searching for matches between the whole SCG signal and a single heartbeat
template selected from the signal itself, by taking advantage of the normalized cross-
correlation as a similarity measure with very high robustness to noise.

Two classes of template were used, namely “case 1”, which included both the systolic
and diastolic complexes, and “case 2”, which included the systolic complex only. The
reason for using the “case 2” template lies in the absence of clear diastolic complexes in the
SCG recordings of some patients, which could not be distinguished from the physiological
background noise or exhibited significant morphological instabilities that could seriously
impair the performance of template matching. According to the results of the statistical
analyses, the “case 1” template provided far better performance as compared to the “case 2”
template, with a sensitivity of 96% vs. 79%, a PPV of 97% vs. 82%, and limits of agreement of
±7.8 ms vs. ±19 ms, respectively. Indeed, the shapes of individual complexes, both systolic
and diastolic, are not very peculiar, so the use of a template that includes only a single
complex could lead to detection errors. On the contrary, using a template that includes
both systolic and diastolic complexes, which rather represent a pattern that is peculiar to a
single heartbeat, is in principle less prone to misdetections, and the experimental results of
this study support this hypothesis.

Considering that the SCG signals analyzed in this study had been acquired from patho-
logical subjects affected by one or more valvular heart diseases, ranging from moderate
to severe stages, the results achieved with both the “case 1” and “case 2” templates are
surprisingly good, all the more so if the low computational burden of the proposed tem-
plate matching approach is taken into account. Indeed, the proposed approach essentially
requires two simple steps, namely NCC computation and peak detection, which make it
also reasonably suitable for real-time implementations without significant computational
resource requirements. In light of the promising results obtained at the cost of few pro-
cessing operations, it seems that the use of artificial intelligence approaches for heartbeat
detection in SCG signals, which is undoubtedly an emerging trend in modern research, is
not worth its price in terms of the computational burden. It is also important to underline
that none of the methods described in the literature have been tested on such a large cohort
of pathological subjects as the one considered in this study, therefore their performance has
yet to be confirmed on actual patients with cardiac diseases, who certainly represent the
actual target of cardiac monitoring.

The main limitation to the proposed approach is the need for the manual selection of
the heartbeat template, which makes the overall method operator dependent. However,
this study provides qualitative guidelines for template selection, so as to foster the repro-
ducibility of the results. Indeed, a fully automated template selection algorithm would
improve the feasibility and reliability of the proposed template matching approach. This
would also promote its full implementation in wearable devices for SCG-based cardiac
monitoring, as opposed to methods based on artificial intelligence that must rely on cloud
computing services and telecommunication infrastructures. While the development of an
automated template selection algorithm was out of the scope of this study, it could certainly
be the subject of future studies on this topic.

Another limitation to this study is that the SCG signals were all recorded on motionless
subjects in supine positions from a single specific point on the chest. It is known that SCG
signal morphology depends on body posture and sensor location, and that motion artifacts
can seriously hinder signal quality. Therefore, it is very important to assess the performance
of the proposed template matching approach in these conditions.
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An interesting aspect to be investigated is the suitability of the proposed approach for
heart rate variability (HRV) analyses based on SCG. Indeed, Sieciński et al. have already
shown in [66] that HRV indices estimated from SCG signals are highly correlated with
those extracted from ECG, even in patients with VHDs from the same database considered
in this study. However, they determined the heartbeat locations via an algorithm that
took advantage of the availability of a simultaneously recorded ECG signal. Therefore, it
is important to confirm that the measurement errors achieved by the template matching
method proposed in the present study are low enough to ensure the reliable estimation of
HRV indices.

Finally, the performance of the proposed approach should be assessed also on a study
population that includes patients affected by different cardiac diseases, such as branch
blocks, myocardial infarction, cardiac dyssynchrony, and heart failure, because the degree
to which such pathologies may undermine the effectiveness of the proposed method is
currently unknown and cannot be predicted.
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66. Sieciński, S.; Tkacz, E.J.; Kostka, P.S. Comparison of HRV indices obtained from ECG and SCG signals from CEBS database.
Biomed. Eng. Online 2019, 18, 69. [CrossRef] [PubMed]

67. Erfianto, B.; Rizal, A.; Suryani, V. Comparison of Seismocardiography Based Heart Rate Measurement Method. J. Southwest.
Jiaotong Univ. 2020, 55, 1–15. [CrossRef]

68. Xia, Z.; Shandhi, M.M.H.; Li, Y.; Inan, O.T.; Zhang, Y. The Delineation of Fiducial Points for Non-Contact Radar Seismocardiogram
Signals without Concurrent ECG. IEEE J. Biomed. Health Inform. 2021, 25, 1031–1040. [CrossRef]

69. Mora, N.; Cocconcelli, F.; Matrella, G.; Ciampolini, P. Fully Automated Annotation of Seismocardiogram for Noninvasive Vital
Sign Measurements. IEEE Trans. Instrum. Meas. 2020, 69, 1241–1250. [CrossRef]

70. García-González, M.A.; Argelagós-Palau, A.; Fernández-Chimeno, M.; Ramos-Castro, J. A comparison of heartbeat detectors
for the seismocardiogram. In Proceedings of the Computing in Cardiology 2013, Zaragoza, Spain, 22–25 September 2013;
pp. 461–464.

71. Ferdinando, H.; Seppälä, E.; Myllylä, T. Discrete Wavelet Transforms-Based Analysis of Accelerometer Signals for Continuous
Human Cardiac Monitoring. Appl. Sci. 2021, 11, 12072. [CrossRef]

https://doi.org/10.1038/s41598-017-07248-y
https://doi.org/10.3390/s20226675
https://doi.org/10.1038/s41598-019-46823-3
https://doi.org/10.3390/s21030815
https://doi.org/10.3390/s20143885
https://doi.org/10.3389/fphys.2021.725716
https://www.ncbi.nlm.nih.gov/pubmed/34867438
https://doi.org/10.3390/s21123996
https://doi.org/10.3390/bioengineering9030089
https://www.ncbi.nlm.nih.gov/pubmed/35324778
https://doi.org/10.3390/bioengineering9040167
https://doi.org/10.3390/bioengineering9090444
https://doi.org/10.3390/s22239339
https://www.ncbi.nlm.nih.gov/pubmed/36502041
https://doi.org/10.3390/s19163472
https://www.ncbi.nlm.nih.gov/pubmed/31398948
https://doi.org/10.1088/1361-6579/ab87b2
https://www.ncbi.nlm.nih.gov/pubmed/32268315
https://doi.org/10.1088/0967-3334/37/9/1588
https://www.ncbi.nlm.nih.gov/pubmed/27510446
https://doi.org/10.1088/0967-3334/37/11/1885
https://www.ncbi.nlm.nih.gov/pubmed/27681033
https://doi.org/10.1007/978-3-319-70063-2_15
https://doi.org/10.1109/JSEN.2018.2874706
https://doi.org/10.1109/EMBC.2018.8513297
https://doi.org/10.1109/JBHI.2018.2829608
https://www.ncbi.nlm.nih.gov/pubmed/29993702
https://doi.org/10.1186/s12938-019-0687-5
https://www.ncbi.nlm.nih.gov/pubmed/31153383
https://doi.org/10.35741/issn.0258-2724.55.6.12
https://doi.org/10.1109/JBHI.2020.3009997
https://doi.org/10.1109/TIM.2019.2908511
https://doi.org/10.3390/app112412072


Sensors 2023, 23, 4684 20 of 20

72. Choudhary, T.; Das, M.; Sharma, L.N.; Bhuyan, M.K. Analyzing seismocardiographic approach for heart rate variability
measurement. Biomed. Signal. Process. Control. 2021, 68, 102793. [CrossRef]

73. Scarpetta, M.; Spadavecchia, M.; Andria, G.; Ragolia, M.A.; Giaquinto, N. Accurate simultaneous measurement of heartbeat and
respiratory intervals using a smartphone. J. Instrum. 2022, 17, P07020. [CrossRef]

74. Wahlstrom, J.; Skog, I.; Handel, P.; Khosrow-Khavar, F.; Tavakolian, K.; Stein, P.K.; Nehorai, A. A Hidden Markov Model for
Seismocardiography. IEEE Trans. Biomed. Eng. 2017, 64, 2361–2372. [CrossRef] [PubMed]

75. Thakkar, H.K.; Sahoo, P.K. Towards Automatic and Fast Annotation of Seismocardiogram Signals Using Machine Learning. IEEE
Sens. J. 2020, 20, 2578–2589. [CrossRef]

76. Chen, Y.; Xu, W.; Zhu, W.; Ma, G.; Chen, X.; Wang, L. Beat-to-beat heart rate detection based on seismocardiogram using
BiLSTM network. In Proceedings of the IEEE 20th International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), Shenyang, China, 20–22 October 2021; pp. 1503–1507. [CrossRef]
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