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As biometric recognition becomes increasingly popular, the fear of circumvention,

obfuscation and replay attacks is a rising concern. Traditional biometric modalities such

as the face, the fingerprint or the iris are vulnerable to such attacks, which defeats

the purpose of biometric recognition, namely to employ physiological characteristics for

secure identity recognition.

This thesis advocates the use the electrocardiogram (ECG) signal for human identity

recognition. The ECG is a vital signal of the human body, and as such, it naturally pro-

vides liveness detection, robustness to attacks, universality and permanence. In addition,

ECG inherently satisfies uniqueness requirements, because the morphology of the signal

is highly dependent on the particular anatomical and geometrical characteristics of the

myocardium in the heart.

However, the ECG is a continuous signal, and this presents a great challenge to

biometric recognition. With this modality, instantaneous variability is expected even

within recordings of the same individual due to a variety of factors, including recording

noise, or physical and psychological activity. While the noise and heart rate variations

due to physical exercise can be addressed with appropriate feature extraction, the effects

of emotional activity on the ECG signal are more obscure.

This thesis deals with this problem from an affective computing point of view. First,
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the psychological conditions that affect the ECG and endanger biometric accuracy are

identified. Experimental setups that are targeted to provoke active and passive arousal

as well as positive and negative valence are presented. The empirical mode decomposi-

tion (EMD) is used as the basis for the detection of emotional patterns, after adapting

the algorithm to the particular needs of the ECG signal. Instantaneous frequency and

oscillation features are used for state classification in various clustering setups. The re-

sult of this analysis is the designation of psychological states which affect the ECG signal

to an extent that biometric matching may not be feasible. An updating methodology

is proposed to address this problem, wherein the signal is monitored for instantaneous

changes that require the design of a new template.

Furthermore, this thesis presents the enhanced Autocorrelation- Linear Discriminant

Analysis (AC/LDA) algorithm for feature extraction, which incorporates a signal quality

assessment module based on the periodicity transform. Three deployment scenarios are

considered namely a) small-scale recognition systems, b) large-scale recognition systems

and c) recognition in distributed systems. The enhanced AC/LDA algorithm is adapted

to each setting, and the advantages and disadvantages of each scenario are discussed.

Overall, this thesis attempts to provide the necessary algorithmic and practical frame-

work for the real-life deployment of the ECG signal in biometric recognition.
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Chapter 1

Introduction

1.1 Introduction to Biometric Recognition

Automatic and accurate identity validation is becoming increasingly critical in several

aspects of our every day lives, such as in financial transactions, access control, travel-

ing, healthcare and many others. Traditional strategies for automatic identity recogni-

tion include items such as PIN numbers, tokens, passwords and ID cards. Despite the

wide deployment of such tactics, the means for authentication is either entity-based or

knowledge-based which raises serious concerns with regard to the risk of identity theft.

According to the latest US Federal Trade Commission report [6], in 2009 identity

theft was the number one complaint category (a total of 721,418 cases of consumer

complaints). Identity theft can take different forms - credit card fraud (17%), falsification

of government documents (16%), utilities fraud (15%), employment fraud (13%) and

others. Among these cases, true-identity theft constitutes only a small portion of the

complaints, while ID falsification appears to be the greatest threat. Unfortunately, the

technology for forgery advances without analogous improvements on the security side.

Biometric recognition was introduced as a more secure means of identity establish-

ment. Biometric modalities are characteristics of the human body that are unique for

1
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every individual and that can be used to establish his/her identity in a population. These

characteristics can be either physiological or behavioral. For instance, the face, the iris

and the fingerprints are physiological biometric modalities. Keystroke dynamics, the gait

and the voice are examples of behavioral biometric modalities. The fact that biometric

modalities are directly linked with the users presents an extraordinary opportunity to

bridge the security gaps caused by traditional recognition strategies. Biometric modali-

ties are difficult to steal or counterfeit when compared to PIN numbers or passwords. In

addition, the convenience of not having to carry a piece of ID or remember a password

makes biometric systems more accessible and easy to use.

Each biometric modality has unique characteristics. For instance, face pictures may

be acquired from distance which makes them suitable for surveillance. On the other hand,

fingerprints need direct contact with the sensing device. Every biometric feature has its

own strengths and weaknesses and deployment choices are based on the characteristics

of the envisioned application environment.

There is a major drawback with biometric recognition - as opposed to static PIN

numbers or passwords, biometric recognition may present false rejection since usually

no two readings of the same biometric modality are identical. Anatomical, psycholog-

ical or even environmental factors affect the appearance of the biometric modality at

any particular instance. For instance, faces may be presented to the recognizers under

various expressions, different lighting settings or with occlusion (glasses, hats etc). This

may introduce significant variability (commonly referred to as intra-subject or intra-class

variability), and the challenge is to design algorithms that are robust to it.

Provided intra-subject variability can be addressed with appropriate feature extrac-

tion, another important consideration is the robustness to circumvention and replay

attacks. Circumvention is a form of biometric forgery - for example, falsified fingerprints

that are reproduced from an original fingerprint. A replay attack is the presentation

to the system of the original biometric feature from an illegitimate subject, for example
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pre-recorded voice playbacks in speaker recognition systems. Biometric obfuscation is an-

other prominent risk with this technology. There are cases where biometric features are

intentionally removed to avoid establishment of the true identity (for example asylum-

seekers in Europe [7] removed their fingerprints to avoid identification). With the wide

deployment of biometrics, these attacks are becoming frequent and concerns are being

raised on the security levels that this technology can offer.

Concentrated efforts have been made for the development the next generation of bio-

metric characteristics that are inherently robust to the above mentioned attacks. Charac-

teristics that are internal to the human body have been investigated such as vein patterns,

the odour and cognitive biometrics. The medical biometrics constitutes another category

of new biometric modalities that encompasses signals which are typically used in clini-

cal diagnostics. Some examples of medical biometric signals are the electrocardiogram

(ECG), phonocardiogram (PPG), electroencephalogram (EEG), blood volume pressure

(BVP) and electromyogram (EMG).

Medical biometrics have been actively investigated only within the last decade. Al-

though the biometric property of these signals had been observed before, the complicated

signal acquisition process and the waiting times were restrictive for application in access

control. However, with the development of dry recoding sensors that are easy to attach

even by non-trained personnel, the medical biometrics field flourished. The rapid ad-

vancement over the last decade was supported by the fact that signal-processing tools

had already been developed for diagnostic purposes.

The main advantage of medical biometrics is the robustness to circumvention, replay

and obfuscation attacks. If established as biometrics, then the respective systems are

empowered with an inherent shield to such threats. Another advantage of medical bio-

metrics is the possibility of utilizing them for continuous authentication, since they can

provide a fresh biometric reading every couple of seconds. In addition, medical biometrics

are one dimensional physiological signals, which ensures low computational effort.
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Subject  1 Subject  2 Subject  3 Subject  4

Subject  5 Subject  6 Subject  7 Subject  8

Figure 1.1: Heart Beats of the same individual recorded a few years apart. Heart beats

have been drawn from the PTB diagnostic database [4]

In this work, we study the ECG signal. The concepts presented herein, however, may

be extended to all medical biometric modalities.

1.2 ECG Biometrics: Motivation and Challenges

The ECG signal describes the variation of electrical activity of the heart over time. It is

recorded non-invasively with electrodes attached at the surface of the body. Traditionally,

physicians use the ECG to gain insight on heart conditions, while usually complementary

tests are required to finalize a diagnosis. However, from a biometrics perspective, it has

been demonstrated that the ECG has sufficient detail for identification.

Among the desirable properties of the ECG biometric modality are universality, per-

manence, uniqueness, robustness to attacks, liveness detection, continuous authentication

and data minimization. More precisely,

1. Universality refers to the ability of collecting the biometric sample from the general

population. Since the ECG is a vital signal, this property is satisfied naturally.

2. Permanence refers to the ability of performing biometric matches against templates
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that have been designed earlier in time. This essentially requires that the signal

is stable over time. Figure 1.1 shows an example of signal stability from the PTB

database [4], which offers signals for the same individual collected a few years apart.

As will be discussed later, the ECG is affected by both physical and psychological

activity. Even though the specific local characteristics of the pulses may change,

the overall diacritical waves and morphologies are still observable.

3. Uniqueness is guaranteed in the ECG signal because of its physiological origin.

While ECG signals of different individuals conform to approximately the same pat-

tern, there is large inter-individual variability due to the various electrophysiological

parameters that control the generation of this waveform.

4. Robustness to attacks. The particular appearance of the ECG waveform is the

outcome of several sympathetic and parasympathetic factors of the human body.

Controlling the waveform or attempting to mimic somebody else’s ECG signal

is extremely difficult, if not impossible. To the best of our knowledge, there is

currently no means of falsifying an ECG waveform and presenting it to a biometric

recognition system. Obfuscation is also addressed naturally.

5. Liveness detection. ECG offers natural liveness detection, being only present in a

living subject. With this modality the recognizer can trivially ensure sensor live-

ness. Other biometric modalities, such the iris or the fingerprint require additional

processing to establish the liveness of the reading.

6. Continuous authentication. As opposed to static iris or fingerprint images, the

ECG is a dynamic biometric modality that evolves with time. When deployed for

security in welfare monitoring environments, a fresh reading can be obtained every

couple of seconds to re-authenticate an identity. This property is unique to medical

biometrics.
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7. Data minimization. Privacy intrusion is becoming increasingly critical in envi-

ronments of airtight security. One way to address this problem is to utilize as

few identifying credentials as possible. Data minimization is possible with ECG

biometrics because there are environments where the collection of the signal is per-

formed irrespective of the identification task. Examples of such environments are

tele-medicine, patient monitoring in hospitals, field agent monitoring (fire-fighters,

policemen, soldiers etc).

Despite the advantages, notable challenges arise with this technology when large-scale

deployment is envisioned:

1. Time dependency. With time-varying biosignals there is high risk of instantaneous

changes which may endanger biometric security. Recordings of the cardiac poten-

tial at the surface of the body are very prone to noise due to body movements.

However, even in the absence of noise, the ECG signal may destabilize with re-

spect to a biometric template that was constructed some time earlier. The reason

for this is the direct effect that the body’s physiology and psychology have on the

cardiac function. Therefore, a central aspect of the ECG biometrics research is the

investigation of the sources of intra-subject variability.

2. Collection periods. As opposed to biometrics such as the face, the iris or the fin-

gerprint, where the biometric information is available for capturing at any time

instance, this is not the case with the ECG signal. Every heart beat is formed

within approximately a second, which essentially means that longer waiting times

are expected with this technology, especially when long ECG segments are required

for feature extraction. The challenge is to minimize the number of pulses that an

algorithm uses for recognition, as well as the processing time.

3. Privacy implications. When collecting ECG signals a large amount of sensitive

information is inevitably collected. The ECG signal may reveal current and past
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medical conditions, as well as hints about the emotional state of the monitored indi-

vidual. Traditionally, the ECG is available to physicians only. Thus, the possibility

of linking ECG samples to identities raises serious privacy issues.

4. Cardiac Conditions. Although cardiac disorders are not as frequent a damaging

factor as injuries for more conventional biometrics (fingerprint, face), they can limit

ECG biometric methods. Disorders can range from an isolated irregularity (atria

and ventricle premature contractions) to severe conditions which require immediate

medical assistance. The biometric challenge is therefore to design algorithms that

are invariant to everyday ECG irregularities [8].

1.3 Research Goals and Contributions

There are a number of technical challenges that have motivated the work presented in

this thesis. Overall, the necessary framework for real life deployment of ECG biometric

recognition is provided from an algorithmic and implementation point of view. While all

application possibilities are discussed, the main interest of this work is in securing welfare

monitoring environments, where the user’s identity is authenticated continuously. It is

anticipated that security within such settings will be one the most prominent application

of this technology. The contributions of the present work can be summarized as follows:

• Design of an efficient algorithm for ECG-based recognition. Our prior work in this

field [9] was the basis for the development of signal quality assessment method-

ologies, which preprocess the ECG signal in-hand before biometric matching. In

addition, the original AC/LDA algorithm has been improved to further address

physiological variations of the signal namely the Heart Rate Variability (HRV).

The enhanced algorithm is evaluated using databases of ECG signals that were

collected at the Biometrics Security Laboratory, at the University of Toronto.
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• The application frameworks that this technology can fit in are defined and the

respective technical challenges are addressed. Three distinct application environ-

ments are identified namely, A) small scale access control, B) large scale recognition

and C) recognition in distributed systems. The recognition algorithm has been ad-

justed to every setting.

• The third contribution of this thesis is the identification of psychological factors

that may compromise an ECG biometric template. In welfare monitoring, the time-

dependent property of the ECG biometric is two-fold. While a new reading can be

collected and used for continuous authentication, emotional factors may destabilize

the signal. A first step of this analysis was to demonstrate the perils of ignoring

time-dependency. Experiments that simulate real life monitoring environments

were performed, and it was observed that in the absence of noise and physical

activity, the waveform of the ECG signal may still vary due to the effects of the

autonomic nervous system (ANS).

• The above issue is extensively investigated in this thesis by examining the feasibility

of detecting human emotion from the ECG signal (affective computing). A new

approach to emotional pattern recognition is proposed based on the Empirical Mode

Decomposition (EMD). The decomposition is first refined for the ECG case, while

the analysis is performed on signals that were collected by inducing both active

and passive arousal, as well as valence (see Appendix B for definitions). This

study indicates that ECG emotional variation is subject-specific as well as most

prominent under active arousal. These findings are of great importance for real life

deployment of ECG biometrics.

• A method to automatically detect the destabilization of the ECG template is also

proposed in this work, by incorporating the above findings into the recognition

framework. It is demonstrated that the detected emotional states correspond to
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portions the signal characterized by sufficient biometric stability.

1.4 Publications and Patents

The work presented in this thesis has been published in the following journal and con-

ference papers.

ECG recognition algorithms and frameworks (enhanced AC/LDA)

• F. Agrafioti, D. Hatzinakos, Signal Validation for Cardiac Biometrics, IEEE 35th

International Conference on Acoustics, Speech, and Signal Processing (ICASSP

2010), March 14-19, 2010, Dallas, Texas, USA

• F. Agrafioti, J. Gao, D. Hatzinakos, Heart Biometrics: Theory, Methods and Ap-

plications, in Biometrics: Book 3, J. Yang, Eds., Intech (In publication)

• J. Gao, F. Agrafioti, H. Mohammadzade, D. Hatzinakos, ECG for Blind verification

in Distributed Systems, IEEE 36th International Conference on Acoustics, Speech,

and Signal Processing (ICASSP 2011), May 22-27, Prague

• F. Bui, F. Agrafioti, and D. Hatzinakos, Electrocardiogram (ECG) biometric for

robust identification and secure communication , in Biometrics: Theory, Methods

and Applications, N. Boulgouris, E. Micheli-Tzanakou, and K. Plataniotis, Eds.

Wiley

• F. Agrafioti, F. M. Bui, D. Hatzinakos, Medical Information Management with

ECG Biometrics: A Secure and Effective Framework, in Handbook on Ambient

Assisted Living for Healthcare, Well-being and Rehabilitation, Paul McCullagh, IOS

Press (In publication)
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Affective Computing using the ECG

• F. Agrafioti, D. Hatzinakos, A. K. Anderson, ECG Pattern Analysis for Emotion

Detection, IEEE Transactions on Affective Computing, 14 pages, submitted Jan-

uary 2011 (Under second review with minor revisions)

• F. Agrafioti, D. Hatzinakos, An Enhanced EMD Algorithm for ECG Signal Pro-

cessing, IEEE 17th International Conference on Digital Signal Processing (DSP

2011), July 6-8, Corfu, Greece

ECG biometrics in monitoring

• F. Agrafioti, F. M. Bui, D. Hatzinakos, Medical Biometrics in Mobile Health Mon-

itoring, Wiley’s Security and Communication Networks Journal, Special Issue on

Biometric Security for Mobile Computing, vol. 4, no. 5, pp. 525-539, July 2010

• F. Agrafioti, F. M. Bui, D. Hatzinakos, Medical Biometrics: The Perils of Ignoring

Time Dependency, IEEE Third International Conference on Biometrics: Theory,

Applications and Systems (BTAS 2009), Sept. 28-30, 2009, Washington DC, USA

ECG biometrics in anonymous frameworks

• F. Agrafioti, F. M. Bui, D. Hatzinakos, On Supporting Anonymity in a BAN Bio-

metric Framework, IEEE 16th International Conference on Digital Signal Process-

ing (DSP 2009), July 5-7, 2009, Santorini, Greece

Patent Filing of the following patent is anticipated:

• F. Agrafioti, F. M. Bui, and D. Hatzinakos, ”ECG-Based Recognition Frameworks

for Small and Large Scale Applications”, US Provisional Patent # 61484470

Note that the proposed frameworks rely heavily on this author’s prior work on ECG

biometrics as well as on related publications on the Empirical Mode Decomposition,

published in:
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• F. Agrafioti, J. Gao, H. Mohammadzade, D. Hatzinakos, A 2D Bivariate EMD

Algorithm for Image Fusion, IEEE 17th International Conference on Digital Signal

Processing (DSP 2011), July 6-8, Corfu, Greece

• H. Mohammadzade, F. Agrafioti, J. Gao, D. Hatzinakos, BEMD for Expression

Transformation in Face Recognition, IEEE 36th International Conference on Acous-

tics, Speech, and Signal Processing (ICASSP 2011), May 22-27, Prague

• Z. S. Fatemian, F. Agrafioti, D. Hatzinakos, HeartID: Cardiac Biometric Recogni-

tion , IEEE Fourth International Conference on Biometrics: Theory, Applications

and Systems (BTAS 2010), Sept. 27-29, 2010, Washington DC, USA

• F. Agrafioti, D. Hatzinakos, ECG Biometric Analysis in Cardiac Irregularity Con-

ditions , Signal, Image and Video Processing, Springer, vol. 3, no. 4 pp 329-343,

2009

• F. Agrafioti, D. Hatzinakos, Fusion of ECG sources for human identification, IEEE

3rd International Symposium on Communications, Control and Signal Processing

(ISCCSP 2008), March 12-14, 2008, Malta

• F. Agrafioti, D. Hatzinakos, ECG based recognition using second order statistics,

IEEE 6th Annual Conference on Communication Networks and Services Research

(CNSR 2008), May 5-8, 2008, Halifax, Canada

• Y. Wang, F. Agrafioti, D. Hatzinakos and K. N. Plataniotis, Analysis of Human

Electrocardiogram for Biometric Recognition, EURASIP, Journal on Advances in

Signal Processing, Special Issue on Advanced Signal Processing and Pattern recog-

nition Methods for biometrics, Article ID 148658, May 2007.
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1.5 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 covers the background

information and prior art in the areas of ECG biometric recognition as well as affective

computing. Appendix B contains a detailed discussion on emotion modeling. Chapter

3 presents the experimental protocols that have been designed for ECG data collection.

Chapter 4 describes the proposed algorithm for ECG quality assessment and feature

extraction (HeartID). This chapter also presents the application frameworks for this

technology along with the customization of the recognition algorithm for every setting.

Simulation results on biometric recognition are reported at the end of this chapter.

Chapter 5 presents the analysis for emotion detection from ECG signals. This anal-

ysis relies heavily on the Empirical Mode Decomposition, a description of which can be

found in Appendix A. In addition, chapter 5 presents the performance of the emotion

classification system evaluated over ECG signals acquired with customized experimental

setups. Chapter 6 brings the reader back to the biometric recognition topic by incor-

porating the ECG affective computing findings into the HeartID system. The thesis

concludes with Chapter 7.



Chapter 2

Background and Prior Art

2.1 Taxonomy of Errors in Biometric Recognition

Matching two biometric feature vectors does not have a single positive or negative answer.

In biometrics, even though features originate from the same subject, significant intra-class

variability is usually observed that renders classification very difficult. The error of such

systems is directly linked to the mode under which they operate. For this reason, the

biometric modes of operation are herein presented first.

1. Enrollment. During this mode of operation the biometric system collects the

recognizing modality (ex. ECG, face, iris), performs some quality check, processes

to extract discriminative features, and stores the result in the gallery set.

2. Identification. During this mode of operation, the system uses an input biometric

reading to perform one-to-many matches with the gallery set. The purpose of this

operation is to answer the question: What is the identity of this user?

3. Verification (or Authentication). During this mode of operation, the user

submits to the system a biometric sample along with an identity claim. The system

compares the input sample with the corresponding record from the gallery set, and

13
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a Good/Poor match decision is returned. The purpose of this operation is to answer

the question: Is the user who he/she claims to be?

Instead of the credential information, the output of a biometric system is often a

match score, revealing the degree of resemblance for a given pair of biometric samples.

In essence, the match score expresses the degree of certainty (or uncertainty) about a

user’s identity. Match scores can take the form of a probability, similarity, or distance,

and authentication is then carried out by setting a threshold empirically.

In order to distinguish the types of errors that a biometric system can make, it is

important to outline the following states as the system’s possible conditions:

1. Identify an individual correctly, which is measured in identification rates.

2. Misidentify an enrolled individual, which is measured in mis-identification rates.

3. For more complex systems, authentication of legitimate subjects is referred to as

sensitivity and measured in authentication (or verification) rates.

4. Deny identity authentication to a legitimate subject, measured in false rejection

rates (FRR).

5. Deny identity authentication to intruders, referred to as specificity of the system.

6. Authenticate intruders, which is measured in false acceptance rates (FAR).

Specifically, the false acceptance and rejection statistics are computed as:

FAR =
Number of falsely authenticated subjects

Total number of intruders
(2.1)

FRR =
Number of rejected legitimate subjects

Total number of ID attempts
(2.2)
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The equal error rate (EER) is also defined as the point in the FAR and FRR curves,

where false acceptance is equal to false rejection i.e., EER = FAR = FRR. The lower

the equal error rate, the better the authentication performance of the system.

Depending on the employed similarity measure, the appearance of the FAR and FRR

distribution can vary. When distance is used to associate two records, suggesting that

the higher the score the less the resemblance, FAR is expected to increase as the distance

threshold increases. This way, for a higher selection of the threshold, intruder authen-

tication is rendered more likely. Similarly, the false rejection percentage is expected to

fall as the distance threshold increases, because more legitimate subjects will be rejected.

Obviously, there is a trade-off between false acceptance and rejection cases, and even

though ideally a biometric system would demand both of them to be low, it is usually

left up to the designer to decide on the specifics of the application.

2.2 Electrocardiogram Fundamentals

The electrocardiogram (ECG) is one of the most widely used signals in healthcare.

Recorded at the surface of the body, with electrodes attached in various configurations,

the ECG signal is studied for diagnostics even at the very early stage of a disease. In

essence, this signal describes the electrical activity of the heart over time, and pictures

the sequential depolarization and repolarization of the different muscles that form the

myocardium.

The first recording device was developed by the physiologist Williem Einthoven in

the early 20th century, and for this discovery he was rewarded with the Nobel Prize

in Medicine [10]. Since then ECG became an indispensable tool in clinical cardiology.

However, the deployment of this signal in biometric recognition and affective computing

is relatively young.

Figure 2.1 shows the salient components of an ECG signal i.e., the P wave, the QRS
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complex and the T wave. The P wave describes the depolarization of the right and left

atria. The amplitude of this wave is relatively small, because the atrial muscle mass

is limited. The absence of a P wave typically indicates ventricular ectopic focus. This

wave usually has a positive polarity, with a duration of approximately 120 ms, while its

spectral content is limited to 8-10 Hz, i.e., low frequencies.

P

Q

R

T

RInter-beat interval

80 msDuration

Freq.

S

8-10Hz

120 ms

10-40 Hz

80-120ms

-

160 ms

5-8Hz

0.6-1.2ms (at 60-100 bpm)

Figure 2.1: Main components of an ECG heart beat. Each wave describes a distinct

phase of the cardiac cycle.

The QRS complex corresponds to the largest wave, since it represents the depolar-

ization of the right and left ventricles, which are the chambers with the most substantial

mass in the heart. The duration of this complex is approximately 70-110 ms in a normal

heartbeat. The anatomic characteristics of the QRS complex depend on the origin of the

pulse. Due to its steep slopes, the spectrum of a QRS wave is higher compared to that

of other ECG waves, and is mostly concentrated between 10 and 40 Hz.

Finally, the T wave depicts the ventricular repolarization. It has a relatively small

amplitude and is usually observed about 300 ms after the QRS complex. However, its

precise position depends on the heart rate, e.g., appearing closer to the QRS wave at

rapid heart rates.
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There is more than one approach to ECG recording, such as the orthogonal leads and

synthesized leads [10]. However, the most widely applied system is the standard 12-lead

ECG where there are three main sets of lead orientations. The bipolar limb leads are

usually denoted as I, II and III and they track the electrical potential of the heart when

three electrodes are attached at the right and left wrist and left ankle [10].

By convention, lead I measures the potential difference between the two arms. In

lead II, one electrode is attached on the left leg and the other one on the right hand

as depicted in Figure 2.2. Finally, in lead III configuration, the measured potential is

between the left leg and right hand.

Following the electrode position as pictured in Figure 2.2, the limb leads are measured

in the following combinations:

I = VLH − VRH (2.3)

II = VLL − VRH (2.4)

III = VLL − VLH (2.5)

The preceding equations suggest that, having recorded any two of the bipolar limb lead

signals, the third one can be directly derived. The augmented unipolar limb leads fill

the 60o gaps in the directions of the bipolar limb leads. Using the same electrodes, the

augmented unipolar leads are measured as:

aV R = VRH −
VLH + VLL

2
(2.6)

aV L = VLH −
VRH + VLL

2
(2.7)

aV F = VLL −
VLH + VRH

2
(2.8)

The third category of lead orientation involved in the conventional 12-lead system

comprises the precordial leads (V1, V2, V3, V4, V5, V6). These signals are recorded

with 6 electrodes attached successively on the left side of the chest, thus capturing more

detailed information in the electrocardiogram [10].
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I
VLHVRH

II III

VLL

Figure 2.2: Configuration of Leads I II and III.

Apart from the well known physiological process that generates the ECG, the signal

is also affected by various sympathetic and parasympathetic processes. From a signal

processing point of view, this is the reason why the ECG signal is not perfectly peri-

odic. In the subsequent discussion the purpose is to differentiate between the anatomical

properties of the heart, which encourage its deployment in biometrics, and the sources

of variability due to the autonomic nervous system that support its analysis in affective

computing.

2.2.1 Inter-individual variability

This section will briefly discuss the physiological rationale for the use of ECG in biometric

recognition. Overall, healthy ECG signals from different people conform to roughly

the same repetitive pulse pattern. However, further investigation of a person’s ECG

signal can reveal notably unique trends which are not present in recordings from other

individuals. The inter-individual variability of ECG has been extensively reported in the

literature [11, 12, 13, 14, 15, 16, 17].

More specific, the ECG signal depicts the various electrophysiological properties of

the cardiac muscle. Model studies have shown that physiological factors such as the heart

mass orientation, the conductivity of various areas, and the activation order of the heart,

are sources of significant variability among individuals [16, 17].
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Furthermore, geometrical attributes such as the exact position and orientation of

the myocardium, and torso shape designate ECG signals with particularly distinct and

personalized characteristics. Other factors affecting the ECG signal are the timing of de-

polarization and repolarization and lead placement. In addition, except for the anatomic

idiosyncrasy of the heart, unique patterns have been associated to physical characteristics

such as the body habitus and gender [11, 15, 16, 17, 18]. The electrical map of the area

surrounding the heart may also be affected by variations of other organs in the thorax

[17].

In fact, various methodologies have been proposed to eliminate the differences among

ECG recordings. The idea of clearing off the inter-individual variability is typical when

seeking to establish healthy diagnostic standards [12]. Automatic diagnosis of pathologies

using the ECG is infeasible if the level of variability among healthy people is high [16]. In

such algorithms, personalized parameters of every subject are treated as random variables

and a number of criteria have been defined to quantify the degree of subjects’ similarities

on a specific feature basis.

2.2.2 Cardiovascular reactivity to emotion

The central and peripheral nervous systems (CNS, PNS) of the human body are respon-

sible for physical and psychological behavior. The CNS is located in the cranial cavity

and the spinal cord, and is the information processing unit of the body. The PNS acts

as the communication channel between the CNS and the organs, and consists of infor-

mation transferring nerves. Depending on whether the individual has control over these

nerves or not, the PNS is divided into the somatic and the autonomic nervous systems

(SNS, ANS). Various essential involuntary activities of the human body such as heart

pulses, respiration, salivation etc. come under the ambit of the ANS. The ANS is further

classified into the sympathetic and parasympathetic subsystems, which operate in an an-

tagonistic manner. The resulting manifestation depends on which subsystem is dominant
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at a particular instance. The opposing nature of the two results in a mannered balance

within the body, called homeostasis.

The ANS nerve-endings within the cardiac muscle play a major role in the cardiac

output because they affect the rhythm at which the muscle pumps blood. The fibers of the

sympathetic system run along the atria and the ventricles, and when activated stimulate

the cardiac muscle to increase the heart rate. On the other hand, the parasympathetic

system reduces the cardiac workload. Specifically, in the presence of a mental stressor, the

sympathetic system dominates the parasympathetic, resulting in the following reactivity

effects [19]:

1. Automaticity. The intrinsic impulse firing (automaticity) of the pacemaker cells

increases, which translates directly to an increased heart rate.

2. Contractility. During every contraction the fibers of the heart shorten more, com-

pared to the case during homeostasis, thereby increasing the force of contraction.

3. Conduction rate. The natural pacemaker, the SA node, is forced to conduct faster.

4. Excitability. During sympathetic stimulation, the person has increased perceptive-

ness to internal and external stimuli, which increases the irritability of the cardiac

muscle and possibly lead to ectopic beats.

5. Dilation of coronary blood vessels. The diameter of the coronary blood vessels

increases, followed by increased blood flow to the cardiac muscle.

Depending on the intensity of a particular emotion, the sympathetic system is stimu-

lated to prepare the body for vigorous activity. Apart from the well established cardiac

reaction to ANS, there, there are questions that are yet to be answered. For instance,

it is not clear whether the sympathetic and parasympathetic branches of ANS affect the

heart in the same way i.e., whether there exist independent ANS drives on the cardiac

muscle or not.
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Shouldice et al. [20] provided evidence that there is separate ANS innervation to the

two pacemakers (SA and VA nodes). By analyzing PP and PR intervals in transitions

from supine to stand postures and vice versa, the authors showed a decoupling of the

SA and VA modulation. This suggests that the cardiac reactivity may contain more

detail about the stimulus than just the intensity (arousal). Another interesting finding

in [20] is that there is large inter-subject autonomic innervation variability, meaning that

one cannot generalize how the excitability of the SA and VA nodes is affected over a

population. Their work leads one to suspect the specificity of emotion with regard to

particular people.

Furthermore, signals such as the heart rate variability (HRV) and blood volume pres-

sure (BVP) have been associated with the development of coronary artery disease. The

cardiac reactivity to stress has been studied in relation to feelings such as anxiety, hos-

tility or challenge [21, 22]. Despite the dependence of the HRV time series on posture

(standing/supine), increased vagal modulation of the cardiovascular system was statis-

tically correlated with the aforementioned emotions. Similarly, the difficulty levels of

memory tasks were shown to impact cardiac reactivity [23]. Furthermore, Blascovich et

al. [24] were able to differentiate challenge from threat using cardiac traits such as the

HR, ventricular contractility and cardiac output.

As already discussed, the most widely studied trait of cardiovascular activity is the

HR, or HRV [25, 26, 27]. Based on the effects of sympathetic stimulation on the cardiac

muscle, the HR is the most natural choice for arousal detection using comparison of

sympathetic and parasympathetic frequency bands of the time series [27]. However, it is

highly dependent on the position of the body during monitoring [28, 21].

Emotion specific reactivity has been observed on the ECG signal itself, without col-

lapsing the embedded information to arbitrary interval measurements (HRV). In fact,

Andrassy et al. [29] observed QT prolongation (typical for stress) without significant R-R

interval changes.
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Folino et al. [30] recorded measurements of features such as the duration of the

QRS complex, low amplitude waves at the terminal portions of the complex, and the

root mean square voltage of the QRS while the subject was performing various mental

arithmetic tasks. They observed that with increasing levels of difficulty, the energy of

the QRS complex increased significantly, while its duration was reduced (not a result of

increasing HR).

The T wave amplitude was cross examined with mental stress in [31, 32]. An interest-

ing observation brought to light by these works was that manifestations of mental stress

on ECG depends on whether the stressor is active or passive. Contrary to the popular

belief that mental stress response is generic, no significant effects were observed during

passive tasks (i.e. stressors without the active involvement of the subject).

Apart from mental stress, cardiovascular responses have been examined for other

particular emotions. Sinha et al.[33] experimented with five emotional states namely joy,

sadness, fear, anger and neutral. The HR, BVP, stroke volume, pre-ejection period and

cardiac output were measured, employing imagery tasks for emotion elicitation. Pairwise

comparison performance (for every two emotions) was reported for every measurement,

with the HR being among the signals that exhibit the least discriminative power.

In summary, there is significant evidence in the literature that cardiovascular reac-

tivity can differentiate not only the intensity of the stimulus but also the valence (see

Appendix B), depending on how the stimulus is presented. Although in the affect re-

search ECG is primarily used for HR estimation, we argue that it is not used to its full

extend, as this signal is yet one of the most illustrative and detailed records of cardiac

activity. Furthermore, ECG exhibits idiosyncratic patterns due to the unique anatomy of

people’s cardiac muscles. Along these lines, in this work we investigate the dynamics of

the ECG signal and their association with emotion specific ANS activity, from a subject

specific point of view.
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Figure 2.3: Variability surrounding the QRS complex among heart beats of the same

individual.

2.3 ECG Biometric Recognition: Literature Survey

Prior works in the ECG biometric recognition field can be categorized as either fiducial

points dependent or independent. Fiducials are specific points of interest on an ECG

heart beat such as the ones shown in Figure 2.1. Fiducial based approaches rely on

local features of the heart beats for biometric template design, such as the temporal or

amplitude difference between consecutive fiducial points. On the other hand, fiducial

points independent approaches treat the ECG signal or isolated heart beats holistically

and extract features statistically based on the overall morphology of the waveform. This

distinction has a direct analogy to face biometric systems, where one can operate locally

and extract biometric features such the distance between the eyes or the size of the

mouth. Alternatively, a holistic approach would be to analyze the facial image globally.

Both approaches have advantages and disadvantages. While fiducial oriented features

risk to miss identifying information hidden behind the overall morphology of the biometric

modality, holistic approaches deal with a large amount of redundant information that
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needs to be eliminated. The challenge in the later case, is to remove this information in

a way that the intra-subject variability is minimized, and the inter-subject is maximized.

For the ECG case, detecting fiducial points is a very obscure process due to the high

variability of the signal. Figure 2.3 shows an example of aligned ECG heart beats which

belong to the same individual. Even though the QRS complex is perfectly aligned, there is

significant variability surrounding the P and the T waves which renders the localization of

these waves’ onsets and offsets very difficult. In fact, there is no universally acknowledged

rule that can guide this detection [17].

This section provides an overview of fiducial dependent and independent approaches

that are currently found in the literature. A comparison is also provided in Tables 2.1

and 2.2.

2.3.1 Fiducial Based Approaches

Among the earliest works in the area is Biel et al.’s [34] proposal, in 2001, for a fiducial

feature extraction algorithm, which demonstrated the feasibility of using ECG signals for

human identification. The standard 12 lead system was used to record signals from 20

subjects of various ages. Special experimentation was carried out to test variations due

to lead placement in terms of the exact location and the operators who carry out the

procedure.

Out of 30 clinical diagnostic features that were estimated for each of the 12 leads,

only 12 features were retained for matching, by inspection of the correlation matrix.

These features pictured local characteristics of the pulses, such as the QRS complex and

T wave amplitudes, P wave duration and other. This feature set was subsequently fed

to SIMCA for training and classification. Results of combining different features were

compared to demonstrate that, in the best case, classification rate was 100% with just

10 features.

Kyoso et al., [35], also proposed fiducial based features for ECG biometric recognition.
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Overall, four feature parameters were selected i.e., the P wave duration, PQ interval,

QRS complex andQT durations. These features were identified on the pulses by applying

a threshold to the second order derivative. The subject with the smallest Mahalanobis

distance between each two of the four feature parameters was selected as the output.

The highest reported performance was 94.2% for using just the QRS and QT intervals.

In 2002, Shen et al. [36] reported an ECG based recognition method with seven

fiducial based features that relate to the QRS complex. The underlying idea was that

this wave is less affected by varying heart rates, and thus is appropriate for biometric

recognition.

The proposed methodology encompassed two steps [36]: During a first step, template

matching was used to compute the correlation coefficient among the QRS complexes

in the gallery set in order to find possible candidates and prune the search space. A

decision based neural network (DBNN) was then formed to strengthen the validation of

the resulting identity. While the first step managed to correctly identify only 85% of the

cases, the neural network resulted in 100% recognition.

More complete biometric recognition tests were reported in 2004, by Israel et al. [37].

This work presented the three clear stages of ECG biometric recognition i.e., preprocess-

ing, feature extraction and classification. In addition, a variety of experimental settings

are described in [37] such as, examination of variations due to electrode placement and

physical stress.

The proposed system employed only temporal features. A filter was first applied to

retain signal information in the band 1.1- 40 Hz and discard the rest of the spectral com-

ponents which were attributed to noise. By targeting to keep discriminative information

while applying a stable filter over the gallery set, different filtering techniques were exam-

ined to conclude to a local averaging, spectral differencing and Fourier band-pass filter.

The highest identification rate achieved was close to 100% which generally established

the ECG signal as a biometric modality.
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A similar approach was reported in the same year by Palaniappan et al., [38]. In

addition to commonly used features within the QRS complex, a form factor, which is

a measure of signal complexity, was proposed and tested as input to a neural network

classifier. An identification rate of 97.6% was achieved over recordings of 10 individuals,

by training a MLP-BP with 30 hidden units.

Kim et al. [39], proposed a method to normalize time domain features by up-sampling

the heart beats. In addition, the P wave was excluded when calculating the features, since

it disappears when heart rate increases. With this strategy, the performance improved

significantly when the testing subjects were performing physical activities.

Another work that addressed the heart rate variations was by Saechia et al., [40] in

2005. The heart beats were normalized to healthy durations and then divided into three

sub-sequences: P wave, QRS complex and T wave. The Fourier transform was applied

on a heart beat itself and all three sub-sequences. The spectrums were then passed to

a neural network for classification. It was shown that false rate was significantly lower

(17.14% to 2.85%) by using the three sub-sequences instead of the original heart beat.

Zhang et al. [41], suggested 14 commonly used features from ECG heart beats on

which a PCA was applied to reduce dimensionality. A classification method based on the

Bayes Theorem was proposed to maximize the posterior probability given prior probabil-

ities and class-conditional densities. The proposed method outperformed Mahalanobis’

distance by 3.5% to 13% depending on the particular lead that was used.

Singh et al. [42], proposed a way to delineate the P and T waveforms for accurate

feature extraction. By examining the ECG signal within a preset window before the Q

wave onset and apply a threshold to its first derivative, the precise position of the P was

revealed. In addition to the onset, the peak and offset of the P wave were detected by

tracing the signal and examining the zero crossings of its first derivative. The accuracy

of this system was reported as 99%, tested over 25 subjects.

In 2009, Boumbarov et al. [43], investigated different models such as HMM-GMM
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(Hidden Markov model with Gaussian mixture model), HMM-SGM (Hidden Markov

model with single Gaussian model) and CRF (Conditional Random Field), to determine

different fiducial points in an ECG segment, followed by PCA and LDA for dimensionality

reduction. A neural network with a radial basis function was realized as the classifier

and the recognition rate was between 62% to 94% for different subjects.

Ting et al. [44], described in 2010 a nonlinear dynamical model to represent the ECG

in a state space form with the posterior states inferred by an Extended Kalman Filter.

The Log-likelihood score was used to compare the estimated model of a testing ECG to

that of the enrolled templates. The reported identification rate was 87.5% on the healthy

beats of 13 subjects from the MIT Arrhythmia database. It was also reported that the

method was robust to noise for SNR above 20 dB.

The Dynamic time warping or FLDA were used in [45], together with the nearest

neighbor classifier. The proposed system was comprised of two steps as follows: First

the FLDA and nearest neighbor operated on the features and then a DTW classifier was

applied to additionally boost the performance (100% over a 12-subject database). For

verification, only features related to QRS complex were selected due to their robustness to

heart rate variability. The same two-stage setting was applied together with a threshold

and the reported performance was 96% for 12 legitimate subjects and 3 intruders.

Another fiducial based method was proposed by Tawfik et al. [46]. In this work,

the ECG segment between the QRS complex and the T wave was first extracted and

normalized in the time domain by using Framingham correction formula or by assuming

constant QT interval. The DCT was then applied and the coefficients were fed into

a neural network for classification. The identification rate was 97.72% for that of the

Framingham correction formula and 98.18% for the case of constant QT interval. Inter-

estingly, using only the QRS complex without any time domain manipulation yielded a

performance of 99.09%.

In summary, although a number of fiducial based approaches have been reported for



Chapter 2. Background and Prior Art 28

ECG based biometrics, accurate localization of fiducial points remains a big challenge.

This ambiguity risks the accuracy of the respective recognizers which require the precise

location of such points. In the likely event of failing to adequately determine the locations

of these points, fiducial approaches would rather reject the heart beat and require an

extra reading, rather than risking the accuracy of their decision. This however, results

in increased rejection rates that subsequently increase thw waiting time of the system.

It is important to note, that in order to to acquire one clear pulse the sensors need to

be attached/ held by the user for some time, until no muscular movements take place.

Therefore, additional recording sessions due to rejection increase the inconvenience of use

of such systems.

2.3.2 Fiducial Independent Approaches

On the non-fiducial methodologies side, the majority of the works were reported after

2006. Among the earliest is Plataniotis et al.’s [47] proposal for an autocorrelation (AC)

based feature extractor. With the objective of capturing the repetitive pattern of ECG,

the authors suggested the AC of an ECG segment as a way to avoid fiducial points de-

tection. It was demonstrated that the autocorrelation of windowed ECG signals embeds

highly discriminative information in a population. However, depending on the original

sampling frequency of the signal, the dimensionality of a segment from the autocorrela-

tion was considerably high for cost efficient applications. To reduce the dimensionality

the discrete cosine transform (DCT) was applied. The method was tested on 14 subjects,

for which multiple ECG recordings were available, acquired a few years apart. The iden-

tification performance was 100%. However, the DCT reduces the dimensionality from a

signal processing point of view, which is sub-optimal for classification problems.

Wubbeler et al. [48], have also reported an ECG based human recognizer by extracting

biometric features from a combination of Leads I, II and III i.e., a two dimensional heart

vector also known as the characteristic of the ECG. To locate and extract pulses a thresh-
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olding procedure was applied. For classification, the distance between two heart vectors

as well as their first and second temporal derivatives were calculated. A verification

functionality was also designed by setting a threshold on the distances. Authenticated

pairs were considered those which were adequately related, while in any other case, input

signals were rejected. The reported false acceptance and rejection rates were 0.2% and

2.5% corresponding to a 2.8% equal error rate (EER). The overall recognition rate of the

system was 99% for 74 subjects.

A methodology for ECG synthesis was proposed in 2007 by Molina et al. [49]. A

heart beat was normalized and compared with its estimate, which was previously con-

structed from itself and the templates from a claimed identity. The estimated version

was produced by a morphological synthesis algorithm involving a modified dynamic time

warping procedure. The Euclidean distance was used as the similarity measure and a

threshold was applied to decide the authenticity. The highest reported performance was

98% with a 2% EER.

In 2008, Chan et al. [50], reported ECG signal collection from the fingers by asking

the participants to hold two electrode pads with their thumb and index finger. The

Wavelet distance was used as the similarity measure with a classification accuracy of

89.1%, which outperformed other methods such as the percent residual distance and the

correlation coefficient. Furthermore, an additional recording session was conducted for

several misclassified subjects which overall improved the system’s performance to 95%.

In the same year, Chiu et al. [51], proposed the use of DWT on heuristically isolated

pulses. More precisely, every heart beat was determined on the ECG signal, as 43 samples

backward and 84 samples forward from the R peaks. The DWT was used for feature

extraction and the Euclidean distance as the similarity measure. When the proposed

method was applied to a database of 35 healthy subjects, a 100% verification rate was

reported. The author also pointed out that false rate would increase if 10 subjects with

cardiac arrhythmia were included in the database.



Chapter 2. Background and Prior Art 30

Fatemian et al. [52], also suggested the Wavelet transform to denoise and delineate the

ECG signals, followed by a process wherein every heart beat was resampled, normalized,

aligned and averaged to create one strong template per subject. A correlation analysis

was directly applied to test heart beats and the template since the gallery size was greatly

reduced. The reported recognition rate was 99.6% for a setting where every subject has

2 templates in the gallery.

The Spectogram was employed in [53] to transform the ECG into a set of time-

frequency bins which were modeled by independent normal distributions. Dimensionality

reduction was based on Kullback-Leibler divergence where a feature is selected only if

the relative entropy between itself and the nominal model (which is the spectrogram of

all subjects in database) is larger than a certain threshold. The log-likelihood ratio was

used as a similarity measure for classification and different scenarios were examined. For

enrollment and testings over the same day, a 0.37% ERR was achieved for verification

and a 99% identification rate. For different days, the respective performance was 5.58%

ERR and 76.9%.

Ye et al. [54], applied the discrete wavelet transform (DWT) and independent com-

ponent analysis (ICA) on ECG heart beat segments to obtain 118 and 18 features re-

spectively. The feature vectors were concatenated. The dimensionality of the feature

space was subsequently reduced from 136 to 26 using PCA which retained 99% of the

data’s variance. An SVM with Guassian radial basis function was used for classification

with a decision level fusion of the results from the two leads. A rank-1 classification

rate of 99.6% was achieved for healthy heart beats. Another observation was that even

though dynamic features such as the R-R interval proved to be beneficial for arrhythmia

classification, they were not as good descriptors for biometric recognition.
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Coutinho et al. [55], isolated the heart beats and performed an 8-bit uniform quanti-

zation to map the ECG samples to strings from a 256-symbol alphabet. Classification was

based on finding the template in the gallery set that results in the shortest description

length of the test input (given the strings in the particular template) which was calcu-

lated by the Ziv-Merhav cross parsing algorithm. The reported classification accuracy

was 100% on a 19-subject database, in presence of emotional state variation.

Autoregressive modeling was used in [56]. The ECG signal was segmented with 50%

overlap and an AR model of order 4 was estimated so that its coefficients are used for

classification. Furthermore, the mean PSD of each segment was concatenated as add-on

features which increased the overall performance to 100% using a k-Nearest Neighbor

classifier.

Li et al. [57], proposed a method to model the ECG signal in both the temporal and

cepstral domain. The hermite polynomial expansion was employed to transform heart

beats into Hermite polynomial coefficients which were then modeled by an SVM with a

linear kernel. Cepstral features were extracted by simple linear filtering and modeled by

GMM/GSV (GMM super-vector). The highest reported performance was 98.26% with a

5% ERR corresponding to a score level fusion of both temporal and cepstral classifiers.

It is clear from the above, that a large variety of fiducial independent techniques

have been proposed for ECG biometric analysis. While some approaches are more com-

putational intensive than other, or they operate on heart beats rather than finite ECG

segments, there are practically a number of open issues in the literature with regard to

ECG biometrics.

Among the most prominent ones is the question of signal stability, or permanence,

with time. The majority of prior works did not examine the evolution of the ECG signal

with time. To some extent, the sources of intra-subject variability of the ECG signal

have been ignored. We advocate that the study of the factors that affect the ECG

waveform and may render the biometric template less accurate is very important for real
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Method Principle Performance Number of subjects

Kyoso et. al [35] Analyzed four fiducial based features from heart beats, to 94.2% 9

determine those with greater impact on the identification performance

Biel et. al [34] Use a SIEMENS ECG apparatus to record 100% 20

and select appropriate medical diagnostic features for classification

Shen et. al [36] Use template matching and neural networks to 100% 20

classify QRS complex related characteristics

Israel et. al [37] Analyze fiducial based temporal features 100% 29

under various stress conditions

Palaniappan et. al [38] Use two different neural network architectures 97.% 10

for classification of six QRS wave related features

Kim et. al [39] By normalizing ECG heartbeat using Fourier synthesis N/A 10

the performance under physical activities was improved

Saechia et. al [40] Examined the effectiveness of segmenting 97.15% 20

ECG heartbeat into three subsequences

Zhang et. al [41] Bayes’ classifier based on conditional probability was 97.4% 502

used for identification and was found supurior to Mahalanobis’ distance.

Plataniotis et. al [47] Analyze the autocorrelation of ECGs for feature 100% 14

extraction and apply DCT for dimensionality reduction

Wubbeler et. al [48] Utilize the characteristic vector of the electrocardiogram 99% 74

for fiducial based feature extraction out of the QRS complex

Table 2.1: Summary of related to ECG based recognition works
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Molina et. al [49] Morphological synthesis technique was 98% 10

proposed to produced a synthesized ECG heartbeat

between the test sample and template

Chan et. al [50] Wavelet distance measure was introduced 95% 50

to test the similarity between ECGs

Singh et. al [42] A new method to delineate P and T waves 99% 25

Fatemian et. al [52] Less templates per suject in gallery set to speed up 99.6% 13

computation and reduce memory requirement

Boumbarov et. al [43] Neural network with radial basis function 86.1% 9

was employed as the classifier

Ting et. al [44] Use extended Kalman filter as inference 87.5% 13

engine to estimate ECG in state space

Odinaka et. al [53] Time frequency analysis and relative 76.9% 269

entropy to classify ECGs

Venkatesh et. al [45] Apply dynamic time warping and 100% 15

Fisher’s discriminant analysis on ECG features

Tawfik et. al [46] Examined the system performance when 99.09% 22

using normalized QT and QRS

and using raw QRS

Ye et. al [54] Applied Wavelet transform and Independent component 99.6% 36 normal

analysis, together with support vector machi and 112 arrhythmic

as classifier to fuse information from two leads

Coutinho et. al [55] Treat heartbeats as a strings and using 100% 19

Ziv-Merhav parsing to measure the cross complexity

Ghofrani et. al [56] Autoregressive coefficient and mean of 100% 12

power spectral density were proposed to model the system for classification

model the system for classification

Li et. al [57] Fusion of temporal and cepstral features 98.3% 18

Table 2.2: Summary of related to ECG based recognition works (Continued)
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life deployment of this technology.

Furthermore, the one-dimensional representation of the ECG signal presents signifi-

cant advantages to fast identity computation, and complex processing algorithms (neural

networks, warping etc.) may compromise this asset. Overall, the prior art in ECG bio-

metrics recognition, as summarized in Tables 2.1 and 2.2, did not discuss the way that

the respective solutions will fit in real-life settings.

2.4 ECG in Affective Computing: Literature Survey

Emotion recognition in the field of human computer interaction has drawn enormous

attention as early as the 1980s. To date, there are numerous works in literature focusing

on facial expression or speech analysis for the purpose of emotion detection. Irrespectively

of the employed modality, each reported work contributes to the overall understanding

of emotions and to the way they are expressed through the human body. Nevertheless,

this section places the emphasis on physiological signal processing for detection and

classification of emotions.

Although the approaches found in literature vary algorithmically and with respect

to the experimental procedures employed, current methodologies can be classified in

to two categories based on the way the emotional models are conceived and deployed.

The first category includes discrete emotional models (DEM), where the main objective

of the proposed frameworks is to recognize and label standard emotional states (for

instance joy, sadness or fear) depending on the application. These methods rely heavily

on the assumption that any affective state is physiologically well defined and completely

distinguishable from the rest.

On the other hand, the affective dimensional models (ADM) relax the conditions

for discrete emotions and treat any affective state as a combination of two parameters,

namely arousal and valence. Arousal is a measure of emotional stimulation which varying
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from low to high. Valence is a measure of pleasantness for the experienced emotion,

ranging from very pleasant to unpleasant. These two measures define a two dimensional

space (the AV plane), and classification is carried out among predefined areas of the

plane, which do not correspond necessarily to a discrete emotion. More information

pertaining to emotion definitions can be found in Appendix B.

Both methodologies have advantages and disadvantages. For instance, the discrete

emotional models might be easily conceptualized by people and fitted to applications,

however their performance is risked as there is no well defined physiological borders

among emotions. The rest of this section provides a literature survey for both discrete

and dimensional emotional models.

2.4.1 Discrete Emotional Models

To the best of our knowledge, the first documented effort for emotion recognition using

physiological signals is by Ekman et al. [58] in 1983. This work was considered a break-

through as it opposed to the dogma dictates that no activity of the autonomic nervous

system (ANS) is emotion specific. In other words, Ekman et al.’s work provided evidence

that emotions can be distinguished among the various reactions of the human body.

Using both physiological signals and videos of facial expressions, six emotions were

studied: surprise, disgust, sadness, anger, fear and happiness. The bio signals considered

were the heart rate, left and right hand temperature, skin resistance and forearm muscle

tension. The respective feelings were induced in a different manner for two recording

modalities. For facial gestures, the subjects were asked to mimic emotional expressions

that they had practiced before using a mirror, and following the instructions of an oper-

ator concerning the facial muscles they were required to contract.

On the other hand, for the stimulation of physiological signals an experience reliving

approach was chosen. For this imagery task, every subject was asked to relax and bring

to memory a personal experience that related to each of the studied emotions. Upon
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completion, the subjects were asked to rank the intensity of their feelings on a predefined

scale. For this experiment, 16 subjects were examined, 12 of which were professional

actors. It is important to note that using actors to induce and analyze feelings, was

a standard practice in the beginning of the affective computing research, as they were

expected to manifest emotions naturally.

The signal analysis performed in [58], was based on the change scores principle. Data

during emotional instances were averaged and subtracted from data of non-emotional

phases. These differences were used as features which were then examined to evaluate

organization in clusters based on tree decisions (for example, if the heart rate change was

high and temperature was low, this would be assigned to the fear cluster). This technique

although simplistic, demonstrated for the first time that physiological information can

be organized in emotional clusters.

Ekman et al.’s findings have drawn the attention of the medical field (both physio-

logical and psychological medicine), which has contributed significantly in the field. In

1992, Sinha et al. [33], reported a statistical analysis concerning the cardiovascular dif-

ferentiation of emotions. Six heart related indexes were recorded from 27 male subjects.

The signals were the heart rate, blood pressure, stroke volume, cardiac output, periph-

eral vascular resistance and an index of myocardial contractility. The objective was to

examine and identify patterns of the cardiovascular activity under the expression of 4

main emotions: fear, anger, joy and sadness.

The experimental procedure in [33] involved a careful screening of the subjects par-

ticipating in the study. This selection is generally prominent as the volunteers should be

persons who not only experience various emotional states, but are also able to describe

them verbally with accuracy. The physiological reaction of humans has been shown to

be relative to their imagery ability [59]. For this reason, the subjects were selected with

a questionnaire. The main experimental part involved two phases, one for the volunteers

to familiarize with the imagery procedure (training), and one for the data collection.
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The methodology for emotion analysis described in [33], resembles Ekman et al.’s

proposal. Change scores were calculated for every cardiovascular measure by subtracting

the baseline mean scores from the mean score during an emotional phase. With this kind

of analysis it was demonstrated that the heart rate is very sensitive to anger compared

the less valent feelings of joy or sadness. Another significant finding was that even though

the emotions of fear and anger can increase the heart rate, systolic blood pressure and

mascular blood flow, they can be differentiated by carefully examining the diastolic blood

pressure, which decreases for fear only. In other words, peripheral vascular resistance

decreases under fear. A similar study [60] in 1996 has expanded this analysis to non

cardiovascular features, and analyzed skin conductance under mental stress to show very

high correlation between this measure and a chosen psychological state.

In 2001 Picard (the pioneer of this field) et al. [1], proposed an emotionally intelligent

system that utilizes information of 4 physiological signals. This work was the first to

define and analyze the challenges of affective computing. The authors emphasize the fact

that data collection for the purpose of emotion detection is a sensitive process compared

to any standard experimental setup, and requires special attention. This is because in

order to gather valid affective data, one has to make sure that first, the desired emotion

was induced and second, that the subject labeled it accurately [61].

This is a non trivial procedure, first because as explained earlier some subjects are

suppressive, thus any attempt to cause an emotional disturbance might fail, and second

because people might have experienced feelings but not being aware of them or not feeling

comfortable to declare them. Accordingly, Picard et al. [1] enumerated five parameters

to be considered when designing such experiments:

1. An emotion can be self elicited (imagery), or controlled by external factors like

audio and visual stimuli.

2. The experimental environment plays a major role and the level of familiarity with
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Signal Annotation Sensor Placement

Electromyogram (EMG) E Masseter muscle (Face)

Blood Volume Pressure (BVP) B Tip of ring finger (left hand)

Skin Conductance S Index and middle fingers (left hand palm)

Respiration Rate R Diaphragm

Heart Rate H Measured from BVP peaks

Table 2.3: Biosignals analyzed in [1].

the subject should be defined.

3. There are several different modalities to explore (face, voice, gesture, biosignals).

4. The subject can be aware or unaware that some signal is being monitored.

5. The subject can be aware or unaware of the purpose of the experiment.

In addition, one of the major contributions in [1] is that data collection was carried

out over multiple days for the same individual. This was novel not only from a data

perspective, but also because it moved the interest of the community to examining also

person-dependent recognition methodologies instead of modeling emotion by averaging

population data. Furthermore, the stability of the emotional expression was examined

over a period of time. There were 8 emotions under consideration: anger, hate, grief pla-

tonic love, romantic love, joy and reverence. Because this list has several non traditional

emotions, the authors argued that the exact selection of emotions was not important, as

the only requirement is for the subject to understand and identify them consistently.

The physiological signals measured and analyzed in [1] are listed in Table 2.3 along

with the respective sensor placement. From the sensor orientation, one can observe that

the aim was to stabilize the left hand while leaving some freedom of movement to the

right hand. The experiment lasted for 30 days and every day the subject was recorded
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for 25 minutes. Emotion elicitation was based on imagery exercises. The volunteer was

asked to pick scenes or situations from her own experience that could induce the desired

emotion with adequate valence.

Picard et al. [1] suggested for classification features picturing the statistical properties

of the signals rather than just their changing rate. These statistical features are listed in

Table 2.4. In addition, and in order to account for the effects of non emotional factors,

an extra set of physiology related features was calculated. These features along with a

description can be found in Appendix C.

Having acquired a feature set, the next step of the training procedure is to select

the appropriate ones and transform them. The authors described a combination of the

Sequential Floating Forward Search algorithm (SFFS) in conjunction with Fisher Pro-

jection (FP) [62]. SFFS is a statistical searching methodology, which performs an nonex-

haustive search by continuously adding and removing features from a set by checking

their classification power. FP is a method for dimensionality reduction, which can lower

the dimensions of the feature space down to C − 1, where C is the number of classes,

i.e., emotions the system can identify. These two methods were combined hierarchically

in one framework, by using the output of SFFS as input to FP. For classification, a

k -Nearest Neighbor scheme was employed with k varying between 1 and 20. The high-

est classification performance reported in [1] was 83.3 % for the identification of three

emotions.

Scheirer et al. [2], reported a novel experimental procedure to induce and measure

frustration. This new approach had considerable advantages to the synchronization prob-

lem. More precisely, instead of deploying imagery or audio visual induction techniques,

they have created a computer game which aimed to frustrate the user. At random inter-

val of times the game failed (mouse clicking did not work) this way spoiling the players’

pleasure, who got eventually frustrated [63].

Utilizing a computer game to provoke emotion has significant advantages for signal
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Mean µx =
1
N

N∑
n=1

Xn

Standard Deviation σx =

√
1

N−1

N∑
n=1

(Xn − µx)2

Mean of first differences or raw samples δx =
1

N−1

N−1∑
n=1

|Xn+1 −Xn|

Mean of first differences or normalized samples δ̃x =
δx
σx

Mean of second differences or raw samples γx =
1

N−2

N−2∑
n=1

|Xn+2 −Xn|

Mean of second differences or normalized samples γ̃x =
γx
σx

Table 2.4: Typical classification features used in [1].

labeling. In the affective computing research, one of the major challenges is generating

accurate datasets, and this is first because it is extremely difficult to elicit emotions and

second because the ground truth is not always well defined. To this end, the ground truth

represents the true labeling of the signals with respect to the onset of an emotional phase.

What Scheirer et al. suggested in [2], was that using a computer game to frustrate the

user, the time instances of frustration could be easily labeled. However, that alone is not

very accurate and latency periods should be taken into account as there is usually a short

time interval before a human actually experiences a feeling internally (three seconds for

galvanic skin response [2]).

Scheirer et al.’s work [2] although focusing on human frustration could have been

deployed for any other emotion by accordingly changing the computer game. In [2],

frustration is defined as a manifestation of negative arousal when something impedes the

subject’s progress toward a goal. To quantify this arousal and distinguish between frus-

tration and non-frustration states, two physiological signals were considered, the galvanic

skin response and blood volume pressure. Once more, this selection of signals was not

compulsory and the authors explain that this choice might not even be optimal. How-

ever, for the purpose of their experimental setup, GSR and BVP were suitable because
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they can be measured unobtrusively by occupying only one of the subject’s hands. For

the analysis in [2], data from 24 subjects were utilized. The data were modeled with a

Hidden Markov Model (HMM) because of its success in describing dynamic systems like

speech recognition. A set of features was proposed for the discrimination of frustration

based on the variability of GSR and BVP. More details pertaining to these features can

be found in Appendix C. During training, the highest classification performance achieved

was 81.87%, which dropped to 67.4% for the testing set. Given that only two classes were

considered this result is slightly better than random guessing. The major novelty of [2]

is in setting the standards for the experimental procedures in the affective computing

research. The authors explained that the poor performance reported, could be addressed

with more sophisticated pattern recognition and machine learning techniques.

In 2003, Nasoz et al. [64], introduced the idea of adapting a software interface accord-

ing to a user’s current emotional state. A multimodal framework was proposed, based

on the combination of facial, verbal, gesture and physiological recordings. A synthesizer

was designed to combine all this information and provide the user with feedback.

The emotional states explored were six: sadness, anger, surprise, fear, frustration

and amusement. They were elicited using visual stimuli, movies particularly chosen to

relate to the above mentioned psychological states. The biosignals measured were the

galvanic skin response, heart rate and body temperature. Data from 31 subjects were

divided into training and testing and two algorithms were used for classification, namely

the k -NN and and the discriminant function analysis. (DFA). The two algorithms were

tested independently to show that DFA outperforms k -NN with a maximum recognition

performance of 90% for fear.

A later and more detailed report by the same authors [65] placed the emphasis to

presence technologies. The MAUI (Multimodal Affect User Interface) prototype system

was presented to enhance social presence using physiological signals. Facial expression

recognition was also central to MAUI, as one of its main features was an avatar who could
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mimic the user’s expressions. This is because when characters (personas) are employed

in virtual environments, their ability to communicate emotions increases significantly the

social presence and co-presence.

The list of emotions considered was the same as in [64]. Their study involved 14

subjects who were asked to watch movie clips from a predefined list of films that had

been shown to elicit specific emotions successfully [66]. Physiological signals (galvanic

skin response, heart rate and temperature) were measured non invasively with a wireless

armband. An important step in feature processing was normalization of the measure-

ments with respect to the respective relaxation value. This was done in order to avoid

the individual differences of participants. The main analysis in [64] included the classifi-

cation methods explored previously; k -NN, DFA plus a newone, namely the Marquardt

Backpropagation (MBP). The MBP method was reported to outperform the rest in rec-

ognizing all emotions (for instance 92% for sadness).

In 2004, Kim et al. [67] reported large scale experiments for physiological emotion

recognition with more than 100 subjects. The methodology relied on features out of three

physiological measurements i.e., skin temperature, heart rate and galvanic skin response.

A strong justification of the relationship between these signals and the autonomic ner-

vous system’s reaction to stimuli can be found in [67]. The analysis was based on two

experiments; the first involved 125 subjects (5-8 years old) under a variety of audio and

visual stimuli. The second experiment was carried out a year later to record 50 more

subjects (7-8 years old).

The heart rate variability (HRV) information was obtained through ECG with peak

detection (using the Teager energy operator) and calculation of the R-R intervals. The

authors suggested the spectrum of HRV as a feature source. Given that the spectrum

estimation should be accurate even for a short term signal (so that real-time approxi-

mations can be obtained), time-series models for frequency estimation were used [68].

More specific, two sub-bands were considered, a low frequency one at 0.03-0.15 Hz and
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a high frequency at 0.15-0.4 Hz. For the GSR, feature extraction comprised detection of

response occurrences which are waves of various amplitudes and lengths depending on

the stimuli. To do that, the GSR signals were differentiated and smoothened in order to

apply a threshold for the detection of the waves’ onsets and offsets . Four features were

used for classification out of GSR i.e., the mean DC level, mean values of GSR detected

wave amplitudes and duration, and the number of event (interesting wave) occurrences

in a 50 second segment. Finally, the skin temperature was used as a feature without

special processing.

The signals were divided into training and testing sets for classification among three

or four discrete emotional states i.e., sadness, anger, stress (and optionally surprise). The

recognition performance for three clusters of data from the first experiment was 55.2%,

and 78.4% for the second experiment. According to [67] the later dataset included signals

of higher quality. Among four emotional states, the correct classification rate of the

second dataset was reported to be 61.8%.

In 2005, Healey et al. [3] suggested the use of physiological signals for stress detection

under real world driving tasks. The purpose of the proposed system was to analyze a

driver’s psychological status in order to provide feedback or take appropriate action. An

adaptive framework was envisioned, where the computer would cope with the driver’s

stress by diverting cell phone calls to voice mail, suggest appropriate music and reduce

workload by manipulating the navigation systems.

Four signals were considered in [3], ECG, EMG, GSR and respiration (R). Among

the challenges of that implementation was for the system to react to stress detection in

real time. However, none of the monitored biosignals responds in time for appropriate

adjustment of vehicle control (1-3 min lag) [3]. To that end, two experimental setups

were considered:

1. Analysis I. The first analysis attempted to recognize general stress levels (defined

as low, medium and high), by utilizing data of 5 minutes long. In addition, this
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module was designed to detect stress based on a systematic fusion of all four signals

using standard pattern recognition techniques. Overall, 21 features were estimated

and used for classification, listed in Table C.3 in Appendix C.

2. Analysis II. The second analysis aimed at a more detailed examination of the phys-

iological signals. For this reason, the signals were processed independently, and

at a shorter time span i.e., every second. A special continuous stress metric was

designed to judge the environmental stressors at every second of the experiment,

in order to investigate the correspondence between this measure and the biosig-

nals. The stress metric was computed in a way that it revealed the instantaneous

workload of the driver, according to videos taken throughout the drives.

Classification on features from the first analysis indicated high accuracy, with low

level stress being correctly recognized for all testing data (100%), medium and high

stress recognition rates were 94.7% and 97.4% respectively. For Analysis II, continuous

time features were designed out of each of the biosignals, in the same range as the stress

metric, for the correlation coefficient (in the range [−1, 1]) to be used for matching. The

highest performance was achieved for a GSR metric picturing the instantaneous variation

of the mean, with the correlation coefficient reaching 0.99.

Driving applications of affective computing were revisited later by Hönig et al. [69].

By recording 24 subjects in a driving simulation environment, the authors attempted

to recognize the various stress levels provoked by driving related tasks such as changing

lanes, along with memory task such as question answering and arithmetic. Six physiolog-

ical signals were monitored during the simulation: ECG, EMG, GSR, BVP, temperature

and respiration along with some of their derivatives (ECG or BVP heart rate, reaspiration

rate and so on).

During the simulations, the subjects’ facial expressions were recorded with a camera

to be used for evaluation of stress elicitation. Extra subjects were used as labelers i.e.,
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to watch the video recordings and assess the stress levels based on the facial reaction of

the volunteers. This labeling, along with the standard stress onset timing designation

provided by the system (for instance, the instance when the driver is required to change

lane), were used in order to establish the data ground truth.

To cover a range of short to long period reactions, feature extraction operated on

signals of length varying between 1 and 60 seconds. A large number of features was

computed in [69] based on the mean, standard deviation and slope of the various win-

dows. The Fisher linear discriminant analysis was used for dimensionality reduction and

classification was carried out based on Gaussian mixture model probabilities. Overall,

and by fusing information from all physiological signals, a correct stress recognition rate

of 88.8% was achieved.

Lee et al. [70], suggested the use of a neural network that would be trained on

emotional cues and would then be tested on data not previously seen. Interestingly, only

6 subjects participated in the experimental set up. According to the authors that was

because the number of subjects involved is independent from the overall performance as

emotions are experienced in a different physiological manner by every individual. Two

physiological signals were considered: the galvanic skin response and the heart rate,

which was acquired with QRS peak detection from the electrocardiogram. The heart

rate was processed in the frequency domain, by estimating the ratio between low and

high frequency coefficients of the spectrum.

A multilayer perceptron (MLP) neural network was trained for the recognition of four

emotional states: sadness, calm pleasure, interesting pleasure and fear. All emotions

were induced by video clips, that the volunteers had chosen themselves. After watching

each video, the subjects were asked to describe their emotional experience using the

self assessment manikin (SAM). The overall performance for all emotional clusters was

80.2%, with fear being the best physiologically distinguishable feeling.

Anttonen et al. [71], focused in designing technologies which are not only unobtrusive
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to the user but also offer no distractions. Traditional equipment for physiological signal

measurements are wired sensors which need to be attached to the human body by trained

personnel. This limits significantly the range of applications as mobility is restricted to

a small area. In addition, such sensors fail a lot because they get easily detached, and

distract the subject who is expected to focus in experiencing an affective state. For

this reason, the authors in [71] suggested the use of a chair which is equipped with

electromechanical film (EMFi chair) to be able to record physiological measurements

while someone is sitting on it.

An initial step in Anttonen et al.’s [71] experimental setup was to ensure that the

chair can collect sufficiently accurate data. Therefore, they used a simple photoplethys-

mography (PPG) sensor attached to the earlobe of the subject while he/she was sitting

on the chair. Both the chair and the PPG sensor offered heart rate measurements, which

were compared with each other to demonstrate consistency in the chair recordings (the

correlation between the two was 0.99). This allowed the authors to rely on the chair

recordings for the rest of their experiments.

The objective of the main experimental procedure in [71] was to classify among pos-

itive, neutral and negative emotional states. 26 subjects were recorded sitting on the

EMFi chair, while their psychological state was stimulated via audio and visual stimuli

(International Affective Picture System (IAPS) [72] and International Affective Digitized

Sounds (IADS)). Both positive and negative stimuli resulted in heart rate deceleration

compared to the neutral reaction. What is more, the deceleration under negative effects

was greater than the positive in magnitude and in length. Heart rate changes in positive

stimuli were observed only during the first two seconds and right before returning to a

normal rhythm. The latency period for the manifestation of heart rate changes under

negative reactions was approximately six seconds from the onset of the stimuli.

Nakasone et al. [73], presented a framework for machine emotion recognition which

concentrated on the implementation challenges of this technology. More precisely, the
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authors looked at gaming scenarios between humans and humanoid agents, who were

envisioned to ”read” the player’s psychological state and respond appropriately. The

system was designed upon five main layers namely, the synchronization, the device, signal

categorization, bayesian network and interface layers.

The synchronization layer was set responsible for the initialization of emotion assess-

ment and communication among the rest of the layers. For instance, data acquisition,

storage and analysis where synchronized in this module. The device layer controlled the

physiological recording devices, which measured EMG and GSR. At the categorization

layer, the signals were subjected to feature extraction, which involved a simple calcula-

tion of their sample mean and subtraction from a baseline value (where the baseline was

considered to be the physiological response at rest). The bayesian network layer would

utilize the classification results in order to finalize the emotion decision and finally, the

interface layer adapted the game to the particular player status.

Although no specific experiments were carried out, Nakasone et al. [73], addressed

problems related to the actual realization of affective computing. Overall, three challenges

were outlined: 1) The baseline problem, which relates to the standard resting conditions

against which instantaneous physiological measurements should be compared, 2) The

timing problem, i.e., detecting the exact onset of an emotional phase and 3) The intensity

of a particular experienced emotion. To make sure baseline signals were obtained for

comparison, the authors suggested an initial relaxation period, where the subject would

listen to calm music. Furthermore, to ensure that emotions were captured in the signals,

the authors suggested sampling every 50 msec.

In 2008, Benovoy et al. [74], proposed another novel application for affective recog-

nition systems. The main idea was for emotion assessment to be used in a performance

setting, for instance a musical act, were the performer leads an instrument to compose

an artistic output based on the instantaneous physiological reaction of a subject. This

application had two main design phases:
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1. Biosignal recording and mapping with emotional states. The blood volume pressure

(BVP), galvanic skin response (GSR), electromyography (EMG) and respiration

were considered for classification among four emotions (joy, anger, sadness and

pleasure).

2. The second stage was meant to provide a rich external manifestation of a person’s

internal emotional status [74]. The purpose was to build a musical device which

would be mapped to the user’s feelings but also controlled by him/her.

Given the specifics of the application, a direct interaction with the experimental subject

was preferred over standard emotion induction methodologies used previously (audio

visual). A professional actor guided by an experienced theatre director was monitored

while experiencing a variety of characters and situations, particularly designed to elicit

the desired emotions. By the end of each experiment the actor was asked to fill in a

questionnaire concerning the intensity of the previously experienced emotion.

A large variety of features was estimated from the recorded biosignals. Overall 225

features were used, similar to [1]. A list of these features can be found in Appendix C.

The next step was to select the optimal for classification features using the sequential

forward selection (SFS) algorithm. The overall dimensionality was reduced with Fisher

discriminant analysis, and finally classification was carried out with either the linear

discriminant analysis (LDA), or k -NN or a multilayer perceptron (MLP) neural network.

It was demonstrated that the LDA outperforms the rest of the classification schemes,

with a classification rate of 90% for four emotions. This notable result was attributed

to the fact that a professional actor was recorded, thus emotion elicitation was more

successful compared to prior trials.

In summary, prior DEM approaches have established biosignals as a carriers of affec-

tive information. The simplicity in the conception of emotion within such models (i.e.,

the discretization to distinct emotional conditions) makes them easily employable in real
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life systems. However, prior works require the collection of more than one physiologi-

cal measurements in order to assess emotion, which limits real life applications due to

increased obtrusiveness. In addition, the ECG signal has been primarily used for HR

estimation while the evolution of the waveform under emotional activity has not been

studied.

2.4.2 Affective Dimensional Models

In 2004, Mandryk et al. [75], established the applicability of physiological emotion recog-

nition in the evaluation of entertainment technologies. The breakthrough of this work

lies in proving that there is a different physiological response when users play against

other players, as opposed to playing against the computer. As a matter of fact, there is a

different reaction when playing against friends compared to strangers [76]. In addition, it

was shown that people tend to immerse and enjoy a game more, when they play against

humans [75]. These observations and the respective technology apply directly to the

entertainment industry for the design of virtual environments and computer games.

Mandryk outlined the three challenges of this research in [77]:

• What is the definition for a successful game? A game can not be characterized

successful based on the user performance, but on the user’s affective experience

[77]. A prosperous game environment enhances interaction between the players

(co-presence), and only this can offer a truly immersive user experience. Thus,

success is measured in terms of the psychological engagement of the players.

• How can the entertainment variables be measured? A means to quantify user en-

gagement, is by measuring his/her emotional involvement. The interest is not in

defining which emotion is experienced, but the level of subject’s arousal in general.

The biosignals considered for this purpose are the galvanic skin response, vari-

ous cardiovascular measurements (electrocardiogram, heart rate, blood pressure),
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respiration rate and amplitude, and electromyography.

• How can a measurement be associated to the player’s experience? The game events

were monitored to label the signal recordings. This approach is similar to the

Scheirer et al.’s [2] idea for controlled emotion elicitation which allows for better

signal segmentation.

The features used for discrimination of arousal were simply the time average of the

signals. This kind of features diminished the variability of each psychological state, but

this was intentional since the authors were interested only in detecting the presence of

emotions and not in defining which emotion was experienced. The experimental set

up involved 10 male subjects and it was shown that the arousal was greater for all

physiological measurements when playing against humans.

In 2007, the same researchers [78] managed to design a consistent mapping between

physiological measurements and emotional states i.e., the arousal-valence (AV) plane.

This time the authors were interested in identifying the exact emotional state (fun,

excitement, frustration, challenge and boredom). A fuzzy approach was adopted to

systematically combine information from four physiological measurements (galvanic skin

response, heart rate, smiling and frowning electromyograph) and then project it to mean-

ingful valence and arousal dimensions. Accordingly, a second fuzzy scheme established

the correspondence between the AV axes and the desired emotional states.

The four biosignals served as inputs to the first fuzzy framework. A preprocessing

step was required to ensure that the measurements were comparable with each other (this

was required by the fuzzy model). Preprocessing involved smoothening with a moving

average window and then normalization into a percentage between 0 and 100.

The experimental setup in [78] included 12 subjects. The physiological readings from

the first 6 were used for training i.e., to analyze emotional response and design the

fuzzy logic, and the other 6 subject recordings were used for testing. To evaluate the

performance of the algorithm, the subjective reports (questionnaires) were compared
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against the objective recognition results (from the fuzzy scheme) to reveal similar trends

for most emotional classes. Even though the performance of the framework was not

presented analytically, Mandryk et al. were the first to attempt a direct match between

physiological signals and the AV plane. The reader should note that prior to this work,

researchers have concentrated in modeling specific emotional states.

Haag et al. [79] proposed an affective dimensional model that can classify information

on an arousal and valence basis. A collection of physiological signals was used for this

purpose, each processed independently and according to its special characteristics. The

biosignals were the electromyogram (EMG), galvanic skin response (GSR), skin temper-

ature, blood volume pulse (BVP), electrocardiogram (ECG) and respiration.

The authors in [79] comment strongly on the importance of the emotion induction

methodologies and to the effects on the performance. To elicit emotions appropriately,

strong realism is required which is usually not in accordance with the experimental ethics

(provoking severe negative emotions is ethically questionable). For this reason they used

a collection of pictures from the International Affective Picture System (IAPS) [72]. The

pictures were classified into six sets, each consisting of 5 photos. Every set was labeled

as low, medium or high valence, or low, medium or high arousal. The combination of the

two extensions (arousal and valence) defined a two dimensional space for the classification

of the physiological features.

The statistical features employed for classification were:

• The standard deviation of the heart rate, estimated with peak detection out of the

ECG signal.

• The standard deviation of the heart rate, estimated with peak detection out of the

BVP signal.

• Standard deviation of BVP amplitudes.

• The EMG amplitude.
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• Standard deviation of skin conductivity (GSR).

• Standard deviation of respiration amplitude.

• Standard deviation of respiration rate.

It should be mentioned that the above mentioned list of features was the optimal se-

lection, and more features were tested and rejected in [79] because of poor performance.

One subject was tested on different days and also various times of the day. The recogni-

tion rate was reported for correct classification considered within 10% and 20% distance

from the true class on the AV plane. The second option increases the bandwidth thus

greater performance was expected. More specific, for the large bandwidth a recognition

rate of 96.58% and 89.93% was achieved for arousal and valence respectively.

Jones et al. [80], proposed a system for recognition of affective states based on

dimensional modeling. The main idea is that an emotional state can be sufficiently

characterized by its arousal and valence magnitudes, without mapping them to distinct

emotions (sadness, happiness etc). The two dimensional AV model was used as a basis

for projection of information collected from physiological signals.

The plane was divided into 25 areas, each representing an emotional region. Three

physiological signals are considered for recognition, the blood volume pressure (BVP),

skin conductance (GSR) and the respiration rate. Emotions were induced with 21 images

from IAPS [72] since these images have already been rated in valence and arousal by

psychologists. Each picture was displayed to the subject for 15 seconds after which there

was an interval of rest for 25 seconds.

As with any pattern recognition problem, collection was followed by feature extraction

and classification. The features used in [80] were simple statistical measures of the signals

like the mean and variance. For classification, two multi layer perceptron neural networks

were used, one for each descriptive dimension (AV). Overall, 13 subjects were recorded.

The data of 10 subjects were used for training and the rest for testing. The authors
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DEM Discrete Emotional Model       ADM Affective Dimensional Model        HR Heart Rate             T Temperature      

Table Notation 

GSR  Galvanic Skin Response            BVP  Blood Volume Pressure                    R Respiration              ECG Electrocardiogram 

EMG Electromyogram 

 Ekman et al. Sinha et. al Picard et al.  Scheirer et al. Nasoz et al. Kim et al 

 

 

Emotional 

Model 

Type DEM DEM DEM DEM DEM DEM 

Emotions 

Induced 

Surprise, 

Disgust, 

Sadness, 

Anger, Fear, 

Happiness 

Fear, Anger, 

Joy, Sadness 

Anger, hate, 

Grief, 

Platonic love, 

Romantic 

love, Joy, 

Reverence 

Frustration Sadness, Anger, 

Surprise,Fear, 

Frustration, 

Amusement 

Sadness, 

Anger, Stress, 

Surprise 

Elicitation 

Method 

Imagery Task Imagery 

Task 

Imagery Task Computer 

Game 

Movie clips Audio, Visual 

stimuli 

 

 

 

 

 

Biosignal 

Processing 

 

 

Signals 

HR, T, GSR, 

Muscle 

tension 

HR, BVP,  

and other 

cardiovascul

ar measures 

EMG, BVP, 

GSR, R, HR 

GSR, BVP GSR, HR, T T, HR, GSR 

 

Feature 

Extraction 

Change 

Scores 

Change 

Scores 

Mean and 

std analysis 

with SFFS 

and Fisher 

projection. 

Variance and 

pinch 

measures. 

Signal Average 

for each 

emotion. 

HR spectrum, 

GSR wave 

features 

 

Classification 

Decision Tree MANOVA k-NN HMM k-NN, MBP, 

discriminant 

analysis.  

SVM 

 

 

Performance 

 

Number of 

subjects 

 

 

     16 

 

 

     27 

 

 

          1 

 

 

       24 

 

 

       14 

 

 

      50 

Classification 

Rate 

Not reported Not 

reported 

83.3% for 3 

emotions 

67.4% 92% for sadness 61.8% 

 

Comments 

 Professional 

actors were 

recorded. 

Fear and 

anger can 

be 

differentiate

d through 

the diastolic 

blood 

pressure. 

Evaluation of 

subject 

dependent 

method.  

Experiments 

with the 

same  subject 

over several 

days.  

The 

experimental 

process was 

controlled 

with the use 

of a  specially 

designed 

computer 

game.  

Emphasized the 

use of affective 

computing in 

presence 

technologies. 

Special 

properties of 

the biosignals 

were 

considered for 

appropriate 

feature 

extraction. 

Table 2.5: Affective computing using biosignals: Comparison Milestones
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*  Performance measured in terms of distance between the AV values obtained with the fuzzy scheme 

and the subject reports.  

 Lee et al Anttonen 

et al. 

Benovoy et al. Mandryk et al. Haag et al.  Jones et al. 

 

 

Emotional 

Model 

Type DEM DEM DEM ADM ADM ADM 

Emotions 

Induced 

Sadness, 

Calm 

Pleasure, 

Interesting 

pleasure, 

fear 

Positive, 

neutral 

and 

negative 

status  

Joy, Anger, 

Sadness, 

Pleasure 

AV plane AV plane AV plane 

Elicitation 

Method 

Video clips Audio, 

Visual 

stimuli 

Imagery Task Computer 

games against 

a friend or the 

computer 

Visual stimuli Visual stimuli 

 

 

 

 

 

Biosignal 

Processing 

 

 

Signals 

 HR, GSR HR BVP, GSR, 

EMG, R 

GSR, HR, smile 

EMG, frown 

EMG 

EMG, GSR, R, T, 

BVP, ECG 

BVP, GSR, R 

 

Feature 

Extraction 

Signals used 

for 

classification 

directly 

ANOVA Mean and 

variance 

features 

selected with 

SFS and Fisher 

discriminant 

Signal 

histogram 

analysis 

Standard 

deviation 

features  

Mean and 

variance 

features 

 

Classification 

MLP Neural 

Network 

- k-NN, MLP, 

LDA 

Fuzzy logic 

Method 

Neural 

Network 

Two MLP 

neural 

networks for 

Arousal and 

Valence. 

 

 

Performance 

 

Number of 

subjects 

6 26 1 12 1 13 

Classification 

Rate 

80.2% 62.5% 90% *Arousal 3% 

 Valence 6% 

96.58% 62% Valence 

67% Arousal 

 

Comments 

  Experime

nts with 

unobstrusi

ve 

sensors. 

Emphasized 

the use of 

affective 

computing in 

artistic 

performance 

settings. 

Defined the 

standards for 

the application 

of affective 

computing in 

the 

entertainment 

industry 

  

Table 2.6: Affective computing using biosignals: Comparison Milestones (continued)
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 Healey et al. Nakasone et al. Honig et al. 

 

 

Emotional 

Model 

Type DEM DEM DEM 

Emotions 

Induced 

Low, Medium, High 

Stress 

Relaxation, Joy, 

Frustration 

Relaxation, Stress 

Elicitation 

Method 

Driving Task Computer card game Driving simulations 

combined  with oral 

stressors 

 

 

 

 

 

Biosignal 

Processing 

 

 

Signals 

ECG, EMG, R, GSR EMG, GSR ECG, EMG, GSR, R, T, 

BVP 

 

Feature 

Extraction 

Statistical and Spectral 

features 

Signal mean Mean, Standard 

deviation, Slope and 

LDA 

 

Classification 

Discriminant  Analysis Bayesian network GMM 

 

 

Performance 

 

Number of 

subjects 

 

 

                24 

 

   

No experiments 

reported 

 

 

                  24 

Classification 

Rate 

100 % Low stress 

 

94.7% Medium stress 

 

97.4% High stress 

 

No experiments 

reported 

 

 

               88.8 % 

 

Comments 

 Performed experiments 

for real time stress 

detection in real life 

scenarios.  

Proposed a layer 

design for real 

affective computing 

applications in gaming 

scenarios.  

The biosignals were 

labeled with special 

attention leading to 

impressive stress 

detection rates.  

Table 2.7: Affective computing using biosignals: Comparison Milestones(continued2)
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described two performance measures, based on the location of the system’s output on

the AV plane. The first measure counted as correct classification cases only outputs

which conformed exactly with the true class on the AV plane. With this arrangement,

the performance was 30% and 35% for the valence and arousal dimensions respectively.

The second performance measure was less strict and considered successful a classification

within +/- 1 unit of the true class. With this arrangement, the system achieved 62%

and 67% correct classification for the valence and arousal dimensions respectively.

In conclusion, prior works in this field have managed to establish the idea of affective

computing along with its connection to psychophysiology. Various biosignals have been

examined and used for recognition based either on discrete or dimensional modeling

of emotions. Affective computing is a multi-disciplinary field inviting works from the

computer science, statistics, psychology, engineering, social and medical fields. Even

though the emotional intelligence problem with biosignals has been studied for years,

no affective modeling methodologies has been proposed to perform pattern recognition

using the signals’ inherent properties.

Tables 2.5 2.6 and 2.7 outline some comparison milestones among previous works

in the field. It can be inferred from these Tables, that even though the experimental

procedures and emotion modeling have been advancing throughout the years, there are

limited attempts to design affective pattern recognition techniques, and feature extraction

usually operated on standard statistical measurements (mean, standard deviation etc.).
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2.5 Chapter Summary

This chapter presented a discussion of the ECG signal from two different perspectives

i.e., from a physiological (anatomical) and psychological point of view. These interact

on the ECG signal in a non-linear fashion.

The essence of biometric recognition is the detection of physiological patterns that

are robust to psychological variations. Similarly, the observation of psychological cues,

irrespective of subject-specificity, is the foundation of affective computing. Therefore,

biometric recognition and affective computing have contradicting interests on the ECG

signal.

To ensure strong biometric templates, one needs to guarantee robustness to psycho-

logical variations that may affect the signal. Ideally, we need to isolate the physiological

aspect of the ECG. However this may not be mathematically feasible given the complex

nature of the signal. Moreover, psychology itself is a very complex science wherein one

needs to define the exact conditions that may threaten the biometric template.

The first step in this thesis is to present the problem of biometric recognition, with

psychological factors not taken into account. The objective of this analysis is to demon-

strate the perils of ignoring time dependency from an identity verification point of view.

The next step is to examine the signal from a psychological point of view. While prior

works in the affective computing literature have marginally used the ECG waveform, this

thesis argues that under particular conditions this signal can exhibit emotion specific pat-

terns which are associated with instances of biometric template destabilization. Finally, a

solution to this problem is presented to accommodate biometric recognition in monitoring

settings wherein template destabilization is most prominent.



Chapter 3

ECG Databases

3.1 Experimental Protocols

This chapter presents the experimental protocols that have been designed for the collec-

tion of ECG signals. The data from the subsequent experiments have been organized,

anonymized and securely stored. In addition, all databases have been made publicly

available, by the Biometric Security Laboratory, and can be provided upon request.

When evaluating performance on real ECG signals, it is very important to establish

experimental procedures which ensure that the necessary information is captured and

in the data. Although a number of ECG databases are publicly available, they are not

suitable for biometric testing. Since the signal is typically used in medical diagnostics,

existing databases offer ECG signals which depict a number of cardiac conditions.

For biometric testing the database needs are different than for clinical testing. First

of all, the subjects are required to be healthy or at least to not exhibit prominent car-

diac irregularities. Although it is of interest for the biometric system to tolerate small

irregularities, the ECG signal needs to be first established as a biometric modality for

healthy individuals. Furthermore, in addition to the uniqueness evaluation of the ECG,

one needs to also examine the permanence of the signal with time. A typical way to do
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this in the biometrics field is to collect the ECG signal from the same individual during

different recording sessions.

For the above reasons, two different experimental setups have been designed for bio-

metric testing. In the first experiment (Short-term recording experiments), the objective

was to collect ECG signals from as many subjects as possible (to evaluate uniqueness),

during two different recording sessions (in order to evaluate permanence). This experi-

ment is referred to as short-term because the collection periods in every session were very

short. In the second experiment (Long-term recording experiment), longer ECG readings

were acquired for every individual.

For the purpose of affective computing, this chapter also presents experimental proce-

dures for ECG signal collection under emotional activity. These experimental procedures

are more complex than typical biometric setups, because one needs to guarantee success-

ful emotion elicitation. This chapter presents two such experiments i.e., a passive and an

active arousal induction experiments. The difference between the two is that in the first

the subjects were passively exposed to an emotional stimulus, while for the second case

the subjects participated actively in the experimental procedure.

3.2 Short-Term Recording Experiments

The short-term recording experiments took place at the Biometrics Security Laboratory

of the University of Toronto (Ethics protocol # 23018). 52 volunteers participated in this

experiment, the majority of which were graduate students. Overall, the age range was

between 22 and 50. For this experimental setup, two recording sessions took place several

weeks apart, in order to investigate the permanence of the signal in terms of identification

performance. All participants were asked to repeat the experiment, however only 16 were

recorded at both sessions.
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Figure 3.1: ECG samples from the short-term recordings database. Every subject was

recorded during two sessions.

For the short-term recording experiments, a Vernier1 ECG sensor (EKG-BTA) with

the Go!Link connector were used. Lead I ECG was collected, by placing the electrodes at

the inside of the right and left elbows, and the ground on the right wrist. The sampling

frequency was set to the device’s maximum (200Hz) and the recording duration to 3

minutes. The experimental procedure was disclosed to the volunteers in the beginning of

the experiment, who also signed consent forms. During the collection, the subjects were

given no special instructions, in order to allow for mental state variability to be captured

in the data. Figure 3.1 shows some examples of ECG signals from this database, from

four different subjects.

In order to evaluate the performance of a biometric algorithm, the earliest recording

are typically used for enrollment of the user in the system and the latter for testing.

1http://www.vernier.com
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For the 36 individuals that only one recording is available, different treatment can be

performed. For instance, when a generic pool is necessary, the ECG signals from these

individuals are used to form it.

3.3 Long-Term Recording Experiments

The purpose of the long-term recording experiment was to explore the dynamic nature

of the ECG signal and to investigate in greater detail its instantaneous changes. For this

experiment, all subjects were debriefed at the Biometrics Security Laboratory, however

the collection was performed in their personal working stations. 10 volunteers partici-

pated in this experiment. The recording sessions were approximately 2 hours for every

individual.

The Hidalgo Equivital EQ-01 monitor2 was used for the collection. This device allows

for long term wireless ECG monitoring. It was chosen for this experiment because un-

obtrusive data collection was necessary. The signals were recorded from the chest area,

and wirelessly transmitted to a computer. In order to account for the particular emo-

tional changes, no special instructions were given to the participants. After connection

establishment and testing of the equipment, subjects signed consent forms and returned

to their personal working stations, to continue their daily activities for 2 hours. ECGs

were digitized at 256 Hz.

3.4 Passive Arousal Experiment

The passive arousal experiment was conducted at the Affect and Cognition Laboratory,

of the University of Toronto (Ethics protocol # 22059). The purpose of this experiment

was to evaluate the response of the ECG signal to passive emotional stimuli.

2http://www.equivital.co.uk
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The International Affective Picture System (IAPS) [72] was used in this experiment

as a passive stimulus for emotion elicitation. This picture set provides ratings of affect

for a large set of emotional conditions using a wide range of semantic categories. The

pictures have been rated by more than 100 subjects at the University of Florida based

on three criteria: arousal, valence and dominance. Efforts have been made to include

pictures that cover the range of these norms [72]. The IAPS photo-set is widely deployed

in affect research as a passive emotional stimulus.

In this experiment, the volunteers were asked to sit conveniently and inspect images

of the IAPS photoset, presented to them as a slide-show. The images attempted to

induce the following emotional conditions: gore, fear, disgust, excitement, erotica and

neutral. These conditions cover the valence spectrum from negative (gore, fear, disgust)

to positive (erotica, excitement). Also, with respect to the arousal, the gore and erotica

stimuli are considered to have induced the most highly arousing states (see Appendix B).

Five pictures of the same emotional target (emotion batch) were displayed in random

order. The continuous display of pictures with similar valence and arousal attempted to

create an ”emotional state” rather than an instantaneous emotional reaction, in order to

account for potential cardiac latencies. Every batch was repeated twice with a different

set of pictures. Between batches the subject was asked to perform a simple arithmetic

task that would bring the psychological activity to baseline. Lead I ECG was collected

during the slide-show, at 1KHz, with the BIOPAC MP 150 system. Upon completion of

the experiment, the volunteers were instructed to look at the pictures again, and report

subjectively valence and arousal.

In total, 44 volunteers, of ages between 21-40 participated in this experiment. Record-

ings from 12 individuals were discarded due to noise and artifacts. The BIOPAC system

allowed for automatic synchronization of the ECG signal with the pictures. Every emo-

tional state is assigned with a unique number. A vector of the same length as the signal,

such as the one shown in Figure 3.2, was provided by the system, where these unique
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Figure 3.2: Data labeling for the passive arousal experiment. Every picture of the IAPS

photo-set is assigned to a unique number which indicates the beginning of the respective

emotion on the data.

Figure 3.3: Game and face video playback, used for self-assessment of arousal.

numbers indicated the onset of the respective emotional state

3.5 Active Arousal Experiment

The active arousal experiment was also conducted at the Affect and Cognition Labo-

ratory, of the University of Toronto (Ethics protocol # 25419). In this experiment, a

commercial video game was used to elicit active mental arousal.
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Figure 3.4: Data labeling for the active arousal experiment. The FEELTRACE is a

continuous arousal indication.

The game was designed to present increasing difficulty. The goal was to have the

player gradually immersed, by increasingly concentrating in order to meet the game

requirements. A popular video game was used, namely the Cube 2: Sauerbraten3, devel-

oped in 2009. This game allows the user to dynamically pre-edit the environment and

control the difficulty levels. A pilot game was built on this ground, to assist the needs of

the experiment. The subjects got motivated with deception, by letting them know that

the purpose of the experiment is to measure game completion time.

All participants were seated in front of a computer screen, and presented with a

short introduction to the video game. A five minute pilot game will was played, for the

participant to learn and be adjusted to the game. During that time, no physiological

response was monitored. When the subject felt comfortable with the process, the ECG

sensor was placed and the main game was initiated. In total 43 volunteers participated

in this study. Data from one person were discarded due to noise.

Depending on the familiarity of the subject with game playing, the duration of the

experiment varied between 20-45 minutes. During the game, ECG was monitored using

Hidalgo’s Equivital sensor, which is portable and wireless. Unobtrusiveness was very

important for the subjects to naturally immerse to the game. ECG was recorded from

the chest, and digitized at 256Hz. Because of the chaotic nature of the game, and the

3http://sauerbraten.org
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unforeseeable order of events that can take place, arousal annotation was self-determined.

For this reason, a video of the player’s facial expressions was captured during the game

(synchronous to ECG). Upon game completion, the subjects were asked to watch a

playback video of the game and their facial expressions while continuously reporting

arousal using FEELTRACE [81]. Figure 3.3 shows an example of such a self-assessment

video.

In order to compare the effects of active and passive arousal, we asked the same

volunteers to participate in both experiments, to acquire subject specific arousal data

for both scenarios. In total, signals from 31 volunteers were common and eligible for

processing.



C
h
a
p
t
e
r
3
.

E
C
G

D
a
t
a
b
a
s
e
s

66

Sort-Term Long-Term Passive Arousal Active Arousal

ECG Database ECG Database Database Database

No of Subjects 52 10 44 43

Rec. Duration 3 minutes 2 hours 15 min 20-45 min

Sensor Placement Lead I Chest Lead I Chest

Rec. Device Vernier EKG-BTA Equivital EQ-01 BIOPAC MP 150 Equivital EQ-01

Sampling Freq. 200 Hz 256Hz 1KHz 256Hz

Exp. Conditions Rest Office activities Picture Inspection Video Game

Principle Two recording sessions Long ECG recordings Induction of passive Induction of active

of the same individuals during regular every day arousal using the arousal using a shooting

(one month apart), activities, in order to International Affective video game of increasing

in order to examine examine instantaneous Pictures System [72]. level of difficulty.

the permanence of the variations of the signal.

biometric features.

Table 3.1: Summary of ECG Databases



Chapter 4

HeartID: Method and Application

Frameworks

4.1 Problem Statement

This chapter presents the HeartID recognition system which is based on the ECG bio-

metric. The core of this system is the Autocorrelation / Linear Discriminant Analysis

(AC/LDA) algorithm that has been originally proposed in [9] and later extended to car-

diac arrhythmia settings in [8]. Information on the prototype HeartID system can be

found in [82].

In HeartID, the AC is used for feature extraction, as it naturally explores the quasi-

periodic property of the ECG signal. The LDA is a machine learning algorithm that

performs feature selection in a class-optimal way. The two algorithms work in synergy so

that the recognizer ”learns” the idiosyncratic properties of every subject’s ECG. However,

during collection, noise and recording artifacts may be presented in the signal that the

filters are not able to remove. In biometric recognition, it is important that the systems

are empowered with a quality assessment tool that allows them to reject a poor reading

rather than risking a low confidence decision. Given the properties of the AC/LDA
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feature extractor, this chapter presents a solution to automatic quality assessment that

boosts the overall accuracy of the system.

Furthermore, this chapter discusses the next step to the deployment of the AC/LDA

approach in real-life systems. Since machine learning is incorporated to the recognition

framework, the overall architecture needs to be designed in a way that ensures viability

in real-life settings. Three frameworks are explored, each leading to a distinct application

environment: 1) small-scale recognition 2) large-scale recognition and 3) recognition in

distributed systems. The AC/LDA algorithm is adapted to each scenario based on the

requirements of the application environment. To adapt the algorithm, we first need to

answer the following questions:

1. Is the population of the enrollees known at the time of system training?

2. What is the relative size of the gallery set?

3. Do the environment and privacy policy allow the maintainance of a central database

of biometric templates?

4. Does the system allow communication with the server where the recognizer is trained?

The answers to the above questions have direct impact on the AC/LDA recognition

scheme. For instance, if general access control is envisioned (for example for subway

access), it is not practically feasible to train the LDA algorithm on the recordings of

the particular enrollees. This chapter will address these concerns by introducing the

concept of generic training for the ECG signal, as well as by providing solutions that can

personalize the recognizer to the intrinsic variability of every individual.

4.2 Pattern Recognition for ECG Biometrics

In this section, the original AC/LDA [9] algorithm is briefly presented in order to extend

it to a quality enhanced version. The fact that the autocorrelation is used for feature
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extraction is central to the proposed quality assessment approach. More specific, since

the discriminative power of the ECG lies within its second order statistics, a factor that

guarantees sufficient repeatability is presented to ensure signal quality.

4.2.1 The AC/LDA Algorithm

ECG biometrics is essentially a pattern recognition problem, comprised of three distinct

steps i.e., pre-processing, feature extraction and classification.

Pre-processing. The ECG data in raw format contain both high (powerline interfer-

ence) and low frequency noise (baseline wander) that needs to be eliminated. Baseline

wander is caused by low frequency components that force the signal to extend away from

the isoelectric line. The source of this kind of artifacts is respiration, body movement or

inadequate electrode attachment. Powerline interference is generated by poor grounding

or conflicts with nearby devices.

To reduce the effects of noise, a butterworth bandpass filter of order 4 is used. Based

on the spectral properties of each wave in the heart beat, the cutoff frequencies of the

filter are 1Hz and 40Hz. The order of the filter and the pass-band frequencies are selected

based on empirical results [9, 83].

Feature Extraction. As mentioned before, the core of the proposed feature extraction

method is the autocorrelation (AC) of ECG signals. The rationale for AC is that it

captures the repetitive property of the ECG signal in a way that only significant, iterative

components contribute to the waveform i.e., the P wave, the QRS complex and T wave.

By analyzing the AC, incidental patterns of low discriminative power are attenuated,

while persistent components of discriminative power are brought to light.

The syllogism behind AC with respect to fiducial points detection, is that it blends

into a sequence of sums of products, ECG samples that would otherwise need to be sub-
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jected to fiducial detection. Furthermore, the AC allows a shift invariant representation

of similarity features over multiple cycles. The AC can be computed as:

R̂xx[m] =

N−|m|−1∑

i=0

x[i]x[i +m] (4.1)

where x[i] is the windowed ECG for i = 0, 1...(N − |m| − 1), and x[i + m] is the time

shifted version of the windowed ECG with a time lag of m = 0, 1, ...(M − 1);M <<

N. Even though the major contributors to the AC are the three characteristic waves,

normalization is required because large variations in amplitudes appear, even among the

windows of the same subject. In addition, only a segment of the AC vector propagates to

LDA, as defined between the zero lag instance and up to approximately the length of the

QRS complex. This is because this complex is the least affected by heart rate variability

[17].

An AC vector can be used directly for classification. However, it is important to

further reduce the intra-subject variability in order to control false rejection. In addition,

depending on the sampling frequency of the ECG signal, the dimensionality of an AC

window can be considerably high. For this reasons the Linear Discriminant Analysis

(LDA) is recruited for dimensionality reduction.

The LDA is a well-known machine learning method for feature extraction. Supervised

learning is performed in a transform domain so that the AC vector’s dimensionality is

reduced and the classes are better separable. The remaining discussion is based on the

following definitions:

• Let U be the number of classes i.e., the number of subjects registered in the system.

• Let Ui be the number of AC windows for a subject (class) i, where i = 1...U .

• We define as zij an AC window j, where i = 1...Ui and j = 1...U .

• Let Zi be the set of AC windows for a subject (class) i, defined as Zi = {zij}
Ui

j=1.
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• Let Z be a training set consisting of all AC windows of all subjects i.e., Z = {Zi}
U
j=1.

Then a set of K feature basis vectors {ψm}
K
m=1 can be estimated by maximizing the

Fisher’s ratio which is equivalent to solving the following eigenvalue problem:

argmax
ψ

|ψTSbψ|

|ψTSwψ|
(4.2)

where ψ = [ψ1, ..., ψK], and Sb and Sw are the inter-class and intra-class scatter matrices

respectively, computed as follows:

Sb =
1

N

U∑

i=1

(zi − z)(zi − z)T (4.3)

Sw =
1

N

U∑

i=1

Ui∑

j=1

(zij − zi)(zij − zi)
T (4.4)

where zi =
1
Ui

∑Ui

j=1 zij is the mean of class Zi and N is the total number of windows and

N =
∑U

i=1 Ui.

The maximization of Fisher’s ratio is equivalent to forcing large separation between

projected ECG windows of different subjects, and small variance between windows of

the same subject. The LDA finds ψ as the K most significant eigenvectors of (Sw)
−1Sb

which correspond to the first K largest eigenvalues. A test input window z is subjected

to the linear projection y = ψT z, prior to classification.

It is important to note that ECG biometrics benefit from supervised machine learn-

ing approaches more than other biometric modalities. This is because of this signal’s

dynamic and time-dependent nature which leads the biometric to exhibit higher intra-

class variability than traditional biometric modalities. With the LDA one can essentially

control false acceptance and false rejection.

Classification. For biometric matching, input and gallery templates are associated

using the Euclidean distance as a measure of dissimilarity, while the final decision is made
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upon voting of k -Nearest Neighbors. The normalized Euclidean distance is computed as

follows:

D(y1,y2) =
1

K

√
(y1 − y2)T (y1 − y2) (4.5)

where K is the dimensionality of the feature vectors. For a U class problem, LDA can

reduce the dimensionality of the feature space to U -1 due to the fact that the rank of

the between class scatter matrix cannot go beyond U -1. Factor V is there to assure fair

comparisons for different dimensions that z might have.

4.2.2 Quality Assessment with the Periodicity Transform

While the main ingredient of proposed biometric recognition system is the AC/LDA

algorithm, this thesis presents an extension of the basic approach with the incorporation

of a signal quality assessment methodology. The enhanced AC/LDA feature extraction

algorithm is two-fold. First, the system utilizes the periodicity transform (PT) to judge

the matching validity of the signal, and second, a localized matching approach is adopted

to address further the heart rate variability issues.

Following the above description of the basic AC/LDA algorithm, the analysis is herein

presented in three steps.

Pre-processing. After application of the previously discussed Butterworth filter, the

enhanced AC/LDA algorithm estimates a quality measure, Qi, for an input ECG segment

i. Qi expresses the confidence of the system in analyzing a valid signal i.e., an ECG

segment free of major artifacts.

To this end, the periodicity transform (PT), proposed by Sethares et al. [84], is used

to project the signals into a sum of periodic sequences. PT is a data driven methodology

that can identify the best set of bases, each of which describes an inherent periodicity of

the ECG. The rationale for PT in this work is that the ECG is a quasi-periodic signal

with a specific repetitive pattern, and any variation from this, is usually attributed to
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recording errors or noise effects. The stronger the periodic component of the waveform

the more likely it is for the signal to be free of artifacts. Furthermore, the AC/LDA

method relies on ECG’s repetitive nature for feature extraction. It is because of quasi-

periodicity that the AC can capture in detail information about the waves that form a

heart beat. However, a corrupted signal will not conform with its class general behavior.

PT can essentially identify these signals and assign them with a low quality value.

For the PT a set of periodic and orthogonal basis functions is defined as follows:

δsp(j) =
{
1,if(j−s) mod p=0
0,otherwise (4.6)

where p is the period and s is a time shift, with s = 0, 1, ...p− 1. According to PT, Pp

defines a set of (time-shifted) periodic sequences of period p. The projection of an ECG

signal x, on to the periodic subspace Pp can be expressed as a linear combination of the

periodic elements δsp(j) as follows:

αs =
1

N

N−1∑

n=0

x(s + np) (4.7)

π(x, Pp) =

N−1∑

n=0

αsδ
s
p (4.8)

where π(x, Pp) is the projection of x on subspace Pp. In essence, the PT seeks for the

best periodic characterization of the signal in-hand. Algorithmically, the search for the

best period is iterative, with faster periods being detected first:

1. A signal x is projected on the periodic subspace Pp, to acquire π(x, Pp)

2. If the periodicity is significant, it is removed from the data, rp = x− π(x, Pp).

3. rp is searched for larger periodicities.

The simpler way to perform these operations is to seek small periodicities p first, and

to iteratively remove them from the signal. Essentially, a period p can be as small as 2
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however, it is not particularly meaningful to look for periodicities that are bigger than

N/2, where N is the length of the signal. The Small-to-Large algorithm operates as

follows [84]:

pick threshold T ∈ (0, 1)

let r0 = x

for p = 2 to N/2 do

xp = π(x, Pp)

if ‖r−xp‖
‖x‖

< T then

r = r − xp

end if

end for

For the AC/LDA enhancement, the norm (power) is first used to select the M most

prominent periodicities of the signal, along with the corresponding projections. At a

second step, each of the projections is revisited to examine possible decompositions into

stronger sub-periodicities that can replace the first. The best period is identified by the

highest returned power. For the ECG case, it is expected that this period will correspond

approximately to the heart rate. The power criterion utilized during the decomposition

may serve as a quality metric. Qi is therefore defined as:

Qi =
‖xi − πi(x, Pp)‖

‖xi‖
(4.9)

where xi is the ith ECG input and πi(x, Pp) is its periodic projection onto the bases

of the best period. Essentially, Qi describes the comparative energy between the original

and the projected onto the best periodicity signal. Accordingly, Qi is a measure of how

strong the repetition of ECG is, at a period approximating the heart rate. The higher the

Qi for an input i the greater the confidence about the collected signal. The following

discussion explains the way that this metric can be incorporated with the recognition
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methodology.

Feature Extraction. In the enhanced AC/LDA algorithm, the AC is divided into n

equal segments, and LDA is applied on each of them independently. This allows for

finer localization of the information and unequal treatment of the AC segments during

matching.

The rationale for unequality is because segments which exhibit higher discrimination

and better intra-class stability need to be favored. The closer to the main AC peak, the

greatest the contribution of the QRS complex, which has the highest voltage amplitude

within a heart beat. Furthermore, moving away from the AC’s main peak, the effect

of this wave diminishes. The QRS complex exhibits the least variability under varying

heart rates [85]. In other words, the intra-subject variability increases while moving away

of the main AC peak. Emphasizing the contribution of the QRS complex by weighting

segments closer to the AC peak higher, can potentially handle the heart rate variability

and boost the performance.

Classification. For identification, every input is processed and matched against all

previously designed templates which compose the gallery set. The similarity measure

considered, is the Euclidean distance and classification is carried out with the nearest

neighbor. In the enhanced AC/LDA algorithm, the LDA coefficients of each of the AC

segment are matched against the respective gallery segments. A distance dn is estimated

for every pair, and multiplied with a weight wn corresponding to the n-th segment. Lower

order segments (closer to the AC peak), are weighted higher. All products are averaged

to estimate a distance d between a pair:

d =

n∑

j=1

djwj
n

(4.10)
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Figure 4.1: Flow diagram of the proposed method. Every input is assigned with a quality

measure that contributes to matching. The AC is divided into a number of sections each

favored with a predefined weight. The weights WA−D cab be chosen to decrease linearly.

Before finalizing a decision, the pair’s distance d is weighted with the inverse mutual

quality Q, which is defined based on the respective quality measures Qi, as follows:

Q =
1

1
m

m∑
i=1

Qi

(4.11)

where m = 2, when estimating the quality of a pair. The inverse quality is used in order

for d and Q to be distance descriptors of the final score:

Score = d×Q (4.12)

A threshold on the score allows the system to accept or reject an identity claim made

by a user. This algorithm is summarized in steps in Table 4.1 and a flow diagram is

provided in Figure 4.1.
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Testing Algorithm

Step 1: Perform PT on input xi and estimate Qi.

Step 2: R̂xx(m) =
N−|m|−1∑
k=0

xi(k)xi(k +m) .

N is the length of xi and m is the AC lag.

Step 3: R̂xx =
R̂xx

R̂0

(Normalization)

Step 4: rxx(t) = Rxx(m) 0 ≤ m ≤ k, where k is the length of a heart beat.

Step 5: Divide rxx(t) in n equal segments of length t′: r1xx(t
′)...rnxx(t

′).

Step 6: Project(LDA) r1xx(t
′)...rnxx(t

′) in a lower dimensional space: s1(t′′)...sn(t′′) where

t′′ < t′

Step 7: Estimate the distance from the gallery features g1(t′′)...gn(t′′) ,

d1 = d(s1, g1)...dn = d(sn, gn) where d(.) is the Euclidean dist.

Step 8: Weight dj with wj .

Step 9: d =
n∑
j=1

djwj

n

Step 10: Score = d/mean(Qi, Qg) where Qg is the respective quality factor of the

gallery subject.

Table 4.1: Basic steps of the proposed framework.

4.3 Application Frameworks

A typical setup for biometric recognition involves an enrollment and a recognition stage.

Under both modes of operation, ECG is filtered and subjected to feature extraction.

However, the exact manner in which this is done depends highly on the requirements

of the envisioned application. Central to ECG biometrics is the establishment of the

learning algorithm (i.e., the LDA) on bases that can accommodate practical recognition

scenarios.
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This section presents three unique implementation frameworks of the ECG biometric

recognition technology. For simplicity, the training stage of the LDA is separated from

enrollment to accommodate the description of open recognition environments i.e., settings

where the gallery set is not available at the time of system training.

4.3.1 Scenario A. Small-scale Recognition Environments

In small scale applications, where the individuals to be recognized are known a priori,

the variability of the signal among the monitored population is learned by training the

learning algorithms on recordings from the particular enrollees. A block diagram of this

system is depicted in Figure 4.2.

During enrollment (which in this case plays the role of training as well), an ECG

reading is acquired from every individual, filtered in order to remove noise, and subjected

to AC estimation. The autocorrelated signals of all enrollees are saved in a central

database. This set of signals is then used as input to drive the learning algorithm (i.e.,

the LDA). This operation will statistically minimize the intra-subject variability and

maximize the inter-subject one. The transformation matrix (ψ) provided by this step

guarantees that when reapplied on an ECG reading (during recognition) of one of the

enrollees, it will transform the signal in a way that data from different users are optimally

separated.

This scenario may operate under either the identification or verification mode of

operation. For the identification mode, a new reading is classified as one of the pre-

enrolled identities. Accordingly, for the verification mode, an identity claim is first made,

which is used to retrieve the respective recording from the database. This recording is

then matched against the input, in order for the system to either accept or reject the

claim.

The key features of Scenario A is the known population of enrollees and the possibility

of maintaining a central server with the biometric templates. Examples of use cases for
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Scenario A � Small Scale Recognition System
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Figure 4.2: The two stages of an ECG based recognition system in closed environments

i.e., cases where the pool of enrollees is known prior to LDA training.

this systems include:

1. Access control within the facilities of a company. The company invites the em-

ployees to a signal collection session, and an ECG sample is acquired from every

employee. The LDA is trained offline to learn the ECG morphologies of the par-

ticular employees. The system is then used for physical access control with the

following possibilities:

• Identification: When an employee requests access to particular facility, a new

sample of the biometric is collected, and matched against the database that

is stored centrally. The answer of the recognizer can be one of the three:

(a) The identity information of the employee (answering the question Who is

this employee? ).

(b) The clearance level of the particular employee.
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(c) A Yes/No response equivalent to a watch-list search i.e., answering the

question Is this person an employee?

• Verification: An employee requests access to a facility and at the same time

presents credentials that make an identity claim (for example a name badge,

or ID card). The biometric sample is collected and compared against the

biometric template that corresponds to the claimed identity. The system

replies with a YES / NO answer.

2. Field agent authentication. In welfare monitoring environments, for instance for

soldiers whose vital signals are being monitored continuously from a central au-

thority, ECG biometrics may validate their identities continuously to avoid agent

impersonation. Enrollment is performed once and then recognition may take the

form of either identification or verification:

• Identification: The monitoring authority receives vital signals from unknown

sources. The incoming medical signal is matched against a number of pre-

enrolled biometric templates and the identity of the transmitting agent is

established.

• Verification: When extra identifying credentials can be employed, for example

an ID number of the sensor unit, the respective ECG template is used for

biometric matching at the receiver and a YES/ NO answer is provided. A

system in this mode answers the question Is the monitored agent the person I

expect him/her to be?

4.3.2 Scenario B. Large-scale Recognition Environments

This framework addresses the problem of ECG based recognition in large-scale recogni-

tion settings. The challenge with such systems is that the morphologies of the enrollees’

ECG signals are not known at the time of LDA training. In addition, in the majority
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of such environments the interest is in protecting a particular user’s template non only

from attacks initiated by users (known to the system), but also from third parties that

are not registered with the system.

From a machine learning point of view, the objective in large-scale systems in to op-

timally reduce the intra-class variability while learning patterns of the general population.

The general population is herein referred to as the generic pool and it is defined as an

anonymous collection of ECG samples from a large number of individuals. The purpose

of the generic pool is to create a paradigm of ECG morphologies that an intruder might

be presented as.

The large scale recognition framework is depicted in Figure 4.3. Training is the stage

where the generic pool is formed and the LDA algorithm is trained. At this step, a

transformation matrix (ψ) is produced to project an arbitrary ECG input in a space of

high inter-subject variability. Subsequently, during enrollment, ψ is used for projection

of the input ECG features, which results in a biometric template design (y). Given

the prior training on an anonymous pool, the enrolled template is statistically protected

against a variety of other ECG morphologies. Similar to Scenario A, recognition takes

the form of either identification or verification, depending on the envisioned application

environment.

The key features of Scenario B is the unknown population of enrollees at the time of

LDA training, and that recognition is performed centrally, on a server where the biometric

templates are stored.

An example environment for the application of this framework is identification for

subway access. The generic pool is created offline and the system is trained in order to

acquire a transformation matrix (ψ). ψ is then used by the subway authority to design

biometric templates. When a user pays a fare, a sample of the ECG signal is collected,

and a template is designed for that individual. The template is stored centrally on a

server and recognition is then performed with the following possibilities:
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Scenario B � Large Scale Recognition System
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Figure 4.3: The three distinct stages of general access control.

• Identification: This takes the form of watch-list based operations whereby a new

biometric sample is collected, compared against the pre-enrolled ones and the out-

put is a YES/NO decision based on one-to-many matches. Essentially, this system

answers the question Has this person paid the legitimate fare?

• Verification: During recognition the user presents a subway pass which is linked to

a biometric template that is stored centrally. A new ECG signal is collected and

matched against the template that the card indicates. The answer of the system is

YES/NO. This system answers the question Is this user the legitimate card holder?

4.3.3 Scenario C. Security in Distributed Systems

This framework can be used in either small or large scale recognition environments i.e.,

within settings of known or unknown population of enrollees. The idea behind the dis-

tributed system is that recognition takes place locally on a device such as a smart-card
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Scenario C � Distributed System
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Figure 4.4: The three distinct stages of ECG-based recognition in distributed systems.

or smart-phone. This setup has the benefit of allowing the recognizer to be personalized

to every user. A block diagram of this system is depicted in Figure 4.4.

The training phase is separated from enrollment because in this Scenario the trans-

formation matrix (ψ) is personalized for every user. Since in most distributed recognition

environments, the outliers may be subjects that are unknown to the system (for instance

an illegitimate user that tries to be authenticated on a smart-phone), the generic pool is

once more employed as a way to handle false acceptance.

At an algorithmic level, the personalization at the enrollment stage takes the form of

learning one’s ECG sample against the generic pool. More specific, given a generic dataset

of anonymous ECG recordings, the AC is first estimated for each of them independently.

This results in a number of AC segments, Φ(m), against which an input AC feature

vector, φinput(m), is to be learned. φinput(m) is the autocorrelated ECG sample of the

legitimate user at the time of the enrollment on the smart device.
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Figure 4.5: The enrollment pipeline for the distributed verification framework.

Let the number of subjects (classes) in the generic pool be C. The training set will

then involve C + 1 classes as follows:

Φ(m) = [Φ1(m),Φ2(m)...ΦC(m),Φinput(m)] (4.13)

and for every subject i in C + 1 , a number of Ci AC vectors are available:

Φi(m) = {φv(m)}Ci

v=1 (4.14)

Although multiple recordings per subject are optional, the discriminant will perform

better when trained on more than two instances of the biometric per subject. Since this

is only required at the enrollment stage, it does not affect the overall waiting time of the

recognizer.

Given Φ(m), LDA will find a set of k feature basis vectors {ψv}
k
v=1 by maximizing the

ratio of inter-class and intra-class scatter matrix. As mentioned earlier in Section 4.2.1,

this maximization is equivalent to solving the following eigenvalue problem:

argmax
ψ

|ΨTSbΨ|

|ΨTSwΨ|
,Ψ = {ψ1, ..., ψk} (4.15)

where Sb and Sw are inter-class and intra-class scatter matrices. Given the personalized

transformation matrix Ψ, a feature vector is projected using:

Yi(k) = ΨTΦi(m) (4.16)

where eventually k << m and at most C.

An advantage of distributed recognition, that operates under the verification mode of

operation, is that every smart device can be optimized experimentally for the intra-class
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variability of the particular user. On a typical ROC plot of False acceptance and False

Rejection rates (FAR and FRR), the latter depends only on the intra-class variability of

the feature vectors. On the other hand, FAR is a measure of inter-class variability of the

feature space.

Therefore, by choosing the smallest distance threshold at which an individual is au-

thenticated, also guarantees minimum FA. Essentially, rather than imposing universal

distance thresholds to all users, we propose that every device is ”tuned” with a person-

alzied threshold TID based on the variability of the ECG recordings at the time of the

enrollment. This can be done with cross fold validation of the distances among the vari-

ous enrolled templates. Finally, in every device the following verification triplet is saved

{Ψ, Yinput[k], TID}. This procedure is graphically depicted in Figure 4.5.

The key features of Scenario C are that it can be applied for recognition in both

known or unknown population settings, as well as that verification can be distributed

i.e., performed locally on a smart device where the biometric template is also saved. An

example use case for this system is as follows:

Identity Verification on a cell phone. Assuming limited processing and storage capa-

bilities of a cell phone, the generic pool of ECGs is stored centrally on a server with which

the device needs to communicate. Following the steps of Figure 4.5, the device collects an

ECG sample and computes the autocorrelation (feature extraction). The feature vector

is transmitted to the server where the respective features of the generic pool, Φ(m), are

saved. The new vector, Φinput(m) is appended to Φ(m), and the LDA is trained upon

it. The resulting transformation matrix, Ψ, describes a subspace where the ECG of the

particular user is discriminated from various morphologies which may take the form of an

intruder. In other words, Φ(m) is a rule meant to protect the particular user against the

general population. A user specific threshold, the transformed feature space, yinput(k) (k

¡¡ m), and Ψ are transmitted back to the device, where they are saved.

During recognition, the device can verify the user by using a newly collected ECG
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signal and the personalized matrix Ψ. The processed signal is matched against the stored

biometric template and a YES/NO answer is acquired.

4.4 Performance Evaluation

This section reports the performance of the proposed biometric recognition system. The

objective of the following experimentation is to demonstrate the accuracy of the enhanced

AC/LDA system as applied in small-scale, large-scale and distributed recognition sys-

tems. In addition, this section provides recognition results that simulate ECG biometric

authentication in monitoring environments. All frameworks of this section were tested

using the Short and Long-Term ECG Databases (Chapter 3.5).

4.4.1 Quality Assessment Results

The following evaluation was carried out for signals in the short-term recording database

(52 subjects) under a small-scale recognition framework. This framework (Scenario A)

is the most typically used experimental setup in biometric recognition, as the machine

learning algorithm is trained on the enrollees’ ECGs which are assumed to be available.

Every 3 min ECG was divided into a number of 5 sec windows. The 5 seconds were

chosen as a feasible compromise between the system’s waiting time and meaningful fea-

ture extraction. Overall, 1172 ECG windows, from 52 subjects, were used for testing. The

normalized AC of each window was estimated and divided into 4 segments for matching,

according to the requirements of the enhanced AC/LDA algorithm. The reader should

note that recordings of higher sampling rates might require more segments, to allow for

better localization.

The periodicity transform was computed for every ECG window in order to estimate

the quality measure Qi. Figure 4.6 demonstrates its power in detecting outliers. After

screening with the PT based quality measure, the AC segments conform approximately
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Figure 4.7: Three principal components of AC for 5 different subjects A) before and B)

after quality screening.

to the same distribution for each subject in the gallery set. This can effectively decrease

the within subject variability, as depicted in Figure 5.4, where three principal components

(estimated with PCA for demonstration purposes) of the AC are plotted for a number

of subjects. In comparing with the baseline AC/LDA system, the within-class distance

drops by 25% (for a quality threshold of 0.8), when using the PT quality extension.

The proposed system was first tested under the verification mode of operation. The

objective is to answer the question: Is the subject who he/she claims to be?, thus the user

makes a positive claim to an identity. This kind of recognizers may commonly do one of
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the following mistakes:

1. Mistakenly accept an identity claim made by an intruder (false acceptance (FA))

2. Mistakenly reject an identity claim made by a legitimate user (false rejection (FR)).

Since the final decision is based on a distance threshold between the two templates,

there is a tradeoff between these two error rates. Figure 4.8 illustrates the performance

of the system in terms of FA and FR rates. One should note, that if the quality of the

readings is ignored, and the system is tested without the PT extension, the EER (i.e.,

the false rate when FA and FR are equal) may increase by 2% for the current dataset.

Alternatively, when the system is tested under the identification mode of operation,

thus answering the question: Who is this subject?, the true positive performance, is

81.48% for 5 sec ECG and can reach 92.3% for 3 min recordings (using majority voting

of the respective 5 sec windows). This performance is comparable with other works in the

field [37, 34, 48] but for more subjects (52), longer recordings, and without the additional

complexity of fiducial points detection, which naturally leads to rejection cases.
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Figure 4.9: ROC plot depicting the performance of Scenario B. The EER is 45%.

4.4.2 Training on the Generic Pool

This section presents the performance of Scenario B for large scale recognition envi-

ronments. In the following, the evaluation was performed on the short-term recording

database. The generic pool was formed using signals from the 36 volunteers who par-

ticipated to the experiment only once. Every signal was partitioned into segments of

5 sec length each, resulting in a total of 1296 samples. For the 16 volunteers that two

recordings were available, the earliest ones were used for enrollment (gallery set with a

total of 576 samples) and the latter for testing (same number of samples).

The ECGs of the generic pool were subjected to autocorrelation estimation and then

to discriminant analysis with the LDA. The LDA yielded a transformation matrix, which

was subsequently used to transform the ECG signals of the gallery and testing sets. All

enrollees were processed with the same generic transformation matrix. Matching was

then carried out using the Euclidean distance as the similarity measure.

A threshold on the distance between the two matches allows the system to either
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accept or reject the pair. Figure 4.9, demostrates the tradeoff between false acceptance

and rejection for various thresholds. The EER reaches dramatically 45%. This is gener-

ally an unacceptable performance for real-life recognition systems, as it suggests that an

arbitrary ECG has equal chances of been mistakenly accepted or rejected by the system.

This performance, however, is expected as in this Scenario the LDA is trained on ECG

waveforms that are not included in testing. In other words, the system did not ”learn” the

particular waveforms of the enrollees and thus is not capable of handling false rejection.

On the contrary, as one increases the size of the generic set false acceptance is expected

to decrease.

4.4.3 Personalized Recognition

This section reports the performance of Scenario C, for ECG biometric recognition in

distributed systems with the ability of personalization. The subsequent analysis was
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Subject ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

EER 7% 21% 13% 9% 12% 17% 3% 3% 5% 0% 5% 16% 23% 13% 13% 0%

Improvement 38.5% 24.5% 32.5% 36.5% 33.5% 28.5% 42.5% 42.5 % 40.5% 45.5% 40.5% 29.5% 22.5% 32.5% 32.5% 45.5%

Table 4.2: EER in Scenario C for individual subjects in the testing set. The average

EER is 10% and the standard deviation 7.13

performed on the short-term recording database. Since this scenario also requires a

generic pool, signals from the 36 volunteers that participated to the experiment only

once were used to form it.

Upon estimation of the AC for all records in the generic pool, each of the enrollees’

autocorrelated recordings were appended to pool individually, and a new LDAwas trained

for every enrollee. The performance each recognizer was then tested with matches against

the respective subject’s testing recordings. To estimate the false acceptance rate, the

remaining enrolles (i.e., subjects who did not participate in the generic pool), acted as

intruders to the system. This subset of recordings is unseen to the current LDA, and

thus constitutes the unknown population of potential intruders.

Figure 4.10 demonstrates the tradeoffs between false acceptance and rejection when

the same threshold values are imposed for all users. The equal error rate is 32%. This

performance, although better than Scenario B, is yet unacceptable for a viable security

solution.

When verification is performed locally on a smart device, one can take advantage of

the fact that every device can be personalized to a particular individual. This treatment

controls the false rejection since the matching threshold is ”tuned” to the biometric

variability of the individual. Table 4.2, reports the EER performance per subject for

the case of personalized thresholds. On average, the EER deceases to 10% (standard

deviation 7.13 ), with a significant number of subjects exhibiting EER between 0% - 5%.
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4.4.4 Template Destabilization

This section demonstrates the challenge of ECG biometric recognition due to template

destabilization. As mentioned in the introductory sections the ECG signal is affected

by both physical and psychological activity. Physical activity increases the heart rate, a

problem which is intrinsically solved by using the autocorrelation for feature extraction.

On the other hand, the psychological activity on the ECG may be unpredictable.

From a biometric recognition perspective, emotional activity embedded in ECG may

adversely affect security. A way to address this issue would be to collect as many ECG

readings from a subject as possible during enrollment, in order to cover a range of emo-

tional expressions. However, there is no guarantee that adequate instances were acquired,

nor can one reassure that distinct psychological states were experienced during the record-

ings.

To demonstrate the perils of ignoring time dependency the destabilization of the bio-

metric template was examined with time. The following discussion concerns all three

Scenarios, as it essentially shows that in the absence of physical activity the ECG wave-

form may still change.

The long-term recording database (Chapter 3.5) was used in the following experimen-

tation because it offers a large numbers of ECG windows per subject. This database also

simulates real life settings of cognitive activity, as the volunteers were monitored during

their daily activities.

Every 2-hour recording in the database was segmented into non overlapping windows,

each of 5-second length. The correlation between a training subset and the subsequent

windows was examined based on the correlation coefficient between the respective auto-

correlations. The correlation coefficient value between a reading at time tr (reference)

and any following time instance tt can be estimated as using:

PR(tr)R(tt) =
E[(R(tr)− µR(tr))(R(tt)− µR(tt))]

σR(tr)σR(tt)
(4.17)
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where µR(ti) is the mean of the ith ECG reading and σR(ti) is the respective standard

deviation.

Figure 4.11 shows the correlation coefficient values for two different subjects ( with five

different reference points. The observation that all individual graphs exhibit significant

differences clearly illustrates the time-varying nature of ECG, with respect to the second-

order statistics. In other words, depending on the starting point in time, the resulting

behavior of subsequent windows is characterized with a varying rate of change. Figure

4.12 shows the maximum and minimum correlation coefficient found within the 2 hour

recording for all 10 subjects. From this Figure it is clear that the template similarity

may drop significantly. The following results will demonstrate how this can affect the

recognition accuracy.

For the current experimental setup, the system was tested under a verification mode

of operation, but the conclusions can be easily expanded to identification scenarios as

well. Every testing ECG input was matched against a claimed identity (the legitimate

one when computing authentication rates) using the Euclidean distance as a similarity

measure. Using a threshold on this distance, the system decided to either validate or

reject the claim.

Figure 4.13 shows the authentication performance averaged over all subjects, for

various distance thresholds and time proximities from the training set (the reference).

As expected, when time increases, i.e., the time proximity between the training and

testing set increases, the authentication rate drops. Thus, the closer to zero the higher

the chance for correct verification. Figure 4.13 essentially demonstrates the underlying

psychological activity on the ECG signal.
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4.5 Chapter Summary

This chapter presented the proposed enhanced AC/LDA algorithm for ECG biometric

recognition. In essence, this method provides a factor that can be used to assess the

quality of the reading prior to biometric matching. In addition, the enhanced AC/LDA

allows for localization of the feature space, as described by the autocorrelation, in a way

that features which are more prone to the heart rate variability are less favored.

In addition, this chapter presents the three distinct frameworks under which ECG

biometric recognition can operate i.e., for small-scale or large-scale recognition envi-

ronments or in distributed systems. Although all biometric modalities can be used in

these settings, the ECG requires special attention in that this time-dependent modality

needs machine learning in feature extraction, in order to have a meaningful biometric

matching. Therefore, the AC/LDA algorithm has been adjusted to the aforementioned

environments.

The more restricted the environment i.e., when the population or enrollees and ex-

pected attackers is known, the lower the expected false acceptance and rejection. How-

ever, when there is the possibility of performing recognition locally, on a smart device,

the recognizer and the authentication thresholds can be personalized with substantial

performance benefits.

Finally, this chapter demonstrates the perils of ignoring time dependency on the ECG

signal. It was observed that with time the discriminative power of the template decreases

due to the natural evolution of the signal. This observation is very important for ECG

biometrics as it instructs that in the absence of recording noise and physical activity the

accuracy of the system may still drop.

The latter conclusion is the basis for the subsequent chapters of this thesis. Although

the present simulation results were based on long-term ECG signals, where cognitive

activity is assumed, it is not validated yet that template destabilization takes place

at the onset of a particular emotional state. Chapter 4 investigates the feasibility of
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detecting emotions from ECG signals, with the objective of determining the conditions

under which the ECG waveform may change and jeopardize recognition. Subsequently,

Chapter 5 brings the attention back to biometric recognition, to provide a solution to

this problem using a template updating technique.
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Figure 4.11: Correlation coefficient values for two different subjects, with five different

reference (starting) points. Corresponding coherence durations (illustrated with arrows)

are determined with a threshold or tolerance range of 2.3%, with respect to the starting

point.
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Figure 4.12: Maximum and Minimum correlation found within 2-hour recordings for

every subject. Correlation is computed between the first 5 second segment and all the

following.
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Figure 4.13: Verification performance under template destabilization.



Chapter 5

Affective Patterns of ECG

5.1 Problem Statement

The previous chapter treated the ECG as a biometric signal of physiological origin. The

structure of the ECG waves rely heavily of the cardiac properties of every individual and

provide the basis for biometric discrimination. However, as discussed in Chapter 3, in the

absence of external destabilizing actors (noise or physical activity), the ECG waveform

evolves with time. This chapter explores the origin of this evolution.

To this end, the ECG signal is herein investigated from a psychological perspective.

The purpose of this work is firstly to, determine the emotional states under which the

ECG waveform may change, and secondly, to propose a solution to automatic emotion

detection using features that directly depict this change. The latter investigation is not

directly related to the biometric problem, but the proposed analysis is very resourceful

for real life deployment of identity recognition systems.

Human emotions are psycho-physiological experiences that affect all aspects of our

daily lives. Emotions are complex processes comprised of numerous components including

feelings, bodily changes, cognitive reactions, behavior and thoughts. Various models have

been proposed by considering the ways in which these components interact to give rise

98
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to emotions, but at the moment there isn’t any single formulation that is universally

acceptable. Modeling emotions is a very challenging problem (see Appendix B) that has

drawn a great deal of interest from the emerging field of human-computer interaction

(HCI). The objective is to design systems that can automatically identify emotional

states, which would revolutionize applications in medicine, entertainment, education,

safety etc. The main difficulty in formulating these models lies in the fact that we must

rely on visible manifestations of emotions to produce, and verify them since the latent

factors that generate emotions are unobservable.

The first step in modeling any phenomenon is data collection. We need to design ex-

periments and institute methodologies that successfully induce emotions in a laboratory

setting wherein we can record and collect psychological data. In quantifying psycholog-

ical activity we are limited to the study of visible manifestations like facial expressions,

gestures, vocal traits etc. These modalities are popular in HCI since they use the same

cues that humans rely upon to detect and recognize emotional states. Moreover, most

human beings display similar manifestations in response to identical emotional stimuli

which allows for objective emotion annotation.

A major drawback of using behavioral modalities for emotion detection is the uncer-

tainty that arises in the case of individuals who either are consciously regulating their

emotional manifestations, or are naturally suppressive. For instance, although facial ex-

pressions can be analyzed to determine emotions, there is no guarantee that an individual

will express the corresponding cue, irrespective of whether they are experiencing a certain

emotion. This has serious implications in some applications such as surveillance.

Physiological signals, like the ECG, are an interesting alternative to the use of be-

havioral modalities. Other examples of this category include the electromyogram (EMG),

electroencephalogram (EEG), galvanic skin response (GSR), blood volume pressure (BVP),

heart rate (HR) or heart rate variability (HRV), temperature (T), respiration rate (RR).

These signals have traditionally been used for clinical diagnostics, but there is signifi-
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cant evidence to suggest that they are sensitive to, and may convey information about

emotional states [86, 58, 69, 71, 80, 87]. One of the benefits of detecting emotions using

physiological signals is that these are involuntary reactions of the body, and as such very

difficult to mask. Moreover, for the duration of time that the sensors are attached to the

body, these signals are recorded continuously, enabling frequent emotional assessment.

There are, however, many theoretical and practical challenges with regard to biosignal-

based emotion detection. First, while the evidence suggests that physiological signals are

affected by emotions, the exact effects on the waveform patterns remain to be seen. For

example, the heart rate increases under both fear and excitement, but whether we can

differentiate between the two is, as yet, unknown. Secondly, there are open questions

about the subject specific nature of these effects.

Apart from the open theoretical questions, there are practical issues as well. The ex-

perimental protocols are far more complex than in behavioral emotion research, where the

collection is facilitated by instructing volunteers to exhibit emotions. For biosignal-based

experimentation more sophisticated practices are necessary to elicit truthful emotions in

a laboratory setting. Furthermore, labeling physiological signals is subjective and as such

very risky due to the difficulty in establishing the ground truth.

Another practical challenge relates to signal acquisition. The collection process is

more invasive when compared to that for behavioral modalities, since the sensors need

to be in contact with the human body for the duration of a recording session. For this

reason it is important to minimize the amount of data required for this task i.e., to rely

detection on as few signals as possible.

Different physiological signals originate from different locations of the human body

and may describe unrelated functions. For instance, the ECG and BVP signals are of

cardiovascular origin while the EMG relates to muscle electrical potential. It is important

to investigate the dynamics of every signal in order to clearly establish its limits in

assessing psychological activity. For instance, we anticipate that the experimental setup
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alone may induce emotional reactivity for one biosignal, but may not stimulate some

other.

To this end, this chapter investigates the feasibility and limits of emotion detection

using ECG signals alone. Previous works have employed ECG (the HR mostly) in con-

junction with other biosignals. There are several open questions such as understanding

the psychophysiological rationale responsible for the formation of the signal, the subject

specificity, the statistical limits to valence and arousal differentiation and the type of

experiments that can stimulate it.

5.1.1 Signal Processing for Emotion Detection

There are two main challenges that arise with signal processing of physiological signals

when targeting emotion pattern classification. First, emotion specific patterns are not

well defined for biosignals. Secondly, it is typically uncertain whether emotions were

manifested at all. For ECG signals, despite the reports on cardiovascular reaction to

emotion, presented in Chapter 1, wherein there are inconclusive findings about the various

waveform patterns, the majority of previous works consent on the subject specific nature

of the emotion manifestation.

We argue that for ECG signals, universal emotion detectors run the risk of being

inaccurate for the following two reasons:

1. ECG has been established as a biometric characteristic [88, 37], which means that

by default it carries subject specific information. The appearance of a particular

heart beat depends on a number of factors such as the geometry and orientation

of the cardiac muscle, the conductivity of various areas of the heart, the activation

order [17], and the subject’s habitus or gender [11, 15, 18]. This physiological

aspect of ECG formed a strong basis for the investigation and establishment of its

biometric properties.
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2. Different people experience emotions in different ways. Even if we ignore the bio-

metric aspect of the ECG signal, there is large ANS innervation variability in a

population [20].

For these reasons, emotional patterns are herein detected as variations from the typi-

cal appearance of an individual’s ECG signal. We perform feature extraction in the time

domain for two reasons – the time-domain signals have been reported to be more resource-

ful with regard to emotion specific features [89], and it is risky to impose stationarity

and linearity restrictions (necessary for Fourier transform) on an ECG [90], especially

because emotional activity operates on the signal in a non-linear fashion. Furthermore,

since we cannot predict the effects of emotional processes on the ECG signal, there is a

risk of missing the dynamic changes due to emotion if we use methodologies that rely on

predefined bases.

We are more interested in the way properties of the ECG signal evolve over multiple

heart-beats when a person experiences different emotions. The local properties of any

particular pulse are of little interest. In this regard, Empirical Mode Decomposition

(EMD) [90] is a powerful tool since it is dynamic, data-driven, and examines the signal

holistically to highlight underlying trends. Without prior assumptions on the properties

of the signal, EMD adapts to the embedded oscillatory activity and decomposes ECG

into a number of intrinsic modes. It is our belief that understanding the intrinsic modes

that are hidden in the cardiac oscillatory activity is an essential first step in any attempt

to classify psychological states.

5.2 ECG-driven Empirical Mode Decomposition

The proposed methodology for ECG feature extraction is based on the Empirical Mode

Decomposition (see Appendix A). EMD is adaptive and the basis of the decomposition is

self-defined, which makes it suitable for the analysis of complex underlying phenomena.
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However, it turns out that adaptivity is a mixed blessing. There are two important

problems with regard to uniqueness and mode mixing that arise as a consequence of the

adaptive nature of EMD. Evaluating the EMD algorithm on two instances of the same

signal may result in incomparable decompositions. Moreover, each mode is not captured

in a single decomposition - similar modes are present at various decomposition levels

of the same signal. In our work, we address these issues by making use of a bivariate

extension of EMD (BEMD) [91].

BEMD acts on two signals xI(t) and xS(t) (as opposed to EMD which acts on a single

signal). In our work, the second signal (xS(t)) is a synthetic ECG waveform, standardized

over all emotional states and subjects, and designed to act as a decomposition guide.

The proposed framework is comprised of three independent steps:

1. ECG synthesis, wherein a signal xS(t) is designed to be synchronous with a partic-

ular input xI(t).

2. Estimation of the oscillatory modes, called Intrinsic Mode Functions (IMF) (d(t)),

of the input signal via decomposition using the BEMD.

3. Extraction of features associated with the instantaneous frequency and the local

oscillation of the IMFs and classification among predefined affect states.

5.2.1 ECG Synthesis

The objective of this step is to design a synthetic signal xS(t) whose properties are similar

to a real ECG signal, and whose main waves are synchronized with the waves of the input

signal xI(t).

In order to synchronize the main waves of the synthetic signal we must first estimate

the location of the P, QRS and T waves throughout xI(t). The QRS complex is detected

using the algorithm described in [92]. The surrounding waves are localized using empirical
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Figure 5.1: 2-D trajectory movement and P Q R S, T typical locations.

rules i.e., the P wave’s healthy duration is approximately 120msec, and the T wave extends

about 300msec after the QRS complex [10].

Once the fiducial points of the input signal have been localized, the synthetic ECG

signal can be generated using the dynamic generation model described by McSharry et al.

[93]. The model generates a trajectory in a three-dimensional state space with coordinates

(x,y,z). Quasi-periodicity of the ECG is reflected by the movement of the trajectory

around an attracting limit cycle of unit radius in the (x,y) plane, in varying speed.

A completion of one cycle along this circle is equivalent to a heart beat completion or

one R-R interval. By adjusting the speed of the trajectory, quasi-periodicity is achieved.

Inter-beat variation in the ECG signal is reproduced by the motion of the trajectory in

the z direction.

The location of the fiducial points of the input signal define special events on the

unit circle indexed by the angles θP , θQ, θR, θS, θT corresponding to points P , Q, R, S,

T respectively. These distinct points on the ECG are described in the model by events

corresponding to the negative and positive attractors/repellors in the z direction. Each

time the trajectory reaches one such point, it is repelled away from the unit circle along

the z axis and then attracted back, creating a wave. The dynamical equations of motion
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Figure 5.2: A real and a synthetic ECG. The two signals are synchronized but xS(t) has

no anatomical uniqueness or psychological variability.

along this trajectory are given by a set of three ordinary differential equations [93].

The authors in [93] provided typical values for the angular location of the fiducial

points (Fig. 5.1) based on visual inspection of healthy ECG waveforms. The duration

of one circle is set to a maximum of one second (rest condition, 60 bpm). Given the

distances dij (in seconds) between the fiducial points i and j of xI(t), the points can

be located along the unit circle using the following equations (wherein the location of a

point is specified in radians):

θP = −2π
dPR
dRR′

(5.1)

θQ = −2π
dQR
dRR′

(5.2)
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θS = 2π
dRS
dRR′

(5.3)

θT = 2π
dRT
dRR′

(5.4)

where dRR′ is the length of the R-R interval in seconds, and θR = 0. These angles

are applied on the differential equations in [93] to obtain xS(t). The generated signal is

an idealized, robust, noise free representation of ECG (see Fig. 5.2 for an example of a

synthetic ECG signal).

5.2.2 Signal Decomposition

Huang et al. [90] proposed Empirical Mode Decomposition as a way to empirically

decompose a non-stationary, non-linear signal into a number of IMFs, each of which

represents a distinct oscillatory activity. An IMF is a function satisfying certain explicit

properties [90]:

1. The number of extrema and the number of zero crossings must be equal or differ

at most by one.

2. The mean of the envelopes defined by the maxima and the minima is zero for every

sample (see Appendix A).

These rules naturally force one mode of oscillatory activity in the IMF, since between

two successive extrema no riding waves are allowed. The algorithm for the detection and

extraction of IMFs is adaptive and iterative. Once an IMF is found, it is removed from

the signal, and the algorithm iterates on the residual in order to find more oscillatory

modes. Fast oscillations are detected first. The basic EMD algorithm along with an

example ECG signal decomposition is provided in Appendix A.

Overall, the decomposition is given by:
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Figure 5.3: EMD analysis for a standardized synthetic ECG signal. IMFs of order

higher than three do not exhibit oscillatory activity. The first IMF has three oscillatory

components, the second has two and the third has one.

x(t) =
N−1∑

i=1

di(t) + r(t) (5.5)

where di(t) denotes the i
th IMF extracted from the signal x(t) and r(t) is the final residual.

Figure 5.3 shows an example of the resulting IMFs when EMD is applied on a synthetic

signal xS(t) which is an idealized, noise-free waveform. It has been observed [94, 89, 95,

96] that the first few IMFs carry the quasi-periodicity property of ECG. Since every heart

beat has three distinct waves, in the absence of noise, the first IMF is expected to exhibit

three oscillatory components (tricomponent), characterizing primarily the behavior of the

QRS complex. This is because the QRS complex contributes to the highest frequencies of

the ECG. The first IMF, as shown in Figure 5.3, depicts the fastest oscillating component

of the signal. Once this is removed, the second and third IMFs exhibit bicomponent and

monocompoent oscillations respectively. As the IMF order increases, the strength of the
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oscillation decreases. However, for noise free ECG, IMFs of order higher than three are

almost zero, and will be ignored hereafter.

As stated before, the EMD encounters problems with regard to uniqueness. The

number and type of IMFs generated by EMD are uncertain, even for signals with similar

statistics. For instance, the decomposition in Figure 5.3 would result in more IMFs and

in stronger oscillations if there was high frequency noise in the signal. This restricts

the utility of EMD as it renders comparisons among different (but real) ECG signals

meaningless. Predetermining the number of IMFs (by forcing decomposition to stop)

defeats the purpose of EMD as the analysis will no longer be adaptive, nor will the IMFs

have physical meaning.

We address this problem by decomposing a real ECG signal xI(t) together with a

synthetic signal xS(t) in a module that allows the latter to act as the rule of decomposition

by determining which type of IMFs are important from the input signal. This is done

using the BEMD [91] algorithm on the pair of signals xI(t) and xS(t). The difference

between EMD and BEMD can be visualized as follows: whereas EMD-sifting builds

envelopes around x(t), BEMD builds 3D cubes that surround a complex function xc(t).

The analysis is performed simultaneously for the real and imaginary components of xc(t),

and results in the same number of IMFs for both:

xc(t) =
N−1∑

i=1

dci(t) + rc(t) (5.6)

where dci(t) denotes a complex IMF and rc(t) the complex residual. Low order dci(t)

describe fast rotating components, while the opposite is the case for higher order complex

IMFs. Because of the consistency in the analysis of the real and the imaginary parts,

BEMD has been suggested for signal separation (de-trending) in filtering applications

[97, 98]. For our purpose, we form a complex signal using the input ECG signal xI(t)

and the synthetic signal xS(t) as the real and imaginary parts respectively.

xc(t) = xI(t) + jxS(t) (5.7)
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Figure 5.4: BEMD example on a complex ECG signal, formed using a real ECG segment

and a synthetic one. Low order IMFs show fast rotating components.

Applying BEMD on xc(t) we get

xc(t) =
N∑

i=1

Re{di(t)}+ j
N∑

i=1

Im{di(t)} (5.8)

where the residual has been included in the summation for simplicity. Similar to

the univariate case, Figure 5.4 shows an example of five IMFs acquired from a BEMD

analysis of two heart beats (one real and one synthetic). Similarly, Figure 5.5, shows the

simultaneous decomposition of the two signals for the real and imaginary parts separately.

Since the synthetic ECG has an idealized waveform, the presence of oscillatory activity

on the imaginary side guarantees that the corresponding mode is present on the real side.

When the real ECG is contaminated with high frequency noise, low order IMFs on the

real part will exhibit strong (but physiologically meaningless) oscillations while almost

zero activity will exist on the imaginary side which makes them easily detectable.

Figure 5.6 shows a comparison between the univariate EMD and the driven BEMD

decompositions for the same ECG segment. Even though there is no theoretical guaran-
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Figure 5.5: Simultaneous decomposition of real and a synthetic ECG signal using the

BEMD.

tee for uniqueness, the proposed driven BEMD algorithm bypasses this inadequacy by

ensuring that the three most substantial IMFs for ECG analysis will be present in the

decomposition without mode mixing.

5.2.3 Feature Extraction

The IMFs are time domain signals carrying information about oscillation activity. Com-

parisons in the time domain are not straightforward since the IMFs di(t) have to be

aligned with similar modes from other ECG recordings. Therefore, it is important to

design features that summarize the oscillatory activity within every IMF. In this work,

we use two types of features i.e., the Hilbert instantaneous frequency and a measure of

local oscillation.
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Figure 5.6: Comparison of Univariate and driven Bivariate EMD decomposition on the

same ECG signal. For the BEMD case the IMFs exhibit less mode mixing as well as the

oscillation structure follows the properties of ECG decomposition in the absence of noise

i.e., IMF 1 is tricomponent, IMF 2 is bicomponent and IMF 3 is monocomponent.
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5.2.3.1 Instantaneous Frequency

The Hilbert transform is typically used in conjunction with the EMD because it provides

accurate estimates of the instantaneous frequency for monochromatic signals like the

IMFs. The transform is defined as the convolution of a signal with h(t) = 1
πt
. For each

of the IMFs di(t), the Hilbert transform is applied as follows:

H[di(t)] =
1

π
P.V.

∫ +∞

−∞

di(τ)

t− τ
dτ (5.9)

where P.V. indicates the Cauchy principal value. We can define the following analytical

signals:

zi(t) = di(t) + jH[di(t)] (5.10)

which can be rewritten as

zi(t) = yi(t)e
jθi(t) (5.11)

where yi(t) is the magnitude and θi(t) = arctan
(

H[di(t)]
di(t)

)
is the phase of the complex

zi(t). For IMF i the instantaneous frequency can then be computed for as:

fi(t) =
1

2π

dθi(t)

dt
(5.12)

Essentially, fi(t) is a measure of changeability within every IMF.

5.2.3.2 Local Oscillation

Modeling the type of oscillation within an IMF is a difficult problem due to the empirical

nature of EMD. We herein propose features that are extracted as measures of the oscil-

lation time-scale, rather than the velocity or frequency of alternation among extrema.

For every IMF di(t), let ui and vi be the time instances of the maxima and minima

respectively. By definition (of IMFs), there is one zero crossing between every pair of

consecutive extrema and the objective is to define the rate of interchange.
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Figure 5.7: Local oscillation for a synthetic ECG. A,C,E) First three IMFs of the synthetic

signal B,D,F) ρi(t) for the previous IMFs G) Dominant oscillations for the three IMFs.

With increasing order of IMF, the strength of the oscillation (time-scale) decreases.

We define ρi(t), a function that describes local oscillation, which is estimated by

parsing an IMF as follows:

1. For an element uki of ui, examine di(t) in the interval [di(u
k
i ), di(u

k+1
i )] (between two

consecutive maxima).

2. Compute max-to-min and min-to-max transition times: a = vki − uki , b = uk+1
i − vki

3. yi(t) = min(a, b) , uki ≤ t ≤ uk+1
i .

The local oscillation ρi(t) is then computed from yi(t) with normalization across all

IMFs as follows:

ρi(t) =
1− yi(t)

A
(5.13)
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where A is the maximum of all ρi(t) i.e., local oscillation is normalized across all IMFs.

The higher the values in ρi(t), the faster the local extrema interchange. Figure 5.7 shows

ρi(t) for the first three IMFs of a synthetic ECG. The oscillation histogram shows that

the first IMF has three major components, the second has two and the third just one.

For a measured ECG signal, this distinction is unclear, as mode mixing is a very common

phenomenon for EMD i.e., different types of oscillatory patterns appear throughout one

IMF.

To address this problem, classification is carried out only among the dominant local

oscillations and frequencies. The feature vector is the concatenation of these measures for

the first three IMFs, which exhibit quasi-periodicity. More specific, since the first IMF

is a tricomponent signal, the three most frequent local oscillations, referred to as ρ̂11, ρ̂
2
1

and ρ̂31 (see Fig. 5.7.G), will participate in the feature vector. Similarly, three frequency

measures are considered for the first IMF (f̂ 1
1 , f̂

2
1 and f̂ 3

1 ). Overall, the feature vector is

formed as follows:

x = [ρ̂11, ρ̂
2
1, ρ̂

3
1, ρ̂

1
2, ρ̂

2
2, ρ̂

1
3, f̂

1
1 , f̂

2
1 , f̂

3
1 , f̂

1
2 , f̂

2
2 , f̂

1
3 ] (5.14)

Classification is carried out using linear discriminants among a number of predetermined

classes. The assumption in this work, to be verified experimentally, is that both the local

oscillations and the instantaneous frequencies carry emotion specific information.

5.3 Performance Evaluation

The proposed methodology was evaluated on signals from the Passive and Active Arousal

ECG Databases (Chapter 3). In the first experiment, visual stimuli (passive stressors)

were used to induce positive and negative emotions for valence and passive arousal per-

formance evaluation. The second experiment attempted to induce active mental stress

(active arousal), using a video game.
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5-class: Distinct emotions Experiment A class 1 : Erotica, class 2 : Excitement, class 3 : Fear

class 4 : Disgust, class 5 : Gore

Valence Differentiation
Arousal Dependent

Experiment B class 1 : Erotica class 2 : Gore

Experiment C class 1 : Erotica class 2 : Disgust

Arousal Independent Experiment D class 1 : Erotica, Excitement

class 2 : Fear, Gore, Disgust

Within Valence Differentiation

Within Positive Experiment E class 1 : Erotica class 2 : Excitement

Within Negative

Experiment F class 1 : Fear class 2 : Disgust

Experiment G class 1 : Gore class 2 : Disgust

Experiment H class 1 : Gore class 2 : Fear

Arousal Differentiation Experiment I class 1 : Erotica, Gore class 2 : Neutral

Table 5.1: List of classification experiments performed.
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Figure 5.8: Per subject classification performance for each of the 32 individuals in the

database. While classification among five classes is promising for certain individuals,

valence separation is feasible with respect or irrespective of arousal (erotica vs gore or

erotica vs disgust) .

5.3.1 Valence classification

A first step to ECG signal processing is noise filtering. In this setup, a butterworth

bandpass filter with cutoffs at 0.5Hz and 40Hz was used. The order of the filter was set

to 4 based on empirical results. Further processing of the signal is slightly different for

the two experiments. In the IAPS case, the signal is divided into segments corresponding

to the particular emotional conditions of the experiment (erotica, excitement, disgust,

fear, gore, neutral). Every segment was further subdivided into a number of windows of

10 sec length. Practically, the goal was to classify a state every 10 sec.

Out of the examined conditions, erotica and excitement fall under positive valence,

with erotica being of higher arousal. On the negative valence side, gore exhibits the

strongest arousal. A variety of experiments were conducted as listed in Table 5.1. The

goal was to demonstrate that ECG can differentiate among or within the same valence

conditions, when this operation is subject dependent.
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Figure 5.9: Classification performance for all subjects in experiments A-H.

Synthetic ECG signals where generated and participated in BEMD analysis for each

of the 10 sec segments. The instantaneous frequency and the local oscillations of the first

three IMFs were used as classification features. Since pictures of the same condition were

displayed twice, data from the first batch were used for training and from the second one

for testing. Classification was performed with linear discriminants, and with leave one

out cross validation.

Figure 5.8 shows per subject performance for experiments A, B, C and D. It can

be observed that among highly aroused conditions (gore and erotica), valence can be

differentiated for most subjects, but not for all. For certain individuals erotica is more

distinguishable from disgust than gore. As it will be clarified in the subsequent discussion,

this observation is related to the intensity with which every participant perceived the

experiment. For individuals that reported stronger immersion, experiment C indicates

higher classification performance.

The performance for all experiments in Table 5.1 is graphically depicted in Figure 5.9.

It is important to note that for each case there are individuals which score considerably
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high, but it is difficult to generalize especially for the within valence classification cases.

However, valence differentiation (in experiment B) is clearly feasible as performance

ranges from 52% to 89% with a standard deviation of 11.16. An interesting finding is

also with regard to classification between two negative valence but high arousal states

(gore and fear). As it can be seen from Figure 5.9 ECG can differentiate within negative

emotions with higher probability than within positive. However, this might be attributed

to the fact that negative emotions were better induced with visual stimuli.

5.3.2 Arousal classification

For the data of the active arousal experiment, a similar windowing approach was adopted

(10 sec segments). Since the self assessment was done using FEELTRACE [81], labeling

was continuous for the duration of the video game. On FEELTRACE, arousal takes values

in [−10,+10] with −10 indicating very low emotional intensity (boredom) and +10 the

opposite. Depending on the desired precision, arousal was quantized to a number of

levels, and the average within every 10 sec window was used to characterized it.

Two classification problems were examined i.e., a three class problem of discrimination

among low ([−10,−6]), medium (−6,+6)) and high arousal [+6,+10]), and a two class

problem of discrimination between low [−10, 0)) and high [0,+10]) arousal.

Because for a game experience it is difficult to report instantaneous valence infor-

mation, the volunteers were asked to focus their reporting to the arousal dimension.

However, continuous self reporting is ambiguous first, because determining the actual

onset of excitement or boredom can be misleading, and second, because even if the onset

of a cognitive reaction is accurately determined, there might be cardiac latency especially

for transitions between high-to-low arousal. For example, when an interesting event in

the game is followed by a monotonous situation (for instance because the subject got

lost in the map), the progression between high-to-low arousal is gradual and it is thus

difficult for the player to assess the exact onset of boredom. Perfect data annotation is
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Figure 5.10: Active arousal detection performance for 42 subjects.

of course of great importance, and this was expected to add to the overall classification

error. However, the immersion that video games provide, in conjunction with the user

being actively engaged to the task (active stressor) proved beneficial for the problem in

hand.

For every subject, the first 10 min of data were used for training and the remaining

for testing. Every feature vector was the concatenation of instantaneous frequency and

local oscillation measures. Classification was performed with linear discriminants, and it

was subject dependent.

For the three class problem (low, medium and high arousal), the average classification

rate over all subjects is 35.36%. For the two class problem (low and high arousal), the

average rate over all subjects is 76.19%. The mean however is not very descriptive for

the population of 42 individuals, were classification is subject dependent. Figure 5.10

shows the probability mass function for the two class problem. For approximately 50%

of the subjects, a detection rate between 90% -100% was achieved.
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Figure 5.11: Subject specific arousal detection for the two experiments. The average rate

for all subjects under passive arousal is 52.41%. Similarly for active arousal the average

is 78.43%.

5.3.3 Active vs passive arousal

Inspired by the reports of varying cardiac reactivity due to passive or active stressors

[31, 32, 99], a performance comparison between arousal classification in experiments I and

II was performed. In total there are 31 subjects who participated in both experiments,

and for which artifact free data are available. Performances were compared for the two

class problems of discrimination between high and low arousal. In experiment I this was

achieved by distinguishing neutral reactions from the union of gore and erotica conditions.

Figure 5.11 lists the classification performance per subject, for both passive (exper-
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iment I) and active (experiment II) arousal. The average rate is 52.41% and 78.43%

respectively. For the majority of the subjects active arousal detection outperforms pas-

sive. For the few subjects that this is not the case, the reason might be that visual stimuli

were of equal immersion as the game.

5.4 Chapter Summary

In the emotion research it is very important to collect meaningful affect data. However, it

is very difficult to design an experimental setup that can induce the same emotion in every

subject, especially if the same stimuli are used across all subjects. Different characters,

varying moods and the inability to accurately self report an emotional experience, may

significantly affect the outcome of a study. In particular, when internal modalities like

the ECG are examined, data labeling is very subjective and can only be verified by the

participants themselves.

Despite the difficulties, establishing emotions from internal manifestations of the body

is worthwhile for human computer interaction systems. For the naive user, hiding emo-

tions with regard to cardiac reactions is difficult, while for behaviorally suppressive indi-

viduals physiological patterns can provide hints of emotion. The obtrusive nature of the

acquisition however, poses restrictions on the number of sensors that can be worn and

subsequently to the signals that can be collected. The majority of the approaches in the

literature rely on fusion of various physiological sources for emotion detection. Although

such treatment presents significant performance benefits, they have limited practicality.

Following the findings of this study, future treatments will attempt to establish the limits

of emotion assessment for other biosignals as well.

Although ECG has been extensively employed in the affect research, little attention

has been paid to the waveform patterns under emotional activity. A typical approach is to

extract the R-R intervals for the computation of the HRV, and treat the remaining signal
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as redundant. However, given that the ANS has endings in each of the four chambers

of the heart, it is expected that ECG will exhibit emotion specific patterns. However,

for any analysis to meaningful one has to take into consideration the specificity of the

signal to the particular subjects due to both the biometric aspect of the signal and the

specificity of the ANS innervation.

This chapter proposed subject dependent ECG signal decomposition using the BEMD.

Local oscillation and instantaneous frequency features were used for the detection of

emotional conditions, as their combination describes fully the oscillatory activity of ev-

ery IMF. It was concluded that adaptive, data-driven analyses are suitable for emotion

modeling, because of the unforeseeable patterns that may arise within every individual.

With the employment of oscillation data as the feature space, it was shown that ECG

waveform reactivity depends highly on the activeness of the emotional experience. Data

from visual stimuli inspection resulted in 26.02% lower arousal detection performance

(on average for 31 volunteers) than playing a video game. This finding is in agreement

with prior reports [31, 32, 99] on cardiovascular differentiation between active and pas-

sive stress. Valence could also be differentiated, especially for high arousal states with

an average of 62% and a standard deviation of 11.16.

This chapter statistically demonstrates that ECG carries emotion specific information.

It was shown that emotional activity is detectable even in cases where the heart rate is

not affected. From a biometric recognition point of view, the fact that active arousal may

alter the signal is critical. In most real life situations, emotions are experienced while the

individual is engaged in tasks such as working, problem solving, teaching, speaking or

simply cooking. While passive situations, such as watching a movie or listening to music,

do not threaten the stability of the signal, it is important that the destabilization of the

biometric template under active arousal is taken into account. The following chapter

provides the means for early detection of destabilization and template update.



Chapter 6

Continuous Authentication

6.1 Problem Statement

Section 4.4.4 of Chapter 3 emphasized the shortcomings of the ECG signal’s time depen-

dency by demonstrating how a biometric template can destabilize with time. Moreover,

Chapter 4 discussed and experimentally validated the conditions under which human

emotion may be detected from ECG signals.

These two factors motivate a special treatment that can rectify the weakness due to

time-dependency. Practically, there are two ways to address this problem. One option

is to look for features that are robust to psychological activity. The problem with this

approach is that isolation of robust features would require an explicit definition of ECG

morphologies under different emotions, which is difficult to acquire. The reader should

note that the oscillatory features that were proposed in Chapter 4 are subject dependent

and there is no straightforward way of separating them from the rest of the waveform.

The second option is to automatically detect signal destabilization with respect to a

template, and update the template if necessary. This signal destabilization, or decoher-

ence, is caused by changes in psychological states. In this case, the system is interested in

detecting state changes (i.e., detecting coherence intervals) rather than classifying emo-

123
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tional states. This solution can be directly applied to monitoring environments where the

ECG signal is input continuously to the system. In this chapter we explore the second

option.

6.2 Template Updating

The objective of the subsequent analysis is to update the biometric template at instances

corresponding to the destabilization or decoherence of the correlation values as discussed

briefly in Section 4.4.4 (the perils of ignoring template destabilization are graphically

demonstrated in Figure 4.13).

Since the purpose is to detect state changes, and not to classify emotions, a coherence

analysis approach is herein adopted. The idea is to design variable-length accumulated

durations based on some fundamental time duration. Consider, for instance, the various

coherence durations shown in Figure 4.11. It is easy to see that these durations are

dependent not only on the subject, but also on the psychological activity at the time

of measurement. Therefore, it is expected that a fixed updating duration may not be

efficient. This intuition is experimentally validated, and the results are shown in 6.3.2.

There is a trade-off between frequency of template-updates and computational com-

plexity. Frequent template updating implies accurate tracking of events, but increases

the computational complexity. On the other hand, infrequent template updating may

cause inadequate system performance in terms of increased false rejection.

Taking these considerations into account, the idea of defining a fundamental time

duration (which is subject or application dependent) is to consider some acceptable min-

imum duration, over which the system makes a decision about whether the template

needs to be updated. The extreme case is to define this fundamental duration to be

equal to the smallest time-resolution in the system (5 seconds for the AC/LDA algo-

rithm). However, this is computationally inefficient and therefore the updating instances
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need to be strategically chosen.

In essence, a variable-length accumulated duration (or burst) is constructed by ac-

cumulating various fundamental durations (for the proposed AC/LDA algorithm, these

fundamental durations correspond to ECG segments of 5 seconds length). The following

iterative description can be made.

Consider the following fundamental durations {d1, d2, . . .}, where each di corresponds

to time duration of 5 seconds. This duration is chosen to acceptably accommodate the

time resolution requirement of the AC/LDA algoritm. Now suppose that at the current

iteration, the current burst,Dcurrent, contains µ fundamental durations, i.e., Dcurrent =

{dk, . . . , dk+µ−1}. For the subsequent segment, dk+µ, the two choices are:

(C1) Add dk+µ to the current burst, forming Dpotential = {dk, . . . , dk+µ}. Continue the

operation with dk+µ+1 as the next candidate.

(C2) Reject dk+µ, and terminate Dcurrent. Re-initialize with dk+µ as the start of a new

burst.

When the correlation coefficient profiles (as in Figure 4.11) are utilized to decide

between (C1) or (C2), the following procedure is performed:

1. Compute the correlation profile for Dpotential relative to starting point dk.

2. Find the minimum correlation value cmin over Dpotential.

3. Compare to a threshold cth for decision:

cmin − cth
C1

R
C2

0. (6.1)

The algorithm described above is summarized in Table 6.1.

It should be noted that the described algorithm includes a parameter dsizemax, which

is used to control the maximum size of the burst, i.e., to force template updating. Such a

strategy could be necessary to deal with buffering requirements (since the entire accumu-

lated data needs to be stored), as well as to reset the algorithm in case of misdetections.



Chapter 6. Continuous Authentication 126

cth: threshold for decision

Ntotal : total number of fundamental durations to be processed

dsizemax: max number of fundamental durations accumulated

s: fundamental duration defining start of the current accumulated duration

I. Initialization

1. Set s = 1

II. Iteration

for i = 2, 3, · · · , Ntotal

if (i− s+ 1 ≥ dsizemax) or (i == Ntotal)

1. Set current burst =

all fundamental durations from s to i

2. Update the biometric template

3. Reset s = i+ 1

else if (cmin < cth)

1. Set current burst =

all fundamental durations from s to i− 1

2. Update the biometric template

3. Reset s = i

end

end

Table 6.1: Template updating with variable-length durations

6.3 Performance Evaluation

The performance of the proposed template-updating scheme is evaluated over ECG

recordings with and without affective labeling. First, the effects of frequency of updates
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are assessed over the 10 individuals included in the long-term ECG database presented

in Section 4.4. This analysis demonstrates the benefits of frequent template updating,

without validation on the psychological status of the subjects. A similar analysis is then

presented for the active arousal database (Chapter 3). For the latter database we had

showed that emotional states can be successfully classified, from which we can infer that

there is great risk of template destabilization.

6.3.1 Effect of Template Updating Frequency on System Per-

formance

To numerically quantify the effects of frequency of template updating on performance,

over the long-term ECG dataset, three scenarios are considered in measuring recognition

performance namely, high, moderate and low correlation between the biometric template

and the testing ECG segments. In essence, this was simulated by adjusting the correlation

threshold cth which guides the updating procedure. The lower this threshold the more

the variability allowed within the burst, and therefore the smaller the frequency of the

updates. Accordingly, higher thresholds pose great coherence restrictions and require

more frequent updates. More specific, the following cases were investigated:

1. Highly correlated training and testing windows (found close in time).

This scenario effectively represents the lower-bound in error rates corresponding

to frequent template updating because of high cth restrictions. Due to frequent

template updating, the bursts constructed are characterized with very high corre-

lation. However, this case may not be desirable from a computational complexity

perspective. Figure 6.1 illustrates the error and authentication rates for this case.

The EER for frequently updating the template is 3.4%.

2. Moderate correlation scenario. This corresponds to the use of template updat-

ing with a moderate cth selection. In this case, some bursts may suffer from misde-
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Figure 6.1: Verification performance for highly correlated training and testing ECG win-

dows.
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Figure 6.2: Verification performance for moderate correlation between the training and

testing set.
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Figure 6.3: Verification performance for minimum correlation between the training and

testing set.

tection of decoherence, as variability is allowed to exist within the burst compared

to the previous case. Figure 6.2 illustrates the performance under this scenario.

The EER was measured to be 6.3%.

3. Minimum window correlation observed within every subject. This corre-

sponds to the worst case scenario, when no template updating is utilized (or a very

low correlation threshold, cth, is used). In this operating instance, the template

has low similarity to the biometric signal being measured for potential authentica-

tion. Therefore, false rejection is more probable in this case. Figure 6.3 illustrates

the respective error and authentication rates for this case. There is a significant

increase in the EER, which can be as high as 14.7%.

It is clear from Figures 6.1 , 6.2 and 6.3 that template updating has no significant

impact of FAR, which is random and can only be addressed with appropriate feature ex-

traction. The FRR however drops significantly when a template is updated and matched
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against highly correlated inputs, and the same can be observed for EER.

Although there is a significant reduction in FRR when template updating is employed,

it is not clear why this is the case. In other words, why does the ECG signal become

decoherent after some time (at the end of a burst), leading to false rejection? In the

next section we apply this algorithm on the affective recordings from the active arousal

database, and show that these bursts in the ECG signal correspond to emotional states of

the subject, thereby providing a meaningful physical interpretation to what is happening

in the updating algorithm.

6.3.2 Biometric Template Updating on Affect Data

The purpose of the following evaluation is to validate that every coherent burst, as

detected by the proposed algorithm, describes an true emotional state. Therefore, the

subsequent analysis is performed on signals from the active arousal database.

We introduce a measure qi to describe the system’s confidence that burst i represents

consistently one emotional state. Every ECG window x(t) in the burst i is labeled as

high (H) or low (L) arousal1. Let N i
H and N i

L be the number of windows marked as high

and low arousal respectively. Then qi can be calculated as:

qi =
max(N i

H , N
i
L)

N i
H +N i

L

(6.2)

Essentially, every burst that is identified by the updating algorithm will be shown to

have a high qi, which means that with high confidence each burst corresponds to either

high or low arousal. The results are shown in Tables 6.2 and 6.3 which list the q values

(in percentage) for all detected bursts of all subjects in the database (for the updating

algorithm, moderate thresholds, between 0.8 and 0.85, were selected for every individ-

ual). Even though this measure relies on the subjects’ self-reports, and discrepancies

1This annotation is based on the subject’s self report.
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are expected, the average state confidence for the bursts is 96.47%. This performance

is illustrative of the accuracy of detecting homogeneous emotional states, which leads to

successful template updating.

Returning to our original problem, we are interested in template destabilization for

biometric recognition. When a burst is terminated due to decoherence, the biometric

template is updated. While the above results show that each burst corresponds to either

high arousal or low arousal, the question that naturally arises is the following: do two

consecutive bursts correspond to opposite arousal labels? In other words, is change in

arousal the only factor that is responsible for burst termination?

In practice, the template updating algorithm is not only affected by emotional states.

A burst may be interrupted due to one of the following three reasons:

1. A state change i.e., a transition from one psychological state to another.

2. Buffer overflow i.e., when dsizemax is reached. dsizemax can be adjusted according

to the requirements of the application environment. For the present simulation

dsizemax was set to 10 minutes.

3. Noise artifacts (e.g. due to a sudden movement), that are not sufficiently treated

by the filter.

Nevertheless, a template update is necessary in all cases. For the purpose of com-

parison, the verification performance is also estimated over the active arousal dataset for

the two cases, namely with and without template updating. Figure 6.4 demonstrates

the baseline false acceptance and rejection rates. The equal error rate is 15%, which is

typical for LDA training without template updating.

For every individual in the database, a template is updated every time a new burst is

detected. As such, the number of updates is highly dependent on the subject and ranges

between 1-8 as listed in Tables 6.2 and 6.3. To quantify the verification accuracy after

template updating, false acceptance and rejection rates are estimated for every individual
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Subject Number of q1 q2 q3 q4 q5 q6 q7 q8

Bursts

1 2 84.6% 100% - - - - - -

2 5 100% 100% 100% 100% 100% - - -

3 4 100% 100% 100% 100% - - - -

4 2 100% 100% - - - - - -

5 3 83.3% 85.7% 70% - - - - -

6 4 100% 100% 100% 100% - - - -

7 5 100% 89.4% 90.9% 100% 100% - - -

8 3 100% 100% 100% - - - - -

9 1 100% - - - - - - -

10 6 100% 100% 100% 100% 100% 100% - -

11 4 100% 100% 100% 100% - - - -

12 1 100% - - - - - -

13 4 88% 100% 100% 64.3% - - - -

14 2 100% 100% - - - - -

15 3 82.9% 85.7% 100% - - - - -

16 1 67.1% - - - - - - -

17 5 88.8% 70% 88.8% 83.3% 100% - - -

18 2 100% 100% - - - - - -

19 8 100% 76.9% 100% 100% 100% 100% 100% 100%

20 5 100% 100% 100% 100% 100% - - -

21 6 100% 100% 100% 100% 100% 100% - -

Table 6.2: State confidence (q) per burst for subjects 1-21.
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Subject Number of q1 q2 q3 q4 q5 q6 q7 q8

Bursts

22 2 100% 97.2% - - - - - -

23 4 71.4% 100% 100% 100% - - - -

24 7 100% 100% 100% 100% 100% 100% 100% -

25 2 95.6% 100% - - - - - -

26 7 62.5% 100% 100% 100% 100% 100% 100% -

27 5 94.5% 100% 100% 100% 100% - - -

28 5 100% 100% 100% 100% 92.3% - - -

29 1 100% - - - - - -

30 5 100% 100% 100% 100% 100% - - -

31 6 100% 100% 100% 100% 100% 100% - -

32 3 100% 100% 100% - - - - -

33 7 100% 100% 100% 100% 100% - - -

34 4 100% 100% 100% 100% - - - -

35 1 90.9% - - - - - - -

36 4 100% 54.5% 100% 100% - - - -

37 1 100% - - - - - - -

38 2 100% 100% - - - - - -

39 2 66.6% 100% - - - - - -

40 4 100% 100% 100% 100% 100% - - -

41 6 60.2% 100% 70% 100% 100% 100% 94.4% -

42 1 100% - - - - - - -

43 1 100% - - - - - - -

Table 6.3: State confidence (q) per burst for subjects 22-43.
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Figure 6.4: Verification performance for the active arousal database, without template

updating (EER = 15.1%).

separately. Table 6.4 lists the equal error rates that were achieved with this treatment,

for all subjects in the active arousal dataset. The average equal error rate in this case is

3.96%, which represents a significant improvement from 15%. Appendix E presents EER

results for different coherence thresholds cth and for all individuals in the database.

In addition, Figure 6.5 demonstrates the FA and FR tradeoffs for nine randomly

picked individuals. In each simulation false acceptance was computed with comparisons

of the updated template of one individual against the remaining subjects in the database.
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active arousal database.
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Subject EER Subject EER Subject EER Subject EER Subject EER

1 6% 11 4.3% 21 2.65% 31 5% 41 0.2%

2 4.2% 12 3.6% 22 3% 32 5.16% 42 0%

3 8% 13 1.1% 23 5.65% 33 2.65% 43 1.35%

4 4.4% 14 4.3% 24 3.95% 34 9.2%

5 4% 15 3.2% 25 3.38% 35 8.9%

6 0% 16 2.5% 26 4.04% 36 1.85%

7 0.5% 17 2.75% 27 3.35% 37 7.65%

8 5.5% 18 4.63% 28 1.46% 38 2%

9 0.05% 19 4.2% 29 2.75% 39 2.95%

10 3.8% 20 2.3% 30 0.5% 40 13.34%

Table 6.4: Equal error rate for each individual in the active arousal database, after

template updating. Mean equal error rate is 3.96%

6.4 Chapter Summary

This chapter presented a solution to address the problem of template destabilization in

ECG biometrics. The perils of ignoring the destabilization of the template were first

demonstrated over ECG recordings from the long-term database. Specifically, it was

shown that if no special consideration is paid to this problem, the equal error rate can

be as high as 14.7%.

In monitoring environments where the ECG signal is constantly acquired, it is criti-

cal to address this problem. In most real life settings, the emotional activity that affects

the ECG signal is characterized by high arousal, since the individual is usually actively

engaged in some everyday task. Moreover, Chapter 4 demonstrated the feasibility of

detecting human emotion from the ECG in such regimes, which tells us that there is a

significant risk of template desabilization. Automatic detection of template destabiliza-

tion due to psychological variations is therefore very important in order to control false
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rejection.

The template updating methodology that was presented in this chapter was also

evaluated over the active arousal database of ECG signals. The purpose of this analysis

was two-fold. First, it was shown that the accumulated bursts that were detected with

the proposed solution correspond to homogeneous emotional states with high probability

(see Tables 6.2) and 6.3). Furthermore, the verification accuracy was evaluated for every

subject when the respective biometric template was updated in the beginning of a burst.

On average an equal error rate of 3.96% was achieved, which represents a dramatic

reduction from the EER of 15% for the particular dataset in the absence of template

updating.



Chapter 7

Conclusion

7.1 Thesis Summary

In this thesis, we address the problem of ECG-based human recognition from a theoret-

ical, algorithmic and application point of view.

The core idea of the proposed solutions is the use of the autocorrelation of the ECG

signal in conjunction with Linear Discriminant Analysis (AC/LDA). The AC/LDA algo-

rithm was enhanced to incorporate the periodicity transform as a signal quality assess-

ment tool. We demonstrated that the enhanced algorithm decreases the intra-subject

variability by 25% for a dataset of short-term ECG recordings from 52 healthy volun-

teers.

The enhanced AC/LDA algorithm was subsequently tested in three different scenarios,

each of which envisions a unique application environment. The scenarios considered are

A) small-scale recognition, B) large-scale recognition and C) recognition in a distributed

system. Scenario B presents the most challenging application setting because in this

environment the population of enrollees is unknown at the time of LDA training. On the

other hand, in scenario A the application environment is controlled in the sense that the

LDA algorithm is trained on the exact enrollee recordings. Finally, scenario C presents

138
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the opportunity of performing the biometric recognition locally on a smart device, with

the advantage of personalizing the system to the intra-subject variability that is expected

from a particular user.

Scenario B presents a challenge with regard to the machine-learning algorithm, namely

the absence of an appropriate training set. We address this problem by designing a generic

pool of ECG signals to train the LDA. The underlying idea is that the system can benefit

from learning ECG morphologies from the general population, which is essentially a way

to control false rejection. However, false acceptance continues to remain a significant

problem for this scenario because the LDA has not been trained on morphologies of the

particular enrollees. The equal error rare for this scenario is 45.5%, which discourages

deployment of ECG biometrics in large-scale recognition environments.

A better performance is achieved for Scenarios A and C. Since the population of

enrollees is known at the time of LDA training, the equal error rate drops to 12% for

Scenario A and 10% (on average) for Scenario C. These results encourage the use of the

ECG signal in human recognition, and also emphasize the need for machine learning as

a way to address the intra-subject variability of this biometric modality.

This thesis also examines the ECG signal from a psychological point of view. The

rationale is that in the absence of noise or physical activity, an ECG template may

still destabilize with time due to variations in the emotional state. This issue becomes

critically important in monitoring environments wherein the signal is used to continuously

authenticate the user’s identity.

An important contribution of this thesis is the identification of user emotional states

which present risks to biometric recognition. This problem is addressed from an affective

computing point of view. Appropriate experimental setups were designed to collect ECG

signals under particular emotional states. The experiments included inspection of visual

stimuli (passive arousal) and video games (active arousal). The signal is examined under

passive and active arousal as well as under positive and negative valence.
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The empirical mode decomposition (EMD) was employed for emotional pattern classi-

fication. The algorithm was first adapted to the ECG signal using the bivariate extension

on a real and a synthetic ECG segment. Classification was then carried out using fea-

tures that picture the local frequency and oscillation of the intrinsic mode functions. We

demonstrated that active arousal may be detected better than passive arousal, with an

overall classification rate of 78.43%. This finding is critical for real life deployment of

ECG biometrics wherein active arousal is anticipated to be a dominant factor.

Finally, this thesis addressed the problem of template destabilization due to psycho-

logical variations. The proposed solution accumulates ECG segments into bursts until

a decoherence is detected with respect to the previously designed biometric template.

Once the coherence of the accumulated duration is disturbed a new biometric template

is created. The performance was evaluated over ECG signals from the active arousal

database. There were two significant observations. It was observed that with high prob-

ability (96.47% ), the detected bursts correspond to distinct emotional states. Secondly,

that the equal error rate decreases to 3.96% if the biometric template is updated in the

beginning of the corresponding burst.

The findings in this thesis make a strong case for the deployment of ECG biometrics

in human recognition. Although the signal has been under biometric investigation only

within the last decade, the state of the art performance implies that this modality will

soon find its niche in the biometrics world.

7.2 Future Work

There are a number of areas touched upon in this thesis that provide direction for future

research.
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7.2.1 Online State Detection and Prediction.

This thesis proposed a solution to automatic template updating, by examining the co-

herence of accumulated segments of an ECG signal. This is the most basic approach to

state detection, which essentially corresponds to offline change estimation. Another di-

rection to explore is the use of more sophisticated change detectors which operate on the

signal in an online fashion. Likelihood ratio tests can be considered using the Generalized

Likelihood Ratio or the Marginalized Likelihood Ratio.

In addition, environmental cues and/or additional modalities can be incorporated

to the system and help predict an emotional change on the ECG signal. In controlled

environments, for example in an online teleconference system, one can analyze vocal cues

(or the semantics of an on-going discussion) to estimate an a priori emotional probability

which can then been sought in the ECG signal.

7.2.2 Investigation of Acceptable Waiting Periods

In this thesis, the AC/LDA recognition algorithm operated on ECG segments of finite

length. The underlying idea is that real life systems require identity assessments as fast

as possible. Therefore, the fundamental waiting time for the proposed solution was set to

5 seconds in order to accommodate the requirements of both the feature extractor (the

autocorrelation,) and the user convenience with respect to waiting times.

However, fixing the fundamental waiting time is not the only option to address ECG

biometric recognition. As the signal flows continuously into the system, and the amount

od identifying data increases it is anticipated that the probability of positive recognition

will increase as well. In fact, there are environments where immediate subject recognition

is not critical (for instance, patient monitoring within the hospital), and a possibility is

therefore presented for higher recognition accuracy.

In this regard, one future direction is to define measures that express the system’s
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confidence in providing an accurate identity decision, based on the variability of accu-

mulated ECG segments. Practically, this requires a feature or decision level fusion of

the information as it becomes available to the system. It is for instance anticipated,

that voting among accumulated segments that form a burst will significantly reduce false

rejection rates.

7.2.3 Addressing Privacy Concerns.

With the potential of using the ECG signal for human recognition the risk of privacy

intrusion becomes prominent. Traditionally, only designated health care practitioners

have access to this signal, as it may reveal current and past medical conditions. Once

this information is compromised, the results can be catastrophic for people’s integrity.

Furthermore, as this thesis also demonstrated, the ECG signal can provide hints of

psychological activity. This increases the privacy risk as the signal can directly provide

information on the instantaneous emotional activity of the individual.

Although, other biometric modalities also face the same problem, the risk that ECG

encompasses may hold it from being accepted by the public as a safe and secure means

of authentication. It is important therefore to examine methodologies that address this

problem from the users’ point of view. Biometric encryption is one solution to this

problem, wherein the biometric modality is encrypted with keys that are provided by the

biometric itself and can only be unlocked once the same biometric is presented again.

However, the time-dependent nature of the ECG presents a great challenge to biometric

encryption on this signal, as the feature space needs to be first optimized for this task.

7.2.4 Fusion of Medical Biometrics

The solutions that are presented in this thesis can be easily extended to other medical

signals such as the blood pressure, the electroencephalogram, the phonocardiogram and

the photoplethysmogram. Although the ECG signal is the most widely explored medical
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biometric, the above biosignals may also be subject specific.

In principal, using more than one modalities for human recognition increases the

probability of finding the right math in a gallery set. The fact that medical biometrics

have the same intrinsic properties (liveness detection, universality, permanence) moti-

vates their fusion into a multi-modal biometric system. Once every signal is established

as a biometric modality individually, the next step will be the design of fusion mecha-

nisms that can strategically combine the discriminative information from each of them.

Fusion can be performed at three different levels i.e., at a raw datal level, at a feature

level or at a decision level.



Appendix A

The Empirical Mode Decomposition

The Empirical Mode Decomposition algorithm has been proposed by Huang et al. [90].

It is a non-linear technique to decompose a non-stationary signal, after identifying its

oscillatory modes. There are three underlying assumptions:

1. The analyzed signal should have as many local extrema as possible.

2. The time scale is defined as the time passing between two extrema.

3. If the signal does not have apparent extrema, then differentiation is applied to

reveal them.

For EMD, oscillatory modes correspond to Intrinsic Mode Functions (IMF). The

IMFs represent the various intrinsic time scales of the signal and satisfy two conditions:

1. Their number of extrema and the zero crossings must be equal or doffer at most

by one.

2. The average value of the envelope defined by the local maxima and local minima

is zero at any time point.

As explained in [90], most practically encountered signals do not satisfy the properties

of an IMF, but can be expanded into a finite set of IMFs.

144
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Figure A.1: EMD steps on an ECG signal.

With EMD the a signal x(t) can be expressed as:

x(t) =
M∑

i=1

ci(t) + r(t) (A.1)

where ci(t) for i = 1, ...M is the set of IMFs and r(t) is the final residual. The number

of IMFs can not be predefined and it depends on the volume of the oscillatory activity

in xt).

More specific, given a signal x(t) the EMD algorithm operates as follows:

1. Detect local maxima xmax(i) and minima xmin(j) of x(t).

2. Interpolate among xmax(i) to get an upper envelope xup(t), and xlow(t) for minima

respectively.



Appendix A. The Empirical Mode Decomposition 146

3. Compute the average of envelopes m(t) = xup(t)+xlow(t)
2

.

4. Subtract from signal u(t) = x(t)−m(t).

5. Iterate for x(t) = u(t).

An example of this procedure on the ECG signal is depicted in Figure A.1. EMD

describes essentially a sifting process, which is terminated when u(t) meets the IMF

criteria. If it does, u(t) will be describing a underlying oscillation of x(t), referred to

herein as d(t). EMD continues with sifting on the residual r(t) = x(t) − d(t). The

original signal can then be expressed as:

x(t) =
N−1∑

i=1

di(t) + r(t) (A.2)

where di(t) denotes the i
th IMF extracted from the signal x(t) and r(t) is the final residual.

Note that by definition, r(t) is not an IMF.

Higher order IMFs describe slower oscillations, and are thus dominated by the smaller

frequencies of x(t). An example of EMD decomposition for an ECG segment is depicted

in Figure A.2.
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Figure A.2: EMD analysis for a real ECG segment (5 out of 16 IMFs).



Appendix B

Human Emotion Models

Research on emotional intelligence is inevitably linked with studying emotional orga-

nization and classification. Psychologists have long been trying to provide a rational

description for emotional clusters, if any such exists. In principal two scientific models

have been suggested to describe emotions namely the Affective Dimensional Grid (ADM)

and the Discrete Emotional Models (DEM).

The discrete emotional models suggest that there exists a set of distinct emotions,

which are clearly specified and separated. Ekman [58] suggested that emotions are only

those psychological states which conform to specific criteria. Examples of these require-

ments, are for the affective state to be universal among people, to have a distinctive

physiological expression with a quick onset and brief duration and other. Standard emo-

tions considered usually are happiness, surprise, anger, dislike, fear,and sadness.

The first dimensional model for the description of emotions was proposed by Russel

et a. [5] in 1989. The affect grid idea suggests that emotions are not discrete but

continuous, and can be projected in a two dimensional space. The first dimension pictures

the valence of the emotion and ranges between pleasure and displeasure. The second

dimension described the valence and ranges between relaxation and high arousal. Figure

B.1 illustrates the 2D affect space (AV) and shows the approximate coordinates for some
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Figure B.1: The Arousal-Valence (AV) plane. Reproduced from [5].

well established emotional states. Lang [100], categorized real life pictures with respect to

the elicited arousal and valence, and managed to create a mapping between the pictures

and the AV plane.

Both theories have advantages and disadvantages. The explicit specification of emo-

tions might be too difficult as they are expressed in various ways even by the same person

under different environments. On the other hand, the AV plane assumes independence

between arousal and valence which is practically uncertain. However, further analysis of

the psychological aspect of emotions is beyond the scope of this proposal.



Appendix C

Affective Computing Features in

Prior Art

Reference Signal Feature

GSR a Detrended time series (subtraction of a time varying sample mean)

GSR Unbiased sample variance of the detrended signal

BVP b Pinch: Difference between upper and lower envelope

BVP Peak to peak intervals (related to heart rate)

BVP Local variance of coefficients of the 3-level wavelet expansion

Table C.1: Features for classification used by Scheirer et al. in [2].

aGalvanic Skin Response
bBlood Volume Pressure
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Reference Signal Estimator Description

Heart rate H f1 =
1
N

N∑
n=1

bn b is acquired by convolving with a Hanning window on H. This handles the

fluctuations on H by making the heart rate waveform smoother.

Heart rate H f2 =
1

N−1

N−1∑
n=1

(bn+1 − bn) This measure describes the average acceleration or deceleration of the

heart rate.

Skin Conductivity S f3 =
smin(s)

max(s)−min(s) s is the result of the convolution between S and a Hanning window.

This eliminates high frequency noise effects in S. The maximum

and minimum values are with respect to the whole day’s observations.

Skin Conductivity S f4 =
1

N−1

N−1∑
n=1

(sn+1 − sn) A statistical measure which refers to the mean of the first differences

of the smoothed S.

Respiration Rate R f5 =
1
N

N∑
n=1

rn Where r = R− 1
Nday

Nday∑
n=1

Rn. This measure accounts for variations

due to tightness of the sensor placement on different days.

Respiration Rate R f6 =
1

N−1

N∑
n=1

(rn −
1

Nday

Nday∑
n=1

Rn)

2

A statistical measure of r.

Respiration Rate R f7 Power spectral density amplitude of R in the interval 0.0-0.1 Hz.

Respiration Rate R f8 Power spectral density amplitude of R in the interval 0.1-0.2 Hz.

Respiration Rate R f9 Power spectral density amplitude of R in the interval 0.2-0.3 Hz.

Respiration Rate R f10 Power spectral density amplitude of R in the interval 0.3-0.4 Hz.

Table C.2: Typical features for classification used by Picard et al. in [1].
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Feature No Reference Signal Feature

1 EMG a Normalized mean

2 R b Normalized mean

3 R Normalized variance

4 HR c Normalized mean

5 HR d Normalized variance

6 GSR foot e Normalized mean

7 GSR foot Normalized variance

8 GSR hand Normalized mean

9 GSR hand Normalized variance

10 R PSD in 0-0.1Hz

11 R PSD in 0.1-0.2Hz

12 R PSD in 0.2-0.3Hz

13 R PSD in 0.3-0.4Hz

14 GSR foot Sum or Orienting Response f magnitudes

15 GSR foot Sum of Orienting Response durations

16 GSR foot Sum of areas under Orienting Responses

17 GSR foot Number of Orienting Responses

18 GSR hand Sum or Orienting Response magnitudes

19 GSR hand Sum of Orienting Response durations

20 GSR hand Sum of areas under Orienting Responses

21 GSR hand Number of Orienting Responses

22 HRV g Ratio of low to high spectral energies

Table C.3: Features for Analysis I classification used by Healey et al. in [3].

aElectromyogram
bRespiration
cHeart Rate
dHeart Rate
eGalvanic Skin Response
fAn Orienting response is a sudden, high frequency pick in GSR.
gHeart Rate Variability



Appendix D

Heart Rate Variability

The Heart Rate Variability (HRV) is a measure that describes the heart-beat occurrence

times on the ECG signal. Due to the simplicity in the collection and estimation, the

HRV is used widely in order to assess the functions of the autonomic nervous system

and related diseases. The inter-beat intervals that are analyzed for HRV estimation are

not necessarily acquired from the ECG signal, although this is the most accurate way to

perform this analysis.

The first step to HRV estimation is the localization of the R peaks, as shown in

Figure D.1. Then, the intervals between successive R peaks are estimated as depicted

in Figure D.2, and the HRV can be expressed as either the instantaneous change of this

time-series or simply the standard deviation. Traditionally, the P peaks were preferred

for this analysis because their occurrence is directly linked to the SA node, however the

detection of a P wave may be inaccurate due to its small amplitude. Since the RR

interval is relatively stable, the R waves are widely used for HRV estimation. Most of

the HRV analyses take place in frequency domain. Typically, the spectrum of the HRV

is divided in two parts as follows:

1. Low Frequency : 0.04Hz - 0.15Hz

2. High Frequency : 0.15Hz - 0.4Hz
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Figure D.2: R-R time series used for HRV estimation.

The power measured in these two intervals is highly correlated with processes of the

autonomic nervous system. Sympathetic activity is associated with the low frequency

band, and parasympathetic with the high frequency. The ratio LF
HF

between the two

spectral power measures is an indication of autonomic balance.

Given the relation of the HRV with the autonomic nervous system, this signal has

been associated with a number of conditions, and has been studied in different fields:

1. In affective computing, the HRV is directly associated with the degree of engage-

ment in a task. As a measure of mental effort, it is used in high-stress environments



Appendix D. Heart Rate Variability 155

(for example air-traffic control) for assessing the mental state of the users [101, 102].

In this field, the heart rate has been also shown to differentiate between positive

and negative emotions [101]. Typically, the spectral characteristics of the HRV

series are used in affective computing. Instead of just two frequency bands, the

spectrum is divided in parts i.e., Very low frequencies (VLF: 0.003Hz - 0.4Hz),

low frequencies (LF: 0.04Hz - 0.15Hz)and High frequencies (HF: 0.15Hz - 0.4Hz).

From these subband spectra, the dominant powers and frequencies are estimated

for each band, by integrating the power spectral densities. The ratios of the domi-

nant frequencies are used to distinguish sympathetic from parasympathetic effects

[101].

2. The HRV has been shown to decrease in patients with acute myocardial infraction

[103].

3. Disorders of the central and peripheral nervous systems have effects on the HRV.

The spectral characteristics of the HRV provide insight on the neurological condi-

tion of patients and can help diagnose brain damage or depression [103].

4. Using the HRV, it was shown that smokers have increased sympathetic activity

[103].

However, the information that the HRV provides is limited to the heart-beat occur-

rence, while no information on the morphology of the ECG is conveyed.



Appendix E

Template Update Results
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Figure E.1: Equal error rates of the template updating algorithm for various coherence

thresholds cth. As the threshold increases, better coherence is imposed on the bursts

which leads to more frequent template updating and subsequently smaller EER.
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Subject EER Subject EER Subject EER Subject EER Subject EER

1 7.24% 11 3.36% 21 2.06% 31 0.99% 41 0.57%

2 3.74% 12 4.04% 22 1.12% 32 3.75% 42 0.2%

3 6.13% 13 0.56% 23 5.02% 33 1.35% 43 8.08%

4 5.6% 14 3.52% 24 4.01% 34 7.05%

5 3.69% 15 2.47% 25 2.93% 35 8.89%

6 0.069% 16 1.84% 26 5.72% 36 7.44%

7 1.63% 17 2.5% 27 4.77% 37 6.92%

8 4.3% 18 4.48% 28 0.96% 38 1.82%

9 3.46% 19 4.49% 29 2.92% 39 5.97%

10 3.48% 20 1.96% 30 0.21% 40 110.96%

Table E.1: Equal error rate for cth = 0.76. Mean equal error rate is 3.77%

Subject EER Subject EER Subject EER Subject EER Subject EER

1 6.76% 11 3.14% 21 0.27% 31 0.54% 41 0.19%

2 3.76% 12 4.04% 22 1.12% 32 2.83% 42 0.174%

3 8.87% 13 0.57% 23 5.42% 33 1.01% 43 2.49%

4 4.14% 14 3.19% 24 0.51% 34 7.71%

5 3.81% 15 2.47% 25 3.05% 35 8.89%

6 0.08% 16 1.84% 26 5.71% 36 2.24%

7 1.63% 17 2.1% 27 3.92% 37 6.92%

8 4.3% 18 2.94% 28 0.96% 38 1.07%

9 3.47% 19 4.55% 29 2.92% 39 5.97%

10 2.17% 20 2.28% 30 0.21% 40 12.38%

Table E.2: Equal error rate for cth = 0.78. Mean equal error rate is 3.08%
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Subject EER Subject EER Subject EER Subject EER Subject EER

1 9.31% 11 3.25% 21 0.46% 31 0.59% 41 0.19%

2 3.73% 12 0.1% 22 1.11% 32 23.42% 42 0.174%

3 8.81% 13 0.57% 23 5.42% 33 1.42% 43 3.66%

4 4.14% 14 3.19% 24 0.98% 34 7.71%

5 3.81% 15 2.47% 25 2.86% 35 8.89%

6 0.08% 16 1.84% 26 4.57% 36 1.98%

7 1.21% 17 2.11% 27 3.73% 37 6.92%

8 4.3% 18 2.72% 28 0.96% 38 1.16%

9 0.87% 19 4.51% 29 2.92% 39 5.97%

10 2.27% 20 2.94% 30 0.09% 40 12.38%

Table E.3: Equal error rate for cth = 0.8. Mean equal error rate is 2.92%

Subject EER Subject EER Subject EER Subject EER Subject EER

1 9.31% 11 3.01% 21 0.46% 31 0.84% 41 0.19%

2 3.73% 12 0.1% 22 0.89% 32 3.87% 42 0.17%

3 8.81% 13 0.95% 23 5.93% 33 1.26% 43 2.84%

4 4.14% 14 2.2% 24 0.85% 34 7.71%

5 3.81% 15 3.92% 25 2.86% 35 8.89%

6 0.08% 16 1.84% 26 3.79% 36 1.98%

7 1.21% 17 2.12% 27 3.29% 37 4.71%

8 4.3% 18 2.72% 28 0.38% 38 1.13%

9 0.03% 19 4.72% 29 1.46% 39 2.72%

10 2.35% 20 2.34% 30 0.1% 40 12.87%

Table E.4: Equal error rate for cth = 0.81. Mean equal error rate is 2.8%
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Subject EER Subject EER Subject EER Subject EER Subject EER

1 9.05% 11 2.65% 21 0.64% 31 0.88% 41 0.11%

2 2.96% 12 0.1% 22 0.89% 32 6.07% 42 0.17%

3 0.1% 13 0.95% 23 5.93% 33 1.25% 43 2.84%

4 4.45% 14 1.45% 24 0.61% 34 6.76%

5 3.81% 15 2.35% 25 2.86% 35 8.89%

6 0.08% 16 1.84% 26 3.65% 36 1.98%

7 0.95% 17 2.04% 27 1.7% 37 4.71%

8 2.98% 18 1.59% 28 0.38% 38 1.13%

9 0.03% 19 5.18% 29 1.46% 39 7.41%

10 2.22% 20 2.34% 30 0.1% 40 12.87%

Table E.5: Equal error rate for cth = 0.83. Mean equal error rate is 2.51%

Subject EER Subject EER Subject EER Subject EER Subject EER

1 3.83% 11 2.28% 21 0.05% 31 0.88% 41 0.61%

2 3.59% 12 0.01% 22 1.12% 32 3.46% 42 0.17%

3 0.1% 13 0.93% 23 1.47% 33 1.84% 43 1.25%

4 3.55% 14 1.68% 24 0.91% 34 6.76%

5 3.4% 15 2.19% 25 2.86% 35 8.89%

6 0.06% 16 1.84% 26 3.61% 36 1.76%

7 0.67% 17 2.26% 27 1.7% 37 3.94%

8 2.98% 18 1.59% 28 0.31% 38 1.78%

9 0.01% 19 4.83% 29 1.68% 39 0.01%

10 1.86% 20 2.7% 30 0.01% 40 12.63%

Table E.6: Equal error rate for cth = 0.88. Mean equal error rate is 2%
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