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Abstract—The transmission, storage and analysis of 
electrocardiogram (ECG) data in real-time is essential for 
remote patient monitoring with wearable ECG devices and 
mobile ECG contexts. However, this remains a challenge to 
achieve within the processing power and the storage capacity 
of mobile devices. ECG reduction algorithms have an 
important role to play in reducing the processing requirements 
for mobile devices, however many existing ECG reduction and 
compression algorithms are computationally expensive to 
execute in mobile devices and have not been designed for real-
time computation and incremental data arrival. In this paper, 
we describe a computationally naïve, yet effective, algorithm 
that achieves high ECG reduction rates while maintaining key 
diagnostic features including PR, QRS, ST, QT and RR 
intervals. While reduction does not enable ECG waves to be 
reproduced, the ability to transmit key indicators (diagnostic 
features) using minimal computational resources, is 
particularly useful in mobile health contexts involving power 
constrained sensors and devices. Results of the proposed 
reduction algorithm indicate that the proposed algorithm 
outperforms other ECG reduction algorithms at a 
reduction/compression ratio (CR) of 5:1. If power or 
processing capacity is low, the algorithm can readily switch to 
a compression ratio of up to 10:1 while still maintaining an 
error rate below 10%.  

Keywords-ECG intervals; compression ratio; data reduction; 
real-time; energy consumption 

 

I. INTRODUCTION 
Advances in mobile devices and wearable 

electrocardiograph (ECG) sensor technology has changed the 
way ECG signals are collected, stored and processed [1] [2]. 
This can lead to reductions in the use of Holter devices in 
favor of real time, continuous monitoring [3]. ECG signals 
from wearable sensors processed on a battery-driven devices 
require algorithms to execute rapidly in real-time, despite 
limitations in processor capability and memory [4]. 

ECG sensors generate large streams of data that easily 
exhaust mobile device storage. For instance, at a typical 
sampling rate between 100 and 500 Hz, where each data 
point may have 8, 12 or 16-bit resolution results in a dataset 
in the order of 480 Kbits per minute [5]. Some applications 
are required to process and store ECG recordings for one or 
more days [4]. 

The large datasets and limited processing capacity of 
devices near the sensors results in the need to consider the  
near, or real-time reduction of large ECG data sets for 

critical operations in ambulatory recording systems, ECG 
signal storage systems and for ECG signal transmission over 
wireless networks [5][6]. However, any reduction in ECG 
signals should not impede clinicians’ diagnostic assessments 
[7]. Most existing ECG data reduction algorithms are 
designed to reduce information size while maintaining 
significant information, so that the ECG wave can be 
reconstructed from the reduced form as intact as possible [8]. 
Critically, any ECG data reduction algorithm should 
preserve the essential features (diagnostic features) of the 
ECG signal (P, Q, R, S, and T) waves as these peaks and 
troughs as well as the calculated intervals (i.e. QT interval) 
are used for the clinical interpretation of the ECG [9] [10].  

Existing compression algorithms that achieve 
considerable compression by applying computationally 
resource intensive transformations are difficult to deploy on 
mobile devices, which are constrained by power and memory 
limitations. In contrast, many reduction algorithms cannot be 
reversed to re-create the original signal but can reproduce 
only the important features (diagnostic features) of the 
signal. Further, many existing reduction algorithms require a 
block of ECG data and cannot reduce a signal incrementally 
as it arrives from wearable devices so that the need to store 
the entire stream can be obviated.  

In this paper, we introduce a simple, yet effective, ECG 
data reduction algorithm where the signal cannot be 
reconstructed intact but nevertheless has the following 
advantages: 

• The compression/reduction ratio is higher than many 
existing real-time reduction methods. 

• Most ECG diagnostic features, intervals and ECG 
waves (P, QRS, T) can be detected in the reduced 
data. 

• The algorithm can be applied on programmable ECG 
mobile sensors such as Shimmer3 ECG sensor and 
increased battery life. 

• Reduction processing is computationally less 
expensive than current ECG data reduction methods 
because the algorithm is simple and can execute 
every few milliseconds.  

In the following section, we describe existing real-time 
reduction algorithms. The algorithms proposed here are 
presented in Section III before reporting experimental results 
with standard datasets in Section IV. 

II. ECG DATA REDUCTION METHODS 
Three types of ECG compression/reduction algorithms 

can be categorized: direct methods (reduction methods), 
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transform methods and parameter methods. Direct methods 
reduce the ECG signal without any preprocessing. They 
directly detect and eliminate the redundant points from plain 
signal and provide minimum distortion [11]. This makes 
direct methods more suited for remote patient monitoring 
than those in the transformation and parameter methods [12]. 
Although other methods achieve higher compression ratios 
than direct methods, they consume more time, power and 
computational resources to be suitable for deployment with 
wearable sensors and mobile devices [6][13].  

Reduction of ECG signal does not require retaining all 
data points; rather, only some features of the ECG data are 
essential (P, Q, R, S, T), and relevant intervals. The subtlety 
of the ECG signal may be ignored in favor of higher 
compression ratios [11][13]. 

Most compression and reduction algorithms are 
evaluated using four fundamental measures; signal 
reconstruction error, compression ratio, compression 
performance and root mean square error. The compression 
ratio (CR) describes the effectiveness of an ECG 
compression method. CR represents the ratio between the 
plain ECG signal data size and compressed ECG signal data 
size [14]. The Percentage Mean Square Difference (PRD) is 
a computation of error due to signal infidelity. This measures 
the distortion between the plain and the reconstructed signal 
[15]. Root Mean Square Error (RMSE) is calculated from 
actual and expected measurements [16]. 

Real-time ECG data reduction algorithms known as 
“lossy” methods are those where the reduced ECG signal 
usually cannot be reconstructed or recovered exactly. 
Algorithms in this category include Turning Point (TP), 
Amplitude Zone Time Epoch Coding (AZTEC), Coordinate 
Reduction Time Encoding System (CORTES), and 
Fan/SAPA (Scan Along polygonal Approximation) [9].  

Cox et al. [17] introduced the AZTEC algorithm that 
changes a plain ECG signal into slopes and horizontal lines. 
The amplitude and length are saved while the horizontal 
lines use a Zero-Order Interpolator method to reduce the 
data. Information saved from a slope is the length of the 
slope and its final amplitude. Although the AZTEC method 
realizes a high CR of about 10:1 (500 Hz sampled ECG with 
12 bits resolution), it provides imprecise reconstruction of 
ECG waves particularly, T and P waves with a PRD of 5.3 % 
and requires preprocessing to reduce an ECG signal.  

The Turning Point method, proposed by Mueller [18]  
reduces the sampling frequency of an ECG wave from 200 
Hz to 100 Hz and preserves the peak of the large amplitude 
QRS waves. The Turning Point method operates by 
substituting each of three successive values with the two that 
best represent the substituted value. The second of the two 
stored values is used for the computation of the next two 
values. Turning Point maintains the essential aspects of the 
ECG data and supplies a CR of 2:1.  However, relevant 
clinical information is lost if a minimum or a maximum 
value is lost. Therefore, if one of the two values in the pair is 
a local minimum or a local maximum then it is the other 
value in the pair that is eliminated [19]. In fact, the proposed 
method advanced in this article is close to the Turning Point 
method but it provides higher CR and overcomes the local 

minimum and local maximum problem that may lead to 
missed diagnostic features.   

 The high precision of the Turning Point reduction 
technique and the superior CR of the AZTEC technique were 
merged into the CORTES method. Abenstein & Tompkins 
[20] demonstrated the implementation analysis of the 
CORTES, AZTEC, and Turning Point methods for ECG’s 
sampled at 200 Hz with PRD’s 7, 28, and 5, and CRs of 
4.8:1, 10:1, and 2:1 respectively. 

 Fan and SAPA methods represent an ECG data 
reduction algorithm which provides a CR of around 3:1 and 
PRD of nearly 4 (250 Hz sampled ECG). These two methods 
depend on a First-order Interpolation with two Degrees of 
Freedom (FOI-2DF) algorithm. The Fan algorithm achieves 
the FOI-2DF without saving all the raw data samples 
between the last transmitted and the present sample [21].  

The real-time ECG data compression algorithms that can 
execute on wearable, programmable ECG sensor devices are 
explained next.   

A real-time ECG data compression algorithm, +SLOPE, 
was introduced by Tai [22]. This algorithm processes some 
neighboring patterns as a vector and expands the vector if the 
next pattern falls in a fan spanned by the vector and 
threshold angle; else, it is a restricted linear segment. By this 
approach, +SLOPE constantly restricts linear segments of 
different length. The +SLOPE algorithm reproduces ECG 
signal however the approach can lead to QRS misdetection 
and a CR of 4.8 and PRD of 7.  The +SLOPE algorithm was 
tested on MIT-BIH Arrhythmia database.                            

A compression engine was introduced by Fang et al. [23] 
for portable real-time ECG data monitoring to transfer ECG 
signal wirelessly and analyze heart rate variability in real-
time. The compression engine achieves a compression ratio 
of approximately 2.5 by classifying every ECG sample based 
on prior samples with the Golomb-Rice k-parameter 
algorithm. The compression algorithm was evaluated on the 
MIT-BIH Arrhythmia database. The ECG signals were 
resampled to 256 Hz before being tested and achieved a 
compression ratio of approximately 2.5. 

All the methods above provide CR less than the proposed 
method (except the AZTEC method produces a CR of 10:1 
but it does not maintain all relevant clinical data. It typically 
misses P and T waves. The proposed method can provide CR 
of about 10:1 and miss P, T waves as well). Also, they 
require more processing time when they execute on a 
wearable ECG sensor. Therefore, they consume more energy 
than the proposed method advanced in this study.  

 Most recent real-time ECG compression algorithms such 
as [5] [7] [24] based on transformation techniques require 
preprocessing and high computational resources [6] [13]. 
Thus, they are not suited for real-time ECG reduction on 
wearable sensors and mobile devices because these devices 
have limitations of CPU execution time, memory capacity 
and energy consumption.  

III. PROPOSED ECG REDUCTION ALGORITHM 
In this study we used Shimmer3 ECG wearable sensor as 

a reference to measure energy consumption in milli Joules. 
The Shimmer3 motherboard consists of low-power Texas 
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Instrument 16-bit MSP430F5437A microcontroller, 2.7 
Volts, a low-power CC2420 IEEE 802.15.4 compliant radio, 
and has a Bluetooth module. In addition, Shimmer3 has a 
450 mAh lithum-ion rechargeable battery that can work up to 
16 hours. The MSP430 microcontroller runs at 8 MHz and 
has 16 KB of RAM, 256 KB of Flash. Also, it has a fast 
hardware multiplier, but does not have a floating-point unit 
[25].   

The direct “lossy” ECG data reduction algorithm 
proposed here implements real-time direct reduction. The 
algorithm reads and stores a window of n consecutive raw 
ECG measurements at a time. As the window increases in 
width the error rate in correctly identifying the P, Q, R, S and 
T points diminishes. A window size of 5 has been 
determined empirically to produce the optimal tradeoff 
between compression ratio, accuracy and computational 
resources. The window size can be varied to achieve 
different trade-offs depending on the context. The algorithm 
takes a stream of millivolt readings as input and operates in 
the same way regardless of the sampling rate. The algorithm, 
described in Table I operates as follows on a window size of 
5. 

The algorithm reads 5 consecutive ECG readings. The 
maximum point of the five samples is identified; if this 
maximum is positive, it is retained in the reduced set and the 
other 4 points are discarded. This ensures the P, R and T 
peaks are not discarded. If the maximum point in the window 
of 5 is not positive, the minimum is identified and retained 
and the other 4 are discarded. This ensures the Q and S 
troughs are not missed. 

TABLE I.  ECG REDUCTION ALGORITHM CODING SCHEMA 

ECG Reduction Algorithm 
Input: Plain ECG signal in +/- millivolts 
Output: Reduced ECG signal +/- millivolts 
 
Step1: window size (n)=5 (optimal)  
Step2: While ECG  N  Do 
Step3: Read n  
Step4: Max= Maximum sample in n 
Step5: Min= Minimum sample in n  
Step6: If  Max>= 0 Then store Max  
           Else store Min 
Step7: Go to step2 

 
The claim advanced in this article is that the algorithm is 

particularly well suited for the reduction of ECG captured 
from wearable sensors on mobile patients in real-time and 
can apply on programmable ECG sensors. 

IV.    RESULTS 
The proposed algorithms were evaluated using the MIT-

BIH Arrhythmia database [26]. The MIT-BIH database is 
commonly used in ECG signal analyzing because it includes 
different patterns of ECG signal and contains 48 ECG for 30 
minutes record from different patients. Furthermore, it has 
two channel ambulatory ECG recordings in digital format 
with an 11 bits ADC and 360 Hz sampling rate. We applied 
the algorithm on all 48 ECG signal records [26].  

A.       ECG Reduction Results 
Fig. 1 depicts part of the raw ECG from Record No. 100. 

The red dots represent ECG samples in the raw ECG data. 
This record represents a normal ECG. Fig. 2 also illustrates a 
segment of Record 100 but where only some of the samples 
have been selected for storage by the algorithm described 
above using a window of size 5. Fig. 2 illustrates that each 
peak and trough has been correctly identified.  For record 
100, the algorithm maintains most ECG data and reduces the 
redundancy. It provides a compression ratio of 5:1 and zero  
PRD. In addition to the reduction results and accuracy, the 
algorithm has low complexity and can be applied equally to 
normal and abnormal ECG signals. Furthermore, it can be 
used with long and short term ECG signal and data stream.  

 

 

 

 

 

 

 

 

 

Figure 1.  Segment of ECG for Record No. 100 with raw samples. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Segment of ECG for Record No. 100 with reduced samples 
illustrates all ECG peakes and troughes are maintanted after reduction 
process. 

Table II illustrates the proposed algorithm achieves a 
very low PRD % at a compression ratio of 5:1 when 
executed with a window size of 5. This compares favorably 
with many other algorithms as depicted in Table II. 
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TABLE II.  COMPARISON OF ECG DATA REDUCTION 
ALGORITHMS 

Methods CR Sampling Rate Hz  
(No. of Bits) 

PRD% 

TP 2:1 200, 12 5.3 
AZTEC 10:1 500,12 28 
CORTES 4.8:1 200,12 7 
FAN/SAPA 3:1 250,- 4 
SLOPE 4.8:1 250,- 7 
Fang et al. 2.5:1 256,- - 
Our method 5:1 Any 1 

 
The PRD was very low because every point selected was 

one of the raw ECG points. The compression ratio, accuracy 
is comparable with the algorithms mentioned in Table II. 
However, some data is lost with this reduction algorithm in 
that all points in the window are discarded except for the 
minimum or maximum. Whether these points are critical for 
the generation of important ECG indicators is discussed in 
the next section and illustrates that for ECG features 
generated from the reduced data, the results are very similar 
to those generated from the raw data.  

B. Generation Features from Reduced ECG Data 
Many methods employed P,QRS,T information to 

measure the distortion between raw and compresed or 
reduced ECG signal. For example,  Zigel et al. [10] 
introduced  an algorithm to assess the distortion for ECG 
signal. This algorithm is based on measure P, QRS, T 
diagnostic features include PR interval, ST segment and RR 
interval of the raw ECG signal and the compressed ECG 
signal. Feedback from cardiologists was positive than with 
traditional distortion measures. Also, the link between 
diagnostic distortion and PRD metric was categorized as: if 
the PRD from 0 to 2 % then signal quality is very good, if 
the PRD from 2 to 9 % then signal quality is  very good or 
good and if the PRD from >= 9 % then signal quality is not 
possible to determine. 

For the evaluation of the proposed method we used 
P,QRS,T diagnostic features to measure the quality of the 
reduced signal. Further, we calculated PRD and CR 
parameters that are most commonly used to quantify the 

reduction effectiveness and accuracy while analyzing the 
diagnostic quality of the reduced ECG data. CR and PRD are 
given as below: 

 
CR=(X  Y) × 100                                  (1) 

 
PRD=|| X  Y||2/||X||2 ×   100                   (2)  

                                                                          
Where X is the plain signal and Y is the reduced signal.  
We computed the P,QRS,T dignostice features for the 

raw data as following: 
 

T=|i N| × 1/frequency                            (3) 
 

Where T represents any interval or segment such as PR 
interval. 

Where i refers to  start intervel and N referes to end 
interval.  

We reconstructed the dignostic features  from the 
reduced data using the below equetion:  

 
=|(i×WS)  (N× WS)| × 1/frequency       (4) 

      
Where  represents any interval or segment such as ST 

segment and WS represents window size. 
Most important ECG features that clinics and many 

computerized algorithms apply to diagnose cardiovascular 
diseases were generated from the reduced ECG signal. Raw 
ECG signals were examined with 2, 3, 4, 5, 6, 7, 8, 9 and 10 
samples. We utilized the WFDB software that is available 
publicly to extract ECG features (diagnostic features) from 
raw and reduced ECG signals [27]. We conclude that most 
intervals including the QT interval must be accurately 
detected from reduced ECG signal with a window size of 5. 
The RR intervals data detected from the reduced signals have 
98 % similarity to the RR data detected from the raw ECG 
signal up to a window size start from 2 to 10. Thus, time-
domain, frequency-domain, and nonlinear heart rate 
variablity (HRV) analysis results are almost identical to the 
original ECG signal results. 

TABLE III.  WINDOW SIZE VERSUS REDUCTION ACCURACY/EFFECTIVENESS  

Window size CR PRD%  
PR  

interval 

PRD%  
PR  

segment 

PRD%  
QRS  

interval 

PRD%  
ST  

segment 

PRD%  
ST  

interval 

PRD%  
QT  

interval 

PRD% 
RR  

interval 
2 samples 2:1 99.9 99.9 99.9 99.9 99.9 99.9 99.9 
3 samples 3:1 99.9 99.9 99.9 99.9 99.9 99.9 99.9 
4 samples 4:1 99.9 99.7 99.9 99.3 99.9 99.9 99.9 
5 samples 5:1 99.2 99.6 99.2 99.1 99.2 99.5 99.4 
6 samples 6:1 85.4 69.5 98.9 72.7 78.9 93.5 99.2 
7 samples 7:1 71.3 N/A 98.3 N/A N/A 83.6 98.8 
8 samples 8:1 N/A N/A 98.6 N/A N/A 74.9 98.8 
9 samples 9:1 N/A N/A 98.4 N/A N/A 55.9 98.6 
10 samples 10:1 N/A N/A 97.9 N/A N/A 55.2 98.3 

Note: N/A represents failure to detect an interval. 
 

Clearly, there is a link between window size and 
diagnostic features distortion and detection. When window 

size set up to 2, 3, 4 or 5 the quality of the reduced signal is 
high and the diagnostic features can be detected. When the 
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window size increases to 6 the quality of the reduced signal 
is good and the diagnostic features can be detected. The 
quality of the reduced signal decreases when the window 
size increases above 8, 9 or 10. The P and T waves cannot be 
detected because of the reduced signal distortion resulting in 
a failure to detect ST and PR intervals.        

C. Energy consumption for wearable ECG sensor                          
The energy consumption has been estimated for the 

runtime reduction methods by analyzing the number of 
operations implemented by the micro-controller unit i.e., the 
number of multiplications, summations, divisions and logical 
comparisons. These operations have been converted to 
number of cycles.  
 

Power=Volts * Amp                              (5) 
 

Energy consumption= Power * Runtime             (6) 
 

TABLE IV demonstrates that the proposed algorithm 
consumes a very low memory and energy when implement 
with a window size of 5.  

TABLE IV.  COMPARISON OF ECG DATA REDUCTION 
ALGORITHMS FOR ENERGY CONSUMPTION                                   

Methods Run Time 
ms 

Memory 
Consumption 

KB 

Energy 
Consumption 

mJoule 
TP 73 0.36 1.09 
AZTEC 150 1.23 2.25 
CORTES 248 0.97 3.72 
FAN/SAPA 100 0.75 1.5 
SLOPE 267 5 4 
Fang et al. 235 1.40 3.52 
Our method 75 0.39 1.1 

    
The memory and energy consumption are comparable 

with the algorithms listed in Table IV and is particularly 
good given that the algorithm executes in real-time and 
increases battery life using high CR, minimal CPU, storage 
requirements and power consumption.  
 

V. CONCLUSION 
The recording of ECG data generates a large amount of 

data that increases with different sampling rates and time. 
Nowadays, mobile devices are being widely used in 
healthcare applications to process large ECG data. These 
devices are battery-driven and have low processor and 
memory capacities. In this work, a novel, naïve yet effective 
algorithm is presented, which reduces the size of ECG 
signals in real-time and can be implemented within the 
constraints of ECG wearable sensor. Our reduced ECG 
signals reflect the raw ECG signals. In addition, our 
investigation also found a link between the widow size that 
used to reduce ECG signal and the quality of the reduced 
ECG signal. We infer that most intervals including the QT 
interval must be accurately recognized from reduced ECG 
data with a window size of 5. The RR intervals data 
recognized from the reduced data have 98% similarity to the 

RR data recognized from the original ECG data up to a 
window size start from 2 to 10.  The proposed technique 
outperformed other existing real-time reduction and 
compression ECG data techniques with compression ratio of 
5:1 and with low energy consumption. However, when the 
window size increased P and T points were missed leading to 
failure to detect ST and PR intervals. 
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