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ECG Signal Compression Using Analysis by
Synthesis Coding

Yaniv Zigel*, Arnon Cohen, and Amos Katz

Abstract—In this paper, an elecrocardiogram (ECG) com-
pression algorithm, called analysis by synthesis ECG compressor
(ASEC), is introduced. The ASEC algorithm is based on analysis
by synthesis coding, and consists of a beat codebook, long and
short-term predictors, and an adaptive residual quantizer. The
compression algorithm uses a defined distortion measure in
order to efficiently encode every heartbeat, with minimum bit
rate, while maintaining a predetermined distortion level. The
compression algorithm was implemented and tested with both
the percentage rms difference (PRD) measure and the recently
introduced weighted diagnostic distortion (WDD) measure.

The compression algorithm has been evaluated with the
MIT-BIH Arrhythmia Database. A mean compression rate of
approximately 100 bits/s (compression ratio of about 30 : 1) has
been achieved with a good reconstructed signal quality (WDD
below 4% and PRD below 8%). The ASEC was compared with
several well-known ECG compression algorithms and was found
to be superior at all tested bit rates.

A mean opinion score (MOS) test was also applied. The testers
were three independent expert cardiologists. As in the quantitative
test, the proposed compression algorithm was found to be superior
to the other tested compression algorithms.

Index Terms—Analysis by synthesis, beat codebook, ECG com-
pression, electrocardiogram, long term prediction.

I. INTRODUCTION

T
HE NEED for ECG signal compression exists in many

transmitting and storage applications. Transmitting the

ECG signal through telephone lines, for example, may save

a crucial time and unnecessary difficulties in emergency

cases. Effective storage is required of large quantities of

ECG information in the intensive coronary care unit, or in

long-term (24–48 hours) wearable monitoring tasks (Holter).

Holter monitoring usually requires continuous 12 or 24-hours

ambulatory recording. For good diagnostic quality, each ECG

lead should be sampled at a rate of 250–500 Hz with 12

bits resolution. The information rate is thus approximately

11–22 Mbits/hour/lead. The monitoring device (“Holter”)

must have a memory capacity of about 100–200 Mbytes for a

3-lead recording. Memory costs may render such a solid state

Holter device impractical. If efficient compression methods are
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employed, memory requirements may drastically drop to make

the solid state high quality Holter commercially feasible.

In practice, efficient data compression may be achieved only

with lossy compression techniques (which allow reconstruction

error). In ECG signal compression algorithms the goal is to

achieve a minimum information rate, while retaining the rele-

vant diagnostic information in the reconstructed signal.

Many algorithms for ECG compression have been proposed

in the last thirty years [1]–[15]. Until today, all ECG compres-

sion algorithms have used simple mathematical distortion mea-

sures such as the percentage rms difference (PRD) for evaluating

the reconstructed signal. Such measures are irrelevant from the

point of view of diagnosis. Moreover, the use of the measure is

not an integral part of the compression algorithm; it is used only

to evaluate the compression result.

In this paper, a new ECG compression algorithm called

analysis by synthesis ECG compressor (ASEC) is presented.

It is based on analysis by synthesis coding and consists of

a beat codebook, long and short-term predictors, and an

adaptive residual quantizer. The compression algorithm uses

a defined distortion measure in order to efficiently encode

every heartbeat, with minimum bit rate, while maintaining a

predetermined distortion level. The compression algorithm

was implemented and tested with both the PRD measure and

the recently introduced weighted diagnostic distortion (WDD)

measure.

II. THE DISTORTION MEASURES

Two distortion measures were implemented in order to run

and test the proposed compression algorithm, the PRD and the

WDD measure.

The PRD is one of the most popular distortion measures used

in ECG compression algorithms [12], [16] and is given by

PRD (1)

where

original signal;

reconstructed signal;

mean of ;

length of the window over which the PRD is calculated.

Sometimes in the literature, another definition is used, where the

denominator of (1) is . One has to be very careful

0018–9294/00$10.00 © 2000 IEEE
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Fig. 1. Some of the diagnostic features used by the WDD (and beat
segmentation).

with this definition, since it depends on the DC level of the orig-

inal signal. If contains a DC level, the PRD will show irrel-

evant low results. Moreover, for fair comparison of ECG signals,

one has to flatten the baseline (see a baseline in Fig. 1). If the

signal has fluctuated baseline, the variance of the signal will be

higher, and the PRD will be artificially lower.

The PRD and other similar error measures [16] have many

disadvantages, which result in poor diagnostic relevance. There-

fore, the recently introduced WDD measure [17]–[19], [24] was

also implemented in this work.

The WDD is based on comparing the PQRST complex fea-

tures of the two ECG signals, the original ECG signal and the

reconstructed one. The WDD thus measures the relative preser-

vation of the diagnostic information in the reconstructed signal:

the location, duration, amplitudes, and shapes of the waves and

complexes that exist in every beat (PQRST complex). Fig. 1

shows some of the diagnostic features.

For every beat of the original signal and of the reconstructed

signal, a vector of diagnostic features is defined.

original signal

reconstructed signal (2)

where is the number of features in the vector.

The WDD (in percentage) between these two vectors is

WDD (3)

where is the normalized difference vector

(4)

Every scalar in this vector gives the relative distance between

the original signal feature and the reconstructed signal feature.

[in (3)] is a diagonal weighting matrix [17]–[19], [24].

III. THE COMPRESSION ALGORTIHM

The ECG signal may be considered a quasiperiodic signal.

The main redundancies in the ECG signal exist in the form of

correlation between adjacent or past beats (interbeat correlation)

and correlation between adjacent samples (intrabeat correlation)

[12]. The interbeat correlation suggests the idea of using a long-

term predictor (LTP) [12]. The frequent existence of abnormal

beats in some pathological cases suggests using a beat code-

book. The codebook is used to store “typical” past beats. The

intrabeat correlation suggests using a short-term predictor, STP.

With LTP, STP and a beat codebook, a predicted beat can be

estimated, and a residual signal, which has lower variance, can

be calculated. The analysis by synthesis model is used to effi-

ciently code the residual signal, with minimum bit rate, while

maintaining a predetermined error.

Fig. 2 shows the general scheme of the ASEC.

The ECG signal is first classified into one of two types: 1.

Regular PQRST complex ECG signal (the lower branch), or to

2. Irregular ECG signal (the upper branch), such as ventricular

fibrillation (VF) and ventricular tachycardia (VT). These irreg-

ular signals, in general are less probable than the regular PQRST

signal. Because the irregular signals have no PQRST elements,

they are not encoded like the regular ECG signal. In this ar-

ticle, only the compression algorithm of regular PQRST ECG

signals is described. The algorithm of irregular signal detection

and compression is described in [17].

The ASEC algorithm consists of three main subsystems: 1)

preprocessing, 2) coding: codebook matching and long-term

prediction (LTP), residue coding, error analysis, and 3)

decoding. The ECG signal is processed beat by beat. The

incoming beat is segmented into three time regions (Fig. 1),

which are then coded separately. The beat is matched with the

codebook to find the best matching stored beat (“codeword”).

LTP coding is performed using the chosen codeword to produce

the LTP estimated (predicted) signal . The difference

between the original signal and the LTP estimated signal

is defined as the residue. The residue undergoes STP

coding and adaptive quantization to produce the coded signal.

Prior to transmission, the signal to be transmitted is decoded,

and the quality of the reconstructed signal is tested (by means

of WDD or PRD measure). The residual signal is re-encoded

with higher bit rate till the quality of the reconstructed signal is

satisfied (below a predetermined distortion threshold).

A. The Preprocessing Stage

The ECG signal is processed prior to compression. The pre-

processing stage consists of segmentation, nonuniform filtering,

and baseline removal. The segmentation divides the ECG signal

into beats (complexes), and every beat is further divided into the

three sections: P , QRS , and T . Fig. 1 shows

this segmentation.

The motivation for such beat segmentation arises from the

fact that every one of the three sections has a different diagnostic

meaning and a different power spectral density.

The nonuniform filtering consists of two different finite im-

pulse response (FIR) filters. The P and T sections are filtered

with a 0.01–50 Hz bandpass FIR filter, and the QRS section

is filtered with 0.1–100 Hz bandpass FIR filter. The filters are

switched according to segmentation. The last part of the prepro-

cessing stage is the baseline removal [17].
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Fig. 2. General scheme of the ASEC. Huffman coding (which was not implemented) can improve the results by approximately 10%.

B. The Encoding System

The Beat Codebook Matching and LTP: This subsystem

consists of an adaptive beat codebook. The codebook holds

past “typical” PQRST beat waveforms. Fig. 3 shows the exact

process of codebook matching, LTP analysis, and predicted

signal production.

The encoder matches the current preprocessed beat

with the best codeword from the beat codebook, and

estimates the LTP coefficients (five-dimension vector) [12].

This LTP coefficients vector undergoes vector quantization.

The quantized vector, , forms an MA filter by means of

which the estimated (predicted) beat is generated from

the beat codeword . The residual between the original

beat and the predicted one is calculated

(5)

The beat (pattern) codebook stores ECG beats, called code-

words ( ). Each pattern is a PQRST

vector of samples. When a new beat is to be coded, it is

matched with the beat codebook. The choice of the best suitable

beat codeword (from the codebook) is performed by a similarity

or error measure, such as maximum correlation, or minimum

error ( ) for each one of the beat codewords. In this paper, the

mean squared error between the current beat of the analyzed

signal and the th codeword is calculated (after wave syn-

chronization). If the length of the th codeword ( ) is different

from the length of the original beat ( ), the codeword is cut or

zero padded at the edges. The best matched codeword,

is the one yielding minimum error

(6)

Fig. 4 shows the process of selecting the beat codeword.

From observing a large amount and variety of pathological

ECG signals, one sees that for a specific patient, in most cases,

there are up to three different types of beats. This may lead to

Fig. 3. The process of codebook matching, LTP analysis, and residue signal
production.

Fig. 4. Beat codeword selection process.
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Fig. 5. The residual encoder.

Fig. 6. The block diagram of the error analysis by synthesis subsystem (using WDD or PRD measure).

the conclusion that for a patient dependent case a codebook of

size is sufficient. However, taking into account changes

within each type of beat (for instance a change of the QT interval

value depending on the heart rate), leads to the conclusion that

a larger size of codebook is required. In this work, the size of

the beat codebook was chosen to be eight.

Two types of codebooks were considered in this work: 1) A

Universal Codebook—used for coding a relatively large number

of subjects (for example patients in Intensive Coronary Care

Unit). The codebook generation requires the identification and

clustering of the beats of the database and will require more

than eight beats (this type of CB was not tested here). 2) An

Individual Codebook—designed for a specific subject (subject-

dependent compression). The codewords are the typical beats

appearing in the subject’s ECG signal. The codebook may be

acquired by starting with universal codebook and adapting the

codewords to fit the specific subject.

In this work an adaptive codebook was chosen, in which the

adaptation is made by averaging the beat codeword that was

used for prediction with the current beat, thus:

(7)

where is the th beat codeword (template) that was

used for prediction, is the new th beat codeword (after

adaptation), is the reconstructed beat, and is a constant

whose value is between 0–1. Adaptive rule (7) was used in this

work. Better adaptation schemes may be considered, for ex-

ample one that includes dynamic time warping (DTW) [20] av-

eraging.

The Residue Encoder: In this stage, the residual signal,

which was produced in the previous stage undergoes residual

coding. This consists of down sampling by a factor of two (to

125 Hz) in T and in P and short time correlation

reduction [by short time prediction (STP)]. The short-time

correlation is reduced by DPCM with a first-order linear

predictor. The remaining signal is quantized adaptively

to produce . This uniform quantizer separately quantizes

every section: P with bits/sample, QRS with

bits/sample, and T with bits/sample. These

bits/sample values are determined by the error

analysis subsystem. Fig. 5 shows the residual encoder.

Error Analysis by Signal Reconstruction (Synthesis): The

idea of analysis by synthesis coding, is that the coder recon-

structs the signal as the decoder does, and uses the error to im-

prove coding [21]. This coding is used in this subsystem in order

to efficiently code the residual signal with minimum bits/trans-

mitted beat (PQRST complex), while maintaining a predeter-

mined distortion level (PRD or WDD). Fig. 6 shows the block

diagram of the error analysis subsystem, where the minimiza-

tion is performed with the WDD measure (the overall compres-

sion algorithm is then signed ASEC ), or with PRD measure

(the overall compression algorithm is then signed ASEC ).

In this stage, the residual signal is encoded with minimum

bit rate. The encoded beat is decoded before it is trans-

mitted, to get a reconstructed signal . The quality of the re-
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TABLE I
THE BIT ALLOCATION

constructed signal is tested by means of PRD or WDD by com-

paring it with the original beat. If the quality of the reconstructed

beat is satisfactory, the encoded beat is transmitted; if not,

the residue signal is re-encoded with a higher bit rate and

tested again.

In order to exploit the spectral and diagnostic qualities of the

different sections in the ECG complex, every section (P ,

QRS , T ) is tested separately with the partial distor-

tion measure: WDD or PRD .

The partial WDD [17] measures the diagnostic features dif-

ference between the original signal and the reconstructed one in

every section (WDD for P , WDD for QRS , and

WDD for T ). For each section, a partial feature vector

is defined. This vector contains the features that belong to the

specific section

...
... (8)

and a partial distortion measure, WDD such that

WDD (9)

with the partial diagonal weighting matrix

given by

(10)

As the partial WDD, The partial PRD (PRD )

measures the relative PRD in every section. Depending on the

application, each partial distortion measure is given a desired

limit WDD or PRD . The algorithm will adjust the com-

pression parameters (namely the number of the residual quan-

tizer’s bits/sample in the encoder) so that the resulted dis-

tortion measure becomes less or equal to its desired limit. If the

th partial distortion exceeds its allowed level, is increased

by one (the initial bit allocation is ). The

encoded beat signal is not transmitted until the distortion

is below the permitted level, or with maximum number of quan-

tization levels (16 levels 4 bits/sample).

The System’s Parameters and Bit Allocation: The inputs of

the compressor are the original ECG signal (sampled at 250

Hz) and the values of the predetermined distortion thresholds

(WDD or PRD ). The parameters that are

transmitted every heartbeat must be optimized with respect to

the number of bits. Table I summarizes the bit allocation, which

is transmitted (stored) for every heartbeat (complex). The bit

rate is at least 40 bits/complex, and it goes higher as the number

of the residual quantizer levels increases. The gray areas in the

table denote the parameters that are not always transmitted (de-

pending on parameter 1). The last two lines in Table I show the

range of compression in bits/beat and in bits/s. The higher rate

(bits/beat) was calculated for beat rate of 60 beats/min, where

the length of the QRS complex is 130 ms. The higher rate (bits/s)

was calculated for heart rate of 120 beats/min, where the length

of the QRS complex is 130 ms. The lower rate was calculated
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Fig. 7. The decoding system.

for heart rate of 60 beats/min. The compression ratio (CR) was

calculated assuming the uncompressed signal was sampled at

250 Hz with 12-bit resolution.

C. The Decoding System

The decoding system is shown in Fig. 7. This system exists at

the transmission side as well as the receiver side. The decoding

system consists of bit decoding, beat codebook, and LTP

decoding (which consists of an LTP coefficients codebook),

which are identical to these elements in the encoder. For

every heartbeat (complex), the decoder decodes the bits, and

estimates the predicted signal with the LTP and beat

codebook. The residual signal is reconstructed by residual

decoding (Fig. 8). The predicted signal is added to the

reconstructed residual and the reconstructed signal

is calculated. The reconstructed signal is also used for beat

codebook adaptation.

IV. RESULTS AND DISCUSSION

The MIT-BIH Arrhythmia database [22] was used to evaluate

the proposed compression algorithm and compare it with other

known compression methods. Two ASECs were implemented.

One used the WDD measure for minimization (ASEC ) and

the other used the PRD measure for minimization (ASEC ).

We have also implemented the AZTEC [3] algorithm, SAPA2

[7], and LTP [12] (without entropy coding) and evaluated them

with the same database signals. These compressors were chosen

for comparison, because AZTEC and SAPA2 are often referred

for comparison in the literature, and LTP is one of the best ECG

compressors.

Two types of test were performed: 1) Quantitative test—

which is assessed using rate-distortion curves of the com-

pression algorithms. In this test, the distortion measures are

the PRD and the WDD. 2) Qualitative tests—which are also

assessed using rate-distortion curves, but the distortion measure

is produced by mean opinion score (MOS) of cardiologists

evaluation (MOS ).

The Quantitative Test: The rate was chosen to be expressed

in terms of bit/s of the compressed ECG, and the distortion was

chosen to be the PRD and the WDD measures (in percentage

units) between the reconstructed signal and the original one.

Fig. 9 shows an example of an original and reconstructed

ECG signal, which was compressed by the proposed compres-

sion algorithms (ASEC and ASEC ). The original ECG

signal was taken from the MIT-BIH database (record 119). Note

that the ASEC reconstructed signal Fig. 9(d) has the av-

erage bit rate of 85.5 bits/s (compression ratio of 35 : 1), while

the PRD is 7.93%.

For the quantitative tests, the first minute of 18 MIT-BIH

records were processed: 104, 107, 111, 112, 115, 116, 118, 119,

201, 207, 208, 209, 212, 213, 214, 228, 231, and 232. These

signals were chosen by an experienced cardiologist and they

consist of a large variety of pathological cases. Fig. 10 shows

the distortion-rate curves of the ASEC , ASEC , LTP,

SAPA2, and AZTEC, of the same signals. Each line is a poly-

nomial fit (from order two or three) of the resulting points of

one compression method.

Fig. 10(a) shows the distortion-rate curves with the WDD

measure and Fig. 10(b) shows the distortion-rate curves with the

PRD measure. From Fig. 10, one can see that the ASEC algo-

rithm is superior to the other tested compressors in all cases and

for all bit rates. It is also worthwhile noting that both the LTP

and the ASEC have much lower WDD error than the other tested

methods, in all bit rates. Namely, these compression methods

better preserve the diagnostic features of the ECG signal.

Qualitative Tests—MOS: As the quantitative tests, the qual-

itative tests are also presented with rate-distortion curves, how-

ever the distortion measure is assessed by subjective evaluates.

In order to find a qualitative distortion measure for each of

the tested signals, MOS test was performed, which contains a

blind and a semi-blind tests. The evaluators for this test were

three experienced cardiologists. The results of the MOS test are

combined in a qualitative distortion measure, called: MOS .

Every tested signal (the same signals as in the quantitative tests),

was printed on paper, in the form and the scale that a cardiolo-

gist is used to see.

In the blind-test every cardiologist was given one strip of

signal, which contained the unknown signal and some mean es-

timated features. The signal was one channel, 27 s in length. For

every tested signal, the cardiologist was asked to fill a question-

naire, which contained questions about the quality of the signal

and wave shapes interpretation [17].

In the semi-blind test every cardiologist was given one strip

of signal, which contained the original signal marked as “orig-

inal” and the reconstructed signal marked as “reconstructed”

(13.5 s for each signal). For every tested signal, the cardiolo-

gist was asked to fill a questionnaire, which contains a question

about the measure of similarity between the signals.

A weighted MOS error was calculated from the results of

the blind and semi-blind tests of three independent cardiologists

for every tested signal [17], [24].

The lower the value of the MOS the better the quality

evaluation of the reconstructed signal. This is perhaps different

from other applications (such as the speech MOS test), where

the higher the value of the MOS the better the signal quality.

The MOS was defined like this in order to be similar to the

PRD/WDD measures.
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Fig. 8. The residual decoder.

Fig. 9. Original and reconstructed signals of record 119 (MIT-BIH). (a)
original signal. (b) ASEC reconstructed signal (bit rate = 189 bps; PRD
= 5.48%). (c) ASEC rec. signal (bit rate = 199 bps; WDD = 2.09%).
(d) ASEC rec. signal (bit rate = 85:5 bps; PRD = 7.93%). e) ASEC
rec. signal (bit rate = 134 bps; WDD = 2.68%).

The MOS was used to construct rate-distortion curves,

similar to those used for the quantitative measures.

Fig. 11 shows the distortion-rate curves of the qualitative test.

As in the quantitative test, one can see that the proposed com-

pression algorithms (ASEC and ASEC ) are superior to

the other tested compression algorithms. Moreover, the cardiol-

ogists preferred the ASEC algorithm over all other tested

algorithms including the ASEC .

A multichannel version of the proposed compression algo-

rithm was implemented and yielded very good results [23].

The proposed compression algorithms were found to have

the best performances at any bit rate. The most important

achievement is the fact that mean low transmission rates

(50–100 bits/s) may be used while maintaining a good re-

constructed signal quality (WDD of 2%–4% and PRD of

6%–9%. Note that these are the true results while Fig. 10 gives

polynomial smoothing). This performance is better than other

known compression algorithms in the literature. For example

in [2], a minimum bit rate of 380 bits/s was achieved at PRD

of 8.5% (not on the same database as was used in this work).

Some results reported in the literature are not comparable [6],

[8], [10], because the signal was not processed to have zero

mean for the PRD calculation and as a result nonrelevant low

PRD’s were thus achieved. The results in [6], [8], [10] are

Fig. 10. The distortion-rate curves of the algorithms: ASEC , ASEC ,
LTP, SAPA2, and AZTEC. (a) with WDD measure. Standard deviations:
ASEC = 2:32, LTP = 4:75, SAPA2 = 3.58, AZTEC = 6.45, (b) with
PRD measure. Standard deviations: ASEC = 1.43, LTP = 4.92, SAPA2
= 3.06, AZTEC = 3.61.

slightly worse than the results of the ASEC even with the

reported (wrong) PRD. With DC level elimination, the PRD

will become larger emphasizing the superiority of the ASEC.

The compression system is more computationally complex

than most of the published ECG compression algorithms. It can

however be implemented in real time using inexpensive DSP

chip. The heavy part in the compression algorithm, in point of

view of computational complexity, is the diagnostic feature ex-

traction for the calculation of the WDD measure. In many cases,

the physician is interested not only in the compression, but also

in the analysis performance. Therefore, the calculated features

can be used as a diagnostic tool. The complexity of the WDD
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Fig. 11. The distortion-rate curves of the algorithms: ASEC ,
ASEC , LTP, SAPA2, and AZTEC. with MOS error. Standard deviations:
ASEC = 3.46, ASEC = 3.84, LTP = 9.3, SAPA2 = 9.8, AZTEC
= 14.83.

calculation can be decreased by the extraction of fewer fea-

tures, or by developing more efficient extraction algorithms. The

ASEC algorithm is of course much less complex than the

ASEC algorithm, since it does not require the extraction of

the diagnostic features.
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