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Abstract—Wearable ECG sensors can assist in prolonged 

monitoring of cardiac patients. Compression of ECG signals is 
pursued as a means to minimize the energy consumed during 
transmission of information from a portable ECG sensor to a 
server. In this paper, compressed sensing is employed in ECG 
compression. To increase compression ratio and reduce 
distortion of the ECG signal, a non-uniform binary sensing 
matrix is proposed and evaluated. 
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I.  INTRODUCTION  

Based on recent World Health Organization statistics, 
cardiovascular diseases are among the most common cause of 
death [1]. Electrocardiogram (ECG) is an effective method for 
diagnosis and monitoring of cardiac diseases. Heart attack 
victims usually seek medical assistance two or more hours after 
the onset of symptoms, which is sometimes too late. Therefore 
it is highly beneficial to detect signs of a heart attack 
immediately to seek prompt medical attention. Real-time 
online monitoring of patients by means of wearable ECG 
sensors is a means to achieve that goal. In such applications, 
the amount of power consumed in transmitting information 
from the sensor to a server needs to be minimized by means of 
signal compression. 

In diagnosing some cardiac diseases, a portable ECG Holter 
monitor should be carried by patients to record and store their 
ECG signals for long periods of time (e.g., up to two weeks). 
Compression of ECG signals is necessary to minimize storage 
and power requirements. 

Although there are many papers addressing the problem of 
ECG compression [10-19], only a few studies have been 
published in the specific area of ECG signal compression using 
CS. Allstot et al. [10] apply a thresholding operation first and 
then apply CS on ECG signal exploiting sparsity of ECG signal 
in the time domain. A significant drawback of this technique is 
that thresholding in time domain removes most of the basic 
features of the ECG signal. Hong-xin et al. [11] present a 
combination of wavelet and CS to compress ECG and EEG 
signals. Their method achieves high compression ratio with 
good reconstruction quality, but at the cost of increased 
complexity. L. Polania et al. [12] use distributed CS for 
adjacent beats of ECG. They perform a preprocessing first to 
detect the QRS complex and generating constant periods, then 
distributed CS is applied to compress the signal. Mamaghanian 
et al. [4] compare CS to wavelet compression combined with 
thresholding on ECG signals. They implemented the two 
algorithms on a Shimmer

TM
 board with TI’s MSP430 micro-

controller, and obtained CR, PRD, run time and power 
consumption. This work shows that, at a given PRD level, CS 
algorithm performs better than DWT. It also shows that the 
complexity of a Gaussian sensing matrix is too high for it to be 
practical. For a sparse binary sensing matrix (such that each 
row has constant number of nonzero elements), ECG 
compression results are barely acceptable. In summary, 
previous research shows that if a straight-forward CS without 
preprocessing is used, CR and PRD will not be acceptable. 

In this paper, we employ the compressed sensing (CS) 
method [2,3] to compress ECG signals. Compressed sensing 
works well when the signal of interest is sparse or very nearly 
sparse. Since sparsity of ECG signals is not high, the 
compression ratio of CS is rather poor and requires 
improvement.  The objective of this paper is to propose and 
assess the use of a novel non-uniform sensing matrix that 
improves CS performance on ECG signals. 

The performance of compression algorithms is usually 
measured in terms of two percentage indices [4]:  

1) Compression Ratio (CR): This index is defined as 

 100
orig comp

orig

b b
CR

b

−
= ×  (1) 

where origb and compb  are the number of bits required 

for the original and compressed signals, respectively.  

2) Percentage Root-mean-square Distortion (PRD): This 
index quantifies distortion, the error between the 
original signal and the reconstructed one. It is defined 
as: 

 100
orig rec

orig

x x
PRD

x

−
= ×  (2) 

where xorig is the original signal and xrec is the 
reconstructed signal. 

Signal compression in body-area sensor network not only 
should have low PRD and high CR but also it should present 
low complexity. Compressed sensing is a new method that 
offers reasonable CR and PRD at low complexity on the sensor 
side.  
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This paper is organized as follows: In Section II, we briefly 
describe the theory of compressed sensing. In Section III, we 
review the recent literature on CS-based ECG compression. 
Then in Section IV, we present our proposed method. In 
Section V, our simulation results are presented. At the end, in 
Section VI, the contribution of this paper is summarized.  

II. COMPRESSED SENSING  

A fundamental principle of today’s digital signal processing 
is the Shannon sampling theory: If a signal with a bandwidth of 
Ω is sampled at the rate of 2Ω samples per second (the Nyquist 
rate), the signal can be reconstructed reliably and without 
errors. The recently-developed compressed sensing (CS) theory 
[2,3] states that “sparse” signals can be reconstructed from a 
smaller number of samples than required by Nyquist rate. This 
method can be suitable for implementing low-resource sensor 
applications [4], as it reduces the amount of samples required 
in processing or storage.  

Now, we introduce briefly the CS theory. Let x be a real-
valued, finite-length, one-dimensional, discrete-time signal, 
which is viewed as an N×1 column vector (we call it an input 
frame of size N). Each signal in R

N
 can be represented as a 

superposition of an orthonormal basis of N×1 vectors{ }N

ii 1=
ψ . 

Defining [ ]1 2
....

N
ψ ψ ψΨ = such that vectors iψ are the 

columns of Ψ , then x can be stated as: 

 
1

n

i i

i

x α ψ α
=

= = Ψ∑       (3) 

where α is the N×1 column vector of weighting coefficients. 

If α vector has N − K zero or near zero values then signal x 
is called K-sparse in Ψ domain. The compressed sensing 
theorem [2,3] proves that x can be reconstructed from linear 
superposition of x samples, i.e., instead of reconstructing from 
x, the signal can be reconstructed from y which is a vector of M 
linear projections of x onto another basis Ф (M<N).  

   y x α α= Φ = ΦΨ = Θ  (4) 

where Ф  is called the sensing matrix. We call y, the output 
frame of size M. Since Ф is non-square and hence irreversible, 
the signal x must be reconstructed by solving the convex 
optimization problem: 

 
1

min
l

subject to yα αΘ =  (5) 

Numerous algorithms have been presented to solve this [5]-
[9]. However, two distinct conditions must be satisfied when 
applying convex optimization to signal reconstruction: 

a) )log(
K

N
KM >                                                        (6) 

b) For all K-sparse α vectors, Ф should satisfy the RIP 

condition: 

 
2 2 2

(1 ) (1 )
k k

δ α α δ α− ≤ ΦΨ ≤ +  (7) 

where the constant kδ must not be too close to 1. 

It is well-know that random sensing matrices with 
independent identically distributed (i.i.d) elements nearly 
satisfy the RIP condition [2]. 

III. PROPOSED METHOD 

We propose to use a CS algorithm that employs a special 
non-uniform binary sensing matrix to improve ECG 
compression performance. This matrix is described in this 
section. The CS algorithm operates on input frames of 
uncompressed samples of length N, and produces output frame 
of compressed samples of length M. Hence the size of a 
sensing matrix Ф is M×N. Note that in CS, we have CR=100× 

(N−M)/N. If N is set to a fixed value, M should be minimized in 
order to maximize the compression ratio.  Now, we describe 
the uniform and non-uniform binary sensing matrices.  

A. Uniform Binary Sensing Matrix 

A matrix is called uniform binary if all its entries belong to 
the binary set {0,1}, and the probability distribution of its 
entries is i.i.d Bernoulli with p being the probability of 1. This 
matrix nearly satisfies the RIP condition for large N. The 
binary nature of the matrix elements makes matrix 
multiplication easy to implement. 

B. Non-uniform Binary Sensing Matrix 

Our proposed non-uniform binary matrix is loosely 
dependent on the ECG waveform to be sampled. First note that 
in each heartbeat, the QRS complex is our “region of interest” 
(ROI) in an ECG waveform. One would like to acquire and 
preserve more information from this part of the waveform to 
enhance PRD. Therefore in our algorithm at the sensor side 
(before performing CS on an input frame), we first detects ROI 
in that frame. This is done by detecting the location of QRS 
peak (called np) in the input frame and then setting a window of 
size W symmetrically around the peak time. The ROI will be 

[np−W/2 , np+W/2] within the frame. Given that the QRS 
complex duration is between 70ms and 130ms, for a sampling 
frequency of 360 Hz (which is the sampling frequency of our 
ECG waveforms), the size of this window is normally between 
26 to 46 samples. The size of ROI window (W) is determined 
and fixed for each person. But the location of ROI within the 
frame varies from one frame to the next; hence it must be 
determined for each input frame. This location, i.e. np, is an 
extra piece of information that must be sent to the receiver (i.e., 
the reconstruction algorithm).  

Our non-uniform binary sensing matrix Ф is a block matrix 
constructed as follows:  
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where 0 is a block matrix of size M1×(N−W) consisting of all 
zeros, Ф1 is a block matrix of size M1×W, and Ф2 is a block 
matrix of size M2×N. In addition, Ф1 is a uniform binary matrix 
with probability p1, and Ф2 is a uniform binary matrix with 
probability p2.  The matrix Ф1 will be shifted horizontally in the 
upper part of Ф so that it is aligned to ROI in an input frame. 
(The horizontal shift operation causes a circular rotation of 
rows the upper part of Ф.) Fig. 1 shows an example of a non-
uniform binary sensing matrix below an ECG waveform. The 
black dots represent 1’s and blank parts represent 0’s of the 
matrix. 

Note that when performing CS, Ф2 is multiplied into an 
entire input frame of ECG samples, performing a CS on the 
whole frame. On the other hand, Ф1 is multiplied to the ROI of 
an input frame, taking additional samples from the interesting 
part of ECG. We define a parameter q defined as  

                              q = M1 / M                                           (9) 

This parameter along with M, W, p1 and p2 are to be determined 
for best performance. It should be noted that, although the 
location of peak of QRS complex changes in each input frame, 
it is not necessary to regenerate matrix Ф for each new frame. 
Our CS algorithm is summarized as follows: 

1) Use a sample of person’s ECG to determine best M, W, 
q, p2, p2. Generate matrix Ф. Send Ф to receiver. 

2) For each ECG input frame x, do: 

 a) Determine np (peak time of QRS) in x.  

 b) Shift Ф1 in Ф to align it with ROI in x. 

 c) Determine y = Фx. 

 d) Send y and np to the receiver. 
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Figure 1. Top) an input ECG signal; Bottom) a binary non-uniform  

sensing matrix with p1=0.5, p2=0.4, w=40, q=0.25 

IV. SIMULATION RESULTS 

In this section, we evaluate our proposed CS algorithm and 
compare its performance (by simulation) to that of the CS 
algorithm using uniform binary sensing matrices. 

To reconstruct the ECG signal, the sparsification matrix Ψ 
is required to be known (in addition to Ф) at the receiver. The 
sparser the signal x in the Ψ domain, the closer the 
reconstructed signal will be to the original signal. Therefore, a 
good choice of Ψ affects the signal reconstruction and PRD 
significantly. In our research, we compared various discrete 
wavelets which have been shown to produce good results on 
ECG waveforms. The good candidates are the Daubechies 
wavelets (db2,db3,db4,…,db10), symlet4 and biorthogonal4.4. 
A comparison of the results shows that db10 and bior4.4 
perform best. Fig. 2 shows PRD vs. CR for the two wavelets. 
We finally adopted biorothogonal4.4 as it shows superior 
performance over db10. We also evaluated the impact of four 
parameters p1, p2, q, w to determine the best values for CS 
compression. As an example, PRD versus q for CR=80% is 
plotted in Fig. 3 for different values of W.  

We have also simulated PRD by simultaneously altering W 
and q for fixed values of CR=66%, 75% and 80%. The results 
are shown in Table I. In this table, p1 and p2 are set to 0.5 and 
0.3, respectively. The best values for W and q can be found in 
Table I for best performance. For example, for CR=80%, the 
values W=50 and q=0.33 result in the lowest PRD. 
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Figure 2. PRD vs CR for two wavelets: db10 and bior4.4 
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Figure 3. PRD vs. q for different value of W and CR=80% 
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TABLE I. PRD vs. w and q for CR=80% 

CR=66% 

 q=0.5 q=0.33 q=0.25 q=0.167 q=0.125 

W=40 4.97 5.25 5.26 5.64 5.69 

W=50 5.02 5.25 5.40 5.74 5.80 

W=60 5.09 5.11 5.35 5.64 5.76 

CR=75% 

 q=0.5 q=0.33 q=0.25 q=0.167 q=0.125 

W=40 7.44 7.52 8.36 8.64 9.24 

W=50 7.59 7.75 8.95 8.62 8.87 

W=60 7.59 8.24 8.95 9.53 9.58 

CR=80% 

 q=0.5 q=0.33 q=0.25 q=0.167 q=0.125 

W=40 10.83 11 12.3 12.44 12.47 

W=50 10.18 11.13 12.2 13.49 12.89 

W=60 11.46 11.55 11.79 13.75 12.61 

 

Table II summarizes the simulated PRD values vs. p1 and 
p2, in order to show the impact of these parameters on signal 
compression. In Table II, W and q are considered 40 and 0.33 
respectively. The best values for p1 and p2 can be found in this 
table for best performance. As shown in Table II, p1=0.4 and 
p2=0.5 result in the lowest PRD. Also the worst (highest) PRDs 
are obtained when p1= p2. In the proposed method, CR depends 
only on M, the number of rows in matrix Ф, but PRD for a 
given CR depends on p1, p2, q and W. In other words, to 
increase CR, one should decrease the number of sensing matrix 
rows. Changing p1, p2, q and W will not affect CR. 

In Fig. 4, compression performance has been plotted for 2 
types of matrices: (1) Uniform binary matrix with p=0. 3. (2) 
Non-uniform binary matrix with p1=0.3, p2=0.4, q=0.5 and 
W=50. As seen in Fig. 4, our proposed method has reduced 
PRD (especially at high CR) compared to the uniform CS 
method.  

TABLE II. PRD vs.  p1 and p2 

CR=66% 

 p2=0.1 p2=0.2 p2=0.3 p2=0.4 p2=0.5 

p1=0.3 5.02 4.94 6.68 4.9 4.84 

p1=0.4 4.99 4.89 4.89 6.5 4.82 

p1=0.5 4.95 4.89 4.93 4.89 6.63 

CR=75% 

 p2=0.1 p2=0.2 p2=0.3 p2=0.4 p2=0.5 

p1=0.3 7.62 7.53 10.37 7.44 7.59 

p1=0.4 7.86 7.39 7.35 10.26 7.35 

p1=0.5 7.41 7.42 7.41 7.41 11.02 

CR=80% 

 p2=0.1 p2=0.2 p2=0.3 p2=0.4 p2=0.5 

p1=0.3 11.18 10.71 14.95 10.67 10.73 

p1=0.4 11.04 11.03 10.88 14.52 10.46 

p1=0.5 11.1 10.49 10.85 10.74 15.51 
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Figure 4. PRD vs CR for uniform and non-uniform sensing matrices 

V. CONCLUSION 

This paper proposed a CS-based compression algorithm for 
ECG signals using a special class of non-uniform sensing 
matrices. This matrix is designed to take into account the 
region of interest (the QRS complex) and to increase the 
overall PRD. We evaluated this scheme against CS-based 
compression with uniform binary matrices. Simulation results 
shows that, at the same compression ratio, PRD of this method 
is improved over that of the compressed sensing with uniform 
binary matrices. 
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