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Echinocandin Resistance in Candida
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Invasive fungal infections are an important infection concern for patients with underlying immunosuppres-
sion. Antifungal therapy is a critical component of patient care, but therapeutic choices are limited due to
few drug classes. Antifungal resistance, especially among Candida species, aggravates the problem. The echino-
candin drugs (micafungin, anidulafungin, and caspofungin) are the preferred choice to treat a range of candi-
diasis. They target the fungal-specific enzyme glucan synthase, which is responsible for the biosynthesis of a
major cell wall polymer. Therapeutic failure involves acquisition of resistance, although it is a rare event
among most Candida species. However, in some settings, higher-level resistance has been reported among Can-
dida glabrata, which is also frequently resistant to azole drugs, resulting in difficult-to-treat multidrug-resistant
strains. The mechanism of echinocandin resistance involves amino acid changes in “hot spot” regions of FKS-
encoded subunits of glucan synthase, which decreases the sensitivity of enzyme to drug, resulting in higher min-
imum inhibitory concentration values. The cellular processes promoting the formation of resistant FKS strains
involve complex stress response pathways that yield a variety of adaptive compensatory genetic responses. Stan-
dardized broth microdilution techniques can be used to distinguish FKS mutant strains from wild type, but
testing C. glabrata with caspofungin should be approached cautiously. Finally, clinical factors that promote
echinocandin resistance include prophylaxis, host reservoirs including biofilms in the gastrointestinal tract,
and intra-abdominal infections. An understanding of clinical and molecular factors that promote echinocandin
resistance is critical to develop better diagnostic tools and therapeutic strategies to overcome resistance.
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Inavsive fungal infections are a consequence of underly-
ing health problems often associated with immunosup-
pression [1]. They carry a high mortality, and clinical
success depends upon response to antifungal therapy.
Unfortunately, treatment options are restricted due to
the availability of limited antifungal drug classes. For
many patients, the echinocandins are recommended as
primary therapy for invasive candidiasis [2], and 60%
of patients with candidemia are reported to receive an
echinocandin [3]. As echinocandin usage broadens, in-
creasing clinical failures due to resistant organisms are
a concern, especially among Candida species.

EPIDEMIOLOGY OF ECHINOCANDIN
RESISTANCE

Resistance to echinocandin-class drugs, which was first
reported in 2005 [4], remains relatively low, at <3% with
Candida albicans and most Candida species [5].The ex-
ception is Candida glabrata, in which echinocandin re-
sistance is rising and there is cause for alarm as many
isolates show cross-resistance to azole antifungal agents
[6–8]. Echinocandin resistance of 8.0%–9.3% was re-
ported by the SENTRY Antimicrobial Surveillance Pro-
gram for C. glabrata bloodstream isolates from 2006 to
2010 [9], while in a study at Duke hospital over a period
of 10 years, echinocandin resistance rose from 2%–3%
to >13% in 2009–2010 [6]. Resistance may vary with
region, as a study of 1380 isolates of C. glabrata collected
between 2008 and 2013 from4US cities (Atlanta, Georgia;
Baltimore, Maryland; Knoxville, Tennessee; and Portland,
Oregon) showed that 3.1%, 3.3%, and 3.6% of the isolates
were resistant to anidulafungin [8]. Importantly, echino-
candin resistance in C. glabrata is often associated with
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cross-resistance to azole antifungals yielding multidrug-resistant
strains. In a recent study, nearly 36% of echinocandin-resistant
isolates were also resistant to fluconazole [8]. In many healthcare
centers, the widespread use of echinocandin and azole prophylax-
is has prompted an epidemiologic shift, with C. glabrata present-
ing as the dominant fungal bloodstream pathogen [10].

FKS MECHANISM OF RESISTANCE

Echinocandin resistance resulting in clinical failures is con-
ferred by limited amino acid substitutions in the Fks subunits
of glucan synthase [11]. The mechanism is highly restricted
and quite apart from azole antifungals, which involve a wider
array of mechanisms including drug transporters, target site
mutations, and target overexpression [12]. FKS mutations con-
ferring echinocandin resistance occur in 2 highly conserved
“hot spot” regions of FKS1 [13–15] encompassing residues
Phe641-Pro649 and Arg1361 (C. albicans equivalent) [4] and
in homologous regions of FKS2 in C. glabrata [16]. The
amino acid substitutions can decrease the sensitivity of glucan
synthase by several log orders [13, 16], resulting in elevated min-
imum inhibitory concentration (MIC) values. For C. albicans,
amino acid changes at Ser641 and Ser645 are the most frequent
and cause the most pronounced resistance phenotype [11,13, 16],
whereas in C. glabrata, amino acid modifications at Ser663 in
Fks2, Ser629 in Fks1, and Phe659 in Fks2 are the most prominent
amino acid substitutions [16]. FKS mutant strains of C. albicans
and C. glabrata show poor drug response in pharmacodynamic
studies of murine infection models [17–20]. Less prominent FKS
mutations confer resistance, but they respond to escalating doses
in animal infection models [17]. Echinocandin resistance can
vary with expression of FKS genes [16, 21]. FKS2 expression in
C. glabrata is calcineurin dependent [22], and FKS2-dependent
resistance can be reversed following treatment with the calcineur-
in inhibitor FK506 [21]. Finally, a third hot-spot region defined
by W695 of Saccharomyces cerevisiae Fks1 was defined from in
vitro studies but has not been observed in clinical isolates [23].

FKS POLYMORPHISMS AND REDUCED
SUSCEPTIBILITY

Some Candida species have naturally occurring polymorphisms
in FKS genes, which render them less susceptible to echinocan-
din drugs. Both the Candida parapsilosis family (C. parapsilosis
sensu stricto, C. orthopsilosis, and C. metapsilosis) and Candida
guilliermondii have higher MIC values relative to other suscep-
tible Candida species [24–26]. In the C. parapsilosis family,
Pro660 in hot-spot 1 is present as alanine, whereas in C. guillier-
mondii, Leu633 and Thr334 are replaced by methionine and
alanine, respectively. These changes decrease somewhat the sen-
sitivity of glucan synthase for drug, resulting in elevated MIC

values [27]. However, as glucan synthase is still inhibited at
therapeutic levels, infecting strains can generally be treated suc-
cessfully. Hence, echinocandins are largely effective in patients
with C. parapsilosis family infections.

DRUG TOLERANCE

Inhibition of glucan synthase by echinocandin drugs weakens
the fungal cell wall and creates significant cellular stress that in-
duces a variety of adaptive protective mechanisms [28, 29].
These adaptive responses create a subpopulation of drug-tolerant
persister cells with elevated in vitro MIC values to echinocandins.
This behavior has been observed in murine pharmacodynamics
studies, where exposure to therapeutic levels of all 3 echinocan-
dins resulted in a stable subpopulation of C. albicans [19]. Cell
wall stress is sensed by receptors (eg, Mtl2 andWsc1) that induce
a variety of stress adaptation pathways involving cell wall integri-
ty, protein kinase C (PKC), calcineurin-Crz1, and HOG [30, 31].
Hsp90, another important stress response component, works
through its client protein calcineurin and effector Crz1 [32].Dis-
ruption of Hsp90 activity decreases the ability of C. albicans and
C. glabrata to develop tolerance [32, 33]. Another important fac-
tor promoting drug tolerance is a compensatory increase in chitin
synthesis to strengthen the cell wall. Chitin and glucans comprise
the major structural components of the fungal cell wall, and both
components show biosynthetic interdependence [34]. Cell wall
mutant strains with elevated chitin content have been shown to
be less susceptible to echinocandins in vitro [30, 31, 35] and in an
animal model [36]. Changes in cell wall composition alter its
thickness [37] and can have a pronounced host effect by enhanc-
ing immune recognition [38, 39].Elevated chitin biosynthesis has
also been linked with paradoxical growth observed at very high
drug levels [40]. Recently, it was reported that sphingolipid bio-
synthesis can modulate, in a drug-dependent fashion, responses
to caspofungin (less susceptible) and micafungin (more suscep-
tible). This mixed susceptibility phenotype is linked to interac-
tions of the aliphatic tail of echinocandins and membrane
sphingolipids [41]. Overall, drug tolerance pathways are insuffi-
cient to account for clinical failures. Rather, they act to stabilize
cells in the presence of drug. Even though these drug-tolerant
cells do not induce therapeutic failure, they can develop high-
er-level resistance in time by forming stable FKS mutations.
The underlying genetic basis is unclear, but it may involve defects
in DNA repair. Genome plasticity observed in C. albicans and
C. glabrata following azole exposure may be a factor for echino-
candin drugs, as well [42–44].

STANDARDIZED TESTING FOR RESISTANCE

The Clinical and Laboratory Standards Institute (CLSI) and the
European Committee on Antimicrobial Susceptibility Testing
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(EUCAST) have established standardized and microbroth dilu-
tion susceptibility tests for Candida and Aspergillus species for
echinocandin susceptibility [36–38]. These methods demon-
strate the potent activity of echinocandin drugs against most
Candida species [45, 46]. The objective for susceptibility testing
is to establish an in vitro assessment that differentiates infecting
strains as either susceptible or likely to respond to therapy or as
resistant with an enhanced probability to fail therapy. The CLSI
used clinical and microbiological data to establish a preliminary
clinical breakpoint (CBP) for all 3 echinocandins against Can-
dida species [47].However, the CBP misclassified a subset of re-
sistant strains with FKS mutations [13, 48]. In response, the
CLSI revised the CBP downward based on pharmacokinetic,
microbiological, enzyme kinetic, and clinical data and estab-
lished new species- and drug-specific breakpoints that better ac-
counted for strains containing FKS mutations [49]. Similarly,
EUCAST has established species-specific CBPs for micafungin
against C. albicans, C. glabrata, and C. parapsilosis [50], as well
as anidulafungin to accommodate use of these compounds in
some clinical situations, especially when used as a surrogate
for caspofungin [50, 51].

However, the new lower CBPs present a clinical microbiology
testing challenge, as standardized testing using either CLSI and
EUCAST breakpoints failed to promote consistent interlabora-
tory test results without major errors between laboratory groups
[52, 53].

In particular, there were wide modal ranges encountered with
C. glabrata and caspofungin [52, 53]. In contrast, consistent
results were obtained for micafungin and anidulafungin, and
it was proposed that they could serve as testing surrogates for
the class to assess resistance [54–56]. EUCAST in response
has not set caspofungin breakpoints [50]. Epidemiological
cutoff values, which define the upper limit of the wild-type
MIC population in the absence of a known (FKS) resistance
mechanism, have been defined for anidulafungin and micafun-
gin against common Candida species [45, 57]. The epidemio-
logical cutoff value, although not a CBP, does provide
information for clinical assessment, especially when a CBP is
not available.

The problem of susceptibility testing to distinguish wild-
type isolates from FKS mutant (echinocandin resistant)
isolates may be overcome by direct molecular evaluation of
the FKS genotype by either direct DNA sequencing or real-
time probing. Molecular testing is ideal for echinocandin re-
sistance because the presence of an FKSmutation is a primary
clinical indicator for diminished therapeutic responses [58],
which is supported by numerous pharmacodynamics, MIC,
and biochemical studies [59]. Molecular testing would
eliminate the current controversy surrounding susceptibility
testing, which interferes with an accurate determination of
resistance.

RISK FACTORS FOR RESISTANCE EMERGENCE

The development of echinocandin resistance in Candida species
generally requires prolonged and/or repeated drug exposure
[60, 61], although it can emerge rapidly after initiation of ther-
apy [62, 63].There is no documented horizontal transmission of
resistant strains, probably because the development of FKS-
mediated echinocandin resistance carries a fitness cost. Fks
hot-spot amino acid substitutions decrease the relative catalytic
capacity of glucan synthase, yielding cells with thickened cell
walls [37, 13]. Some FKS mutant strains are less virulent in
animals and compete poorly with isogenic wild-type strains
[16, 21, 37].

As host immunity changes, colonizing strains are the main
source of infecting strains, and the gastrointestinal tract is a
prominent reservoir for Candida colonization [64–68], with
most cells present as part of a complex microbial biofilm [69].
Like most biofilms, drug penetration is irregular as the glucan
matrix helps sequester drug [70]. Under these conditions, resis-
tant mutants can emerge, where they can enter the systemic
circulation and cause infection. Intra-abdominal candidiasis,
another important source of resistant infections, occurs in
40% of patients following repeated gastrointestinal surgery,
gastrointestinal perforation, or necrotizing pancreatitis [71].
This is largely because high microbial burden and poor drug
penetration create strong selection pressure for resistance
emergence.

As drug exposure is an important factor for resistance emer-
gence, the expanding use of prophylaxis is another potential
area of concern. Echinocandins are excellent prophylaxis agents
against invasive candidiasis because they have favorable phar-
macokinetics and safety profiles, and they are active against
azole-resistant yeasts and molds. Micafungin is approved by
the US Food and Drug Administration for prophylaxis of Can-
dida infections in patients undergoing hematopoietic stem cell
transplantation (HSCT) or expected to be neutropenic for at
least 10 days [72], and the European Society of Clinical Micro-
biology and Infectious Diseases guidelines also recommend mi-
cafungin for prophylaxis against Candida infections in
allogeneic HSCT adult and pediatric patients, and in pediatric
patients with acute myeloid or recurrent leukemia. Both mica-
fungin and caspofungin have been successfully used in adult
and pediatric populations [73–75], and meta-analyses have
shown that echinocandin prophylaxis can reduce the incidence
of invasive fungal infections compared with azoles (fluconazole
or itraconazole) [76]. The expanding use of echinocandins for
prophylaxis has increased patient exposure to echinocandin
drugs. This has implications for drug resistance as breakthrough
infections have been reported [77]. It is not surprising that
broadening patient exposure to echinocandin drugs may inad-
vertently promote the emergence of resistance.
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CONCLUSIONS

Echinocandin resistance among Candida species is uncommon,
except with C. glabrata where higher-level resistance is reported
from some clinical sites and which is often associated with azole
resistance. Acquired resistance occurs during therapy and in-
volves amino acid changes in hot-spot regions of the Fks sub-
units of glucan synthase. Echinocandin action induces a variety
of cellular stress response pathways creating drug-adapted per-
sister states, which may ultimately break through and form FKS-
resistant mutants. Host factors promoting resistance include
biofilm formation within the gastrointestinal tract, intra-
abdominal candidiasis, and the expanding use of echinocandin
prophylaxis. New drug- and species-specific breakpoints pose
challenges for standardized testing, which require either surro-
gate drugs for the class (eg, micafungin) or direct molecular
testing for the presence of FKS mutations.
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