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ABSTRACT

Aims. We present a new numerical code, ECHO, based on an Eulerian Conservative High Order scheme for time dependent three-
dimensional general relativistic magnetohydrodynamics (GRMHD) and magnetodynamics (GRMD). ECHO is aimed at providing a
shock-capturing conservative method able to work at an arbitrary level of formal accuracy (for smooth flows), where the other existing
GRMHD and GRMD schemes yield an overall second order at most. Moreover, our goal is to present a general framework, based
on the 3 + 1 Eulerian formalism, allowing for different sets of equations, different algorithms, and working in a generic space-time
metric, so that ECHO may be easily coupled to any solver for Einstein’s equations.
Methods. Our finite difference conservative scheme previously developed for special relativistic hydrodynamics and MHD is here
extended to the general relativistic case. Various high order reconstruction methods are implemented and a two-wave approximate
Riemann solver is used. The induction equation is treated by adopting the Upwind Constrained Transport (UCT) procedures, appropri-
ate to preserve the divergence-free condition of the magnetic field in shock-capturing methods. The limiting case of magnetodynamics
(also known as force-free degenerate electrodynamics) is implemented by simply replacing the fluid velocity with the electromagnetic
drift velocity and by neglecting the matter contribution to the stress tensor.
Results. ECHO is particularly accurate, efficient, versatile, and robust. It has been tested against several astrophysical applications,
like magnetized accretion onto black holes and constant angular momentum thick disks threaded by toroidal fields. A novel test on
the propagation of large amplitude circularly polarized Alfvén waves is proposed and this allows us to prove the spatial and temporal
high order properties of ECHO very accurately. In particular, we show that reconstruction based on a Monotonicity Preserving filter
applied to a fixed 5-point stencil gives highly accurate results for smooth solutions, both in flat and curved metric (up to the nominal
fifth order), while at the same time providing sharp profiles in tests involving discontinuities.

Key words. Plasmas – Magnetohydrodynamics (MHD) – Gravitation – Relativity – Shock waves – Methods: numerical

1. Introduction

Compact objects like black holes and neutron stars interacting
with the relativistic plasma in the surrounding regions are be-
lieved to be responsible for many of high energy phenomena in
astrophysics. The most luminous sources, namely active galac-
tic nuclei or gamma-ray bursts, are likely to be powered by
the conversion of gravitational energy of rotating black holes
into electromagnetic fields and a plasma of relativistic particles
(Blandford & Znajek 1977). A similar mechanism had been pre-
viously proposed to generate the magnetospheric plasma and
ultimately a Poynting flux dominated wind from rotating neu-
tron stars (Goldreich & Julian 1969). The presence of the mag-
netic field is crucial in all the situations outlined above. The
magnetic field could also be important in the phases of gravi-
tational collapse that then give rise to the compact objects them-
selves, because the freeze-in condition valid for highly conduct-
ing plasmas would allow an initially negligible field to be en-
hanced by the collapse to such high intensities to be ultimately
dominant. The physical frameworks in which these mechanisms
are treated are usually that of general relativistic magnetohydro-
dynamics (GRMHD) or, when the electromagnetic field contri-
bution is dominant over the matter contribution, that of force-
free degenerate electrodynamics (Komissarov 2002, 2004), also

known as magnetodynamics (GRMD, Komissarov et al. 2006).
In both cases the electromagnetic fields interact strongly with
the plasma, in such a way that freely moving charges are sup-
posed to screen efficiently any local electric field and to maintain
quasi-neutrality.

A great impulse to the study of these complex phenom-
ena has come from numerical simulations, especially in the
last decade. Since relativistic magnetized flows are often asso-
ciated with the formation of strong shocks and different kinds
of discontinuities, it is thanks to the development of conser-
vative shock-capturing, or Godunov-type, methods that this
progress has been possible. After the first applications to special
and general relativistic hydrodynamics (e.g. Font et al. 1994;
Eulderink & Mellema 1994; Banyuls et al. 1997; Aloy et al.
1999), see also Martı́ & Müller (2003); Font (2003) for reviews,
Komissarov (1999) first proposed a multi-dimensional shock-
capturing code for special relativistic MHD (RMHD). These
schemes are all based on the so-called Roe-type methods, widely
used in computational gas dynamics, in which the solution of
the local Riemann problem at any cell interface is constructed
by means of a full decomposition into characteristic waves.
However, while this approach is perfectly feasible for purely hy-
drodynamic flows, in RMHD the spectral structure of the system
is much harder to resolve, due to the increase in number (from
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five to seven) and complexity (eigenvalues are to be found nu-
merically) of the characteristic waves, and to the presence of a
preferential direction that may lead to non-strict hyperbolicity
of the local system. Furthermore, the solenoidal constraint for
the magnetic field in multi-dimensions requires a special numer-
ical treatment, which must be compatible with the conservative
approach.

Within the family of shock-capturing conservative
schemes, a different strategy was followed in our previ-
ous investigations on numerical relativistic hydrodynamics
(Del Zanna & Bucciantini 2002), hereafter Paper I, and
MHD (Del Zanna et al. 2003), hereafter Paper II, rely-
ing on the promising results obtained for classical MHD
(Londrillo & Del Zanna 2000). As shown in these works, accu-
rate and robust schemes can be devised even if the characteristic
spectral decomposition of the equations is not fully known, or
exploited, because this lack of knowledge is somehow com-
pensated by resorting to higher (third) order reconstruction of
intercell variables, leading to a more accurate setup of the local
Riemann problem. By doing so, even simple one or two-wave
approximate Riemann solvers (also known as central-type
schemes) are capable of resolving all kinds of structures, thus
avoiding the problems related to the complexity in spectral de-
composition at the price of a slightly higher numerical diffusion
of contact and Alfvénic discontinuities. Many other shock-
capturing numerical codes for RHMD and GRMHD (some of
them even with evolving space-time metric) share the same
philosophy of a simplified Riemann solver (Gammie et al. 2003;
Duez et al. 2005; Shibata & Sekiguchi 2005; Leismann et al.
2005; Mignone & Bodo 2006; Antón et al. 2006), though all
of them are based on finite difference or finite volume second
order schemes. In Antón et al. (2006) an RMHD Roe solver is
also used in some tests, via a local coordinate transformation
to flat metric (Pons et al. 1998). Moreover, different methods
other than Godunov-type have also been proposed for GRMHD
(Koide et al. 1999; Koide 2003; De Villiers & Hawley 2003;
Anninos et al. 2005) and (GR)MD (Spitkovsky 2006). See also
the reviews by Wilson & Mathews (2003); Font (2003).

These codes have been extensively applied to many as-
trophysical situations involving relativistic plasmas and com-
pact objects. Relevant examples of these applications in-
clude the validation of the Blandford-Znajek mechanism
for the extraction of rotational energy from a Kerr black
hole (Komissarov 2001; Koide 2003; Komissarov 2004;
McKinney & Gammie 2004; Komissarov 2005; McKinney
2005); the spin evolution of a black hole under the ef-
fect of different physical processes (Gammie et al. 2004); the
problem of jet formation in a black hole-accretion disk sys-
tem (Koide et al. 2000; De Villiers et al. 2003; Mizuno et al.
2004; Nishikawa et al. 2005; De Villiers et al. 2005; McKinney
2006b; Hawley & Krolik 2006; Koide et al. 2006); the time
evolution of a neutron star magnetosphere, both in the MHD
regime (Komissarov 2006b) and in the force-free approxi-
mation (McKinney 2006c; Spitkovsky 2006); the accelera-
tion of magnetized pulsar winds (Bucciantini et al. 2006) and
the dynamics and emission properties of their related neb-
ulae (Komissarov & Lyubarsky 2004; Del Zanna et al. 2004;
Bucciantini et al. 2005; Del Zanna et al. 2006); the morphology
and the dynamics of axisymmetric relativistic jets with differ-
ent magnetic field topologies (Leismann et al. 2005); the col-
lapse, in full general relativity of a hyper-massive neutron star
(Shibata et al. 2006; Duez et al. 2006a), also including the ef-
fects of differential rotation (Duez et al. 2006b). All of these ap-
plications, that do not pretend to provide a complete list, surely

give a sample of the fundamental contributions that numeri-
cal simulations have been offering to our understanding of the
highly complex physical processes induced by the relativistic
plasma around compact objects.

In this paper we present the main features of our new
GRMHD code ECHO, based on an Eulerian Conservative High
Order scheme, that completes and refines our previous works for
special relativity (Paper I and II). The issue of high numerical
accuracy in conservative schemes becomes of great importance
when not only shocks and discontinuities, but also fine smooth
structures like turbulent fields and waves, are of primary interest.
These small scale structures can be smeared out by the excessive
numerical diffusion typical of low order schemes. Furthermore,
higher than second order accuracy is desirable when moving
to 3-D, where numerical grids are necessarily limited in size.
This specially applies to GR, due to the gradients of the metric
terms that must be treated with appropriate resolution. High or-
der schemes are commonly used in classical gas dynamics (e.g.
Shu 1997), and the general recipes to apply these methods to
MHD were given in Londrillo & Del Zanna (2000, 2004), where
the solenoidal constraint for the magnetic field was enforced
as a built-in condition (Upwind Constrained Transport method,
UCT). Here we extend this framework to GRMHD by taking ad-
vantage of the formalism for the 3+1 splitting of space-time (e.g.
Thorne & MacDonald 1982). Specifically, we write all terms en-
tering the conservative form of the GRMHD equations as quanti-
ties measured by the so-called Eulerian observer associated with
the three-dimensional metric (not necessarily diagonal), high-
lighting the closest possible comparison with the equations of
MHD and RMHD by using three-dimensional vectors and ten-
sors alone. As a consequence, we are able to write the source
terms in such a way that they do not contain four-dimensional
Christoffel symbols explicitly, and are therefore very easy to im-
plement numerically. We then incorporate in the 3 + 1 formal-
ism the modifications proposed by McKinney (2006a) to allow
a GRMHD code to solve the equations in the force-free limit of
magnetodynamics (GRMD).

The plan of the paper is as follows. In Sect. 2 we present
the 3 + 1 form of the GRMHD equations. Sect. 3 contains a
description of the essential features of our numerical scheme.
Sects. 4 and 5 are devoted to a presentation of the most important
numerical tests performed in GRMHD and GRMD, respectively.
Finally, the conclusions are reported in Sect. 6. In the following
we will assume a signature {−,+,+,+} for the space-time metric
and we will use Greek letters µ, ν, λ, . . . (running from 0 to 3)
for four-dimensional space-time tensor components, while Latin
letters i, j, k, . . . (running from 1 to 3) will be employed for three-
dimensional spatial tensor components. Moreover, we set c =
G = M⊙ = 1 and make use of the Lorentz-Heaviside notation for

the electromagnetic quantities, thus all
√

4π factors disappear.

2. GRMHD equations in 3 + 1 conservative form

2.1. Covariant approach

We start with a brief presentation of the GRMHD equations in
covariant form. Standard derivations of the laws of fluid dy-
namics and electrodynamics in covariant form may be found
in books such as Landau & Lifshitz (1962); Weinberg (1972);
Misner et al. (1973), while for the MHD equations and their ba-
sic properties see Lichnerowicz (1967); Anile (1989). Consider
an ideal fluid interacting with an electromagnetic field. The cor-
responding Euler equations are

∇µ(ρu µ) = 0, (1)
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∇µT µν = 0, (2)

where ∇µ is the space-time covariant derivative. Eq. (1) is the
usual mass conservation law, in which ρ is the mass density as
measured in the (Lagrangian) frame comoving with the fluid
four-velocity u µ. Eq. (2) is the law of momentum-energy con-
servation, where the total momentum-energy tensor is made up
by two contributions, T µν = T

µν
m + T

µν

f
, one due to matter

T
µν
m = ρh u µuν + pg µν, (3)

and the other due to the electromagnetic field

T
µν

f
= FµλF

νλ − 1
4
(FλκFλκ)g

µν. (4)

In the above expressions g µν is the space-time metric tensor, h =
1 + ǫ + p/ρ is the specific enthalpy (including rest mass energy
contribution), ǫ is the specific internal energy, p is the thermal
pressure, Fµν is the electromagnetic field (antisymmetric) tensor.
When considered separately, the two components of the stress
tensor are not conserved

∇µT µνm = −∇µT µνf = −JµF
µν, (5)

where J µ is the four-vector of current density and the last term
is the electromagnetic force acting on the conducting fluid. The
fields obey the two Maxwell equations

∇µFµν = −Jν, (6)

∇µF∗µν = 0, (7)

where F∗µν = 1
2
ǫ µνλκFλκ is the dual of the electromagnetic ten-

sor, and ǫ µνλκ is the space-time Levi-Civita tensor density, that
is ǫ µνλκ = (−g)−1/2[µνλκ] (and ǫµνλκ = −(−g)1/2[µνλκ]), with
g = det{gµν} and [µνλκ] is the alternating Levi-Civita symbol.

Since we are dealing with a (perfectly) conducting fluid, a
general relativistic extension of (ideal) Ohm’s law is needed.
This translates in a condition of vanishing electric field in the
comoving frame

Fµνuν = 0. (8)

From a physical point of view it means that the freely moving
charges in a plasma are supposed to be always able to screen any
electric field that may arise locally. The extra condition imposed
on Fµν in Eq. (8) makes the first Maxwell equation redundant,
and Eq. (6) is only needed to calculate the four-current J µ, which
is now a derived quantity like in non-relativistic MHD. The sys-
tem of GRMHD equations is then closed by choosing an equa-
tion of state (EoS) p = p(ρ, ǫ). Different relativistic EoS may be
employed, and thus we will leave it unspecified in our formula-
tion. However, all numerical tests presented here will make use
of the standard γ-law for a perfect gas

p(ρ, ǫ) = (γ − 1) ρ ǫ ⇒ h = 1 +
γ

γ − 1

p

ρ
, (9)

with γ = 5/3 for a non-relativistic fluid and γ = 4/3 when p ≫ ρ
(ρh → 4p). Finally, note that for an ideal fluid (thus in the ab-
sence of shocks or other sources of dissipation) the total energy
conservation law is equivalent to the adiabatic equation

u µ∇µs = 0⇒ ∇µ(ρsu µ) = 0, (10)

even in the GRMHD case (e.g. Anile 1989). Here s is any func-
tion of the specific entropy (in the comoving frame), and in the
case of a fluid with a γ-law EoS we can take s = p/ργ.

2.2. The 3 + 1 splitting of space-time

In spite of their elegant and compact form, the GRMHD co-
variant equations described above are not suitable for numeri-
cal integration, where the temporal coordinate must be clearly
singled out. The most widely used formalism is that based on
the so-called 3 + 1 decomposition of the equations. For a com-
prehensive treatment and references the reader is referred to
Thorne & MacDonald (1982), or, for a more recent work, see
Baumgarte & Shapiro (2003).

In the 3+1 formalism, the four-dimensional space-time is fo-
liated into non-intersecting space-like hyper-surfaces Σt, defined
as iso-surfaces of a scalar time function t. Let then

nµ = −α∇µt, (n µn
µ = −1) (11)

be the future-pointing time-like unit vector normal to the slices
Σt, where α is called the lapse function. The observer moving
with four-velocity n µ is called Eulerian (Smarr & York 1978),
and all quantities may be decomposed in the corresponding
frame. Thus, any vector V µ (or similarly a tensor) may be pro-
jected in its temporal component V n̂ = −nµV

µ and spatial com-

ponent⊥ V µ = (g
µ
ν +n µnν)V

ν. In particular, a three-dimensional
spatial metric γµν can be induced on Σt by the four-dimensional
metric. Application of the projection operator gives

γµν =⊥ gµν = gµν + nµnν, (12)

so that we can also identify ⊥≡⊥µν= γµν . At this point, it is con-
venient to introduce a coordinate system x µ = (t, xi) adapted to
the foliation Σt. The line element is usually given in the so-called
ADM (Arnowitt et al. 1962) form:

ds2 =−α2dt2 + γi j (dxi+ βidt)(dx j+ β jdt), (13)

where β µ is called shift vector, an arbitrary spatial vector
(β µnµ = 0). Notice that the spatial metric γi j can now be used for
the raising and lowering of indices for purely spatial vectors and
tensors. In this coordinate system the unit vector components are

nµ = (−α, 0i), n µ = (1/α,− βi/α), (14)

and any spatial vector Vµ (or tensor) must necessarily have a
vanishing contravariant temporal component V t = 0, whereas its
covariant temporal component is Vt = gµtV

µ = βiV
i, in general

different from zero. The gradient of the unit vector nµ can also
be split into spatial and temporal components as follows

∇µnν = −Kµν − nµaν, (15)

where Kµν is the extrinsic curvature of the metric (a spatial sym-
metric tensor) and aν is the acceleration of the Eulerian observer
(a spatial vector too). Finally, it is possible to demonstrate that
(e.g. York 1979)

aν = n µ∇µnν =⊥ ∇ν lnα, (16)

another property that will be used later on.
The next step is then to decompose all quantities appearing

in the GRMHD equations of Sect. 2.1 into their spatial and tem-
poral components. Hence, we define

u µ = Γ n µ + Γ v µ, (17)

T µν = Wµν + S µnν + n µS ν + Un µnν, (18)

Fµν = n µEν − Eµnν + ǫ µνλκBλnκ, (19)

F∗µν = n µBν − Bµnν − ǫ µνλκEλnκ, (20)
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where all the new vectors and tensors are now spatial and corre-
spond to the familiar three-dimensional quantities as measured
by the Eulerian observer. In particular v µ is the usual fluid ve-
locity vector of Lorentz factor Γ = un̂, for which

vi = ui/Γ + βi/α, Γ = αut = (1 − v2)−1/2, (21)

where v2 = viv
i and we have used the property u µu

µ = −1. An

alternative quantity, ui/ut = αvi−βi, usually referred to as trans-
port velocity, is sometimes used instead of the Eulerian velocity
vi (see Baumgarte & Shapiro 2003). The definition in Eq. (21)
agrees with the treatments by Thorne & MacDonald (1982);
Sloan & Smarr (1985); Zhang (1989) and it is the most appropri-
ate for numerical integration (Banyuls et al. 1997), since in the
3 + 1 formalism vi is a real three-dimensional vector while ui/ut

is not. The decomposition of the momentum-energy stress ten-
sor gives the quantities U = T n̂n̂, S µ =⊥ T n̂µ, and Wµν =⊥ T µν,
which are respectively the energy density, the momentum den-
sity and the spatial stress tensor of the plasma. Finally, the spatial
electromagnetic vectors in Eqs. (19-20) are defined as Eµ = F n̂µ

and Bµ = F∗n̂µ, that is, in components

Ei = αF ti, Bi = αF∗ti. (22)

2.3. Derivation of the 3 + 1 GRMHD equations

The set of GRMHD equations in 3 + 1 form is derived from
that in Sect. 2.1 by applying the space-time decompositions of
Eqs. (17-20). Here we are interested in retaining the conserva-
tive form, as needed by any shock-capturing scheme (Font 2003;
Shibata & Sekiguchi 2005; Duez et al. 2005; Antón et al. 2006).
In this respect, we improve on these works by making use of
purely three-dimensional quantities alone, in a way to maintain a
close relation to classical MHD as much as possible and to sim-
plify the expression of the source terms. By applying standard
covariant differentiation relations, the set of GRMHD equations
becomes

(−g)−1/2∂µ[(−g)1/2ρuµ] = 0, (23)

(−g)−1/2∂µ[(−g)1/2T µ j] =
1
2
T µν∂ jgµν, (24)

(−g)−1/2∂µ[(−g)1/2T µνnν] = T µν∇µnν, (25)

(−g)−1/2∂µ[(−g)1/2F∗µ j] = 0, (26)

(−g)−1/2∂µ[(−g)1/2F∗µt] = 0, (27)

where Eqs. (1), (2), and (7) have been split into their spatial and
temporal components and the symmetry properties of T µν and
F∗µν have been exploited. Eqs. (21-22) must now be plugged into
the above equations to yield equations for the three-dimensional
quantities alone. Moreover, it is easy to verify that the source
terms on the right hand side are split as

1
2
T µν∂ jgµν =

1
2
W ik∂ jγik + α

−1S i∂ j β
i − U∂ j lnα, (28)

T µν∇µnν = −Ki jW
i j − S j∂ j lnα, (29)

where the properties of the extrinsic curvature have been used.
Notice that only spatial derivatives along j appear in Eq. (28),
so that the corresponding flux is a conserved quantity in the sta-
tionary case. Finally, it is convenient to introduce the standard
boldface notation for (spatial) vectors and to define ∇ =⊥ ∇ as

the three-dimensional covariant derivative operator for the met-
ric γi j (providing the familiar divergence and curl operators), so
that the final form of the GRMHD equations is then

γ−1/2∂t (γ1/2D) + ∇ · (αvD − βD) = 0, (30)

γ−1/2∂t (γ1/2S) + ∇ · (αW − βS) = (∇β) · S − U∇α, (31)

γ−1/2∂t (γ1/2U) + ∇ · (αS − βU) = αK : W − S · ∇α, (32)

γ−1/2∂t (γ1/2B) + ∇ × (αE + β × B) = 0, (33)

∇ · B = 0, (34)

where γ = det{γi j} is the determinant of the spatial metric (not to

be confused with the adiabatic index), for which (−g)1/2 = αγ1/2.
Let us analyze the above system in detail. Eq. (30) is the con-

tinuity equation for D = ρΓ, that is the mass density measured by
the Eulerian observer. The momentum equation, Eq. (31), con-
tains the divergence of the tensor W, leading to source terms
present also in MHD and RMHD when curvilinear coordi-
nates are used, whereas the last term with the gradient of the
lapse function becomes the standard gravitational force in the
Newtonian limit. Eq. (32) is the energy equation, in which the
extrinsic curvature must be evolved through Einstein’s equa-
tions or, for a stationary space-time, it is provided in terms of
the covariant derivatives of the shift vector components (e.g.
Misner et al. 1973; York 1979). Here we write

αK : W = 1
2
W ikβ j∂ jγik +Wi

j∂ j β
i, (35)

where again the symmetry properties of W i j have been used.
Eq. (33) is the GRMHD extension of the induction equation,
written in curl form by exploiting usual vector calculus relations.
Note that the (spatial) three-dimensional Levi-Civita tensor den-
sity ǫ µνλ = ǫ n̂µνλ, for which ǫi jk = γ−1/2[i jk] and ǫi jk = γ

1/2[i jk],
is implicitly defined in Eq. (33). Finally, Eq. (34) is the usual
divergence-free condition. Notice that the above treatment is
valid in a generic system of curvilinear coordinates, not neces-
sarily under the assumptions of diagonal spatial metric tensor
or vanishing expansion factor ∇ · β (e.g. Kerr metric in Boyer-
Lindquist coordinates). In the absence of gravity, that is when
α = 1, β = 0, K = 0, and ∂tγ = 0, the above equations reduce to
the familiar set of RMHD in curvilinear coordinates.

The expression for the stress tensor, momentum density, and
energy density in terms of the fluid and electromagnetic quanti-
ties are, from Eqs. (17-20):

W = ρhΓ2v v − E E − B B + [p + 1
2
(E2 + B2)]γ, (36)

S = ρhΓ2v + E × B, (37)

U = ρhΓ2 − p + 1
2
(E2 + B2), (38)

where we have indicated with the symbol γ the spatial metric
tensor of components γi j. The matter and electromagnetic field
contributions have been expanded by using Eqs. (3-4) written in
terms of scalars and the spatial vectors v, E, B alone. In the 3+1
split the Ohm relation for MHD in Eq. (8) becomes the usual
freeze-in condition

E = −v × B, (39)

that allows us to close the set of GRMHD equations. Note that all
the above relations, from Eq. (36) to (39), are exactly the same
as in the special relativistic case (though in Paper II a different
formalism was employed). Moreover, the non relativistic limit is
found by letting v2 ≪ 1, p ≪ ρ, and E2 ≪ B2 ≪ ρ. Thus, by
simply changing the definition of D, W, S, U and by neglecting
gravity terms (or reducing them to the Newtonian limit), one has
the formal setup of a conservative scheme for classical MHD in
generic curvilinear coordinates.



L. Del Zanna et al.: ECHO: an Eulerian Conservative High Order scheme for GRMHD and GRMD 5

3. The ECHO scheme

The set of conservative GRMHD equations described in
Sect. 2.3 may be rewritten in a compact way as follows. The
five scalar fluid equations are

∂tU + ∂iF
i = S, (40)

where the conservative variables and the correspondent fluxes in
the i direction are respectively given by

U = γ1/2

















D
S j

U

















, F i = γ1/2





















αviD − βiD

αW i
j
− βiS j

αS i − βiU





















, (41)

and the factors γ1/2 have been included in the definition of these
new quantities. In the case of a stationary metric, used in the re-
mainder of this paper for code testing, the source terms become

S = γ1/2



















0
1
2
αW ik∂ jγik + S i∂ jβ

i − U∂ jα
1
2
W ikβ j∂ jγik +Wi

j∂ jβ
i − S j∂ jα



















, (42)

in which the extrinsic curvature in the energy equation Eq. (32)
has been replaced by the derivatives of the metric according to
Eq. (35). As far as the induction equation is concerned, it is con-
venient to introduce the new quantities

Bi = γ1/2Bi, (43)

Ei = αEi + ǫi jkβ
jBk = −[i jk]V jBk, (44)

where V j = αv j − β j is the transport velocity. Eq. (33) may be
then rewritten in the form

∂tBi + [i jk]∂ jEk = 0, (45)

and the related non-evolutionary constraint Eq. (34), expressed
in terms of the new variables Bi, simply becomes

∂iBi = 0. (46)

Notice that, thanks to our definitions, Eqs. (40), (45), and (46)
retain the same form as in Cartesian coordinates (with external
source terms). Eq. (45) is the conservation law for Bi, which dif-
fers from the form of Eq. (40), basically due to the antisymmetric
properties of the Faraday and Maxwell tensors. The curl nature
of the induction equation and the divergence-free constraint must
be maintained in the numerical scheme by employing consistent
algorithms.

In the following we describe the numerical procedures em-
ployed in our new ECHO code. The scheme is quite general and
can be applied to any set of physical laws with evolution equa-
tions in the form of Eqs. (40-45), with the additional constraint
of Eq. (46): physical modules are available for classical MHD,
special RMHD, GRMHD, and GRMD (see Sect. 3.4). The gen-
eral recipes for the correct treatment of the divergence-free con-
dition in any shock-capturing MHD-like scheme, regardless of
the discretization technique (finite volume or finite difference),
accuracy order, interpolation methods, and Riemann solver, have
been presented in Londrillo & Del Zanna (2004). That method
was named Upwind Constrained Transport (UCT) and here we
follow its guidelines. In particular we will adopt the same build-
ing blocks already employed in Paper II, namely finite difference
discretization, high order component-wise reconstruction meth-
ods (additional algorithms will be proposed here), a two-wave
approximate Riemann solver, and multi-stage Runge-Kutta for
time integration.

3.1. Discretization and numerical procedures

The starting point is the discretization of the GRMHD equations.
Here we assume a finite difference approach and thus we adopt
the corresponding version of UCT. This is known to be more
convenient than finite volume methods for high order treatments
of multi-dimensional problems, since only 1-D reconstruction
algorithms are needed (e.g Shu 1997; Liu & Osher 1998). Let r
be the order of spatial accuracy requested for the scheme. Given
a computational cell of edge sizes hi, the fluid conservative vari-
ables U j are defined at cell centers C with a point value repre-
sentation, that is U j is the numerical approximation, within an
accuracy r, of the corresponding analytical function. The other
conservative variables are the Bi components, which are here
discretized as point values at cell interfaces S +

i
, normal to di-

rection i. This discretization technique is known as staggering,
first introduced for Maxwell’s equations by Yee (1966) and later
applied to the GRMHD induction equation by Evans & Hawley
(1988). In a conservative approach, the spatial differential opera-
tors of divergence and curl are translated numerically by making
use of the Gauss and Stokes theorems, respectively. Fluid fluxes
F i

j
are to be calculated at cell faces S +

i
, while magnetic fluxes

Ek must be calculated at cell edges L+
k
, parallel to the direction

k (see Londrillo & Del Zanna 2004). The spatially discretized
GRMHD equations are then written in the following way

d

dt
[U j]C +

∑

i

1

hi

([F̂ i
j ]S +

i
− [F̂ i

j ]S −
i
) = [S j]C, (47)

d

dt
[Bi]S +

i
+
∑

j,k

[i jk]
1

h j

([Êk]L+
k
− [Êk]L−

k
) = 0, (48)

known as semi-discrete form, since the time derivatives are left
analytical. Here the hat indicates high order approximation of the
numerical flux function, as it will be described at steps 4 and 8
below, and we have indicated with ± the opposite faces, or edges,
with respect to the direction of derivation. Time evolution is here
achieved by means of Runge-Kutta integration schemes. In the
same framework, the non-evolutionary solenoidal constraint be-
comes
∑

i

1

hi

([B̂i]S +
i
− [B̂i]S −

i
) = 0. (49)

Given the particular discretization of the conservative quan-
tities and of their corresponding numerical fluxes, the procedures
required by the UCT strategy may look rather involved, in par-
ticular for high order implementations. In the ECHO scheme we
have made an effort to simplify them as much as possible, espe-
cially as far as the induction equation and the metric terms are
concerned. We describe these procedures in the following ten
steps.

1. Given the value of the conservative variables at time t, we
first interpolate the magnetic field components Bi from the
corresponding staggered locations S +

i
to cell centers C, for

every direction i. For a second order r = 2 scheme we simply
use

[Bi]C =
1

2
([Bi]S −

i
+ [Bi]S +

i
), (50)

whereas larger stencils are employed for higher order inter-
polations (see Sect. A.1 in the appendix). The set of conser-
vative variables

W = [U,B]T (51)
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is now entirely defined at cell center C. From this we can
then derive the primitive variables P, that is any set of
physical quantities such that the functionsU = U(P) and
F i = F i(P) are uniquely defined. Here we use

P = [ρ, v, p, B]T (52)

for all MHD-like modules in ECHO. In Sect. 3.2 we describe
the inversion routines implemented for this choice of primi-
tive variables.

2. For each direction i, say x, we reconstruct the point value
approximations of the left (L) and right (R) upwind states of
primitive variables, from C to S +x :

[PL,R
j

]S +x = RL,R
x ({[P j]C}), (53)

where RL,R
x is the 1-D reconstruction routine, here named

REC, applied to a stencil {[P j]C} of cell centered values
along x. The index j runs through all fluid components and
the transverse magnetic field components. This is because
the main assumption in UCT is that the longitudinal Bx com-
ponent does not present different upwind states at S +x . At this

location one can safely assume BxL = BxR = γ−1/2Bx.
In ECHO different reconstruction routines are implemented.
All of them are treated component-wise, that is avoid-
ing decomposition into characteristic waves. For schemes
with overall r = 2 accuracy we may use simple TVD-
like reconstructions based on limiters (e.g. MM2 for the
MinMod, MC2 for Monotonized Centered). For r > 2 we
have a choice of ENO-like routines: ENO3 for the third-
order original ENO method (Harten et al. 1987), CENO3 for
the Convex-ENO scheme by Liu & Osher (1998) (see also
Paper I), WENO5 for the Weighted-ENO fifth order scheme
(Jiang & Shu 1996). Moreover, in the tests of Sect. 4 and
5 we will largely make use of the Monotonicity Preserving
scheme by Suresh & Huynh (1997), implemented in ECHO
as MP5, which is based on interpolation built over a fixed
5-point stencil (we recall that adaptive stencils are used in
ENO schemes), followed by a filter, basically a combina-
tion of limiters to preserve monotonicity near discontinu-
ities. Notice that our reconstruction process is based on up-
wind, non-oscillatory interpolation techniques (thus from
point values to point values), while in the numerical litera-
ture reconstruction via the primitive function (or equivalently
from cell averages to point values) is typically discussed. All
interpolation coefficients for high order methods are thus dif-
ferent, and these are calculated in Sect. A.2 of the appendix.

3. The upwind flux for the fluid part is then derived in terms of
the two-state reconstructed primitive variables. In Roe-like
schemes (Roe 1981) this task is achieved by a field-by-field
spectral decomposition of the local Jacobian 7 × 7 matrix

A
x =
∂F x

∂W x
, W x = [U,By,Bz]T , (54)

where Bx acts like a given parameter in this local 1-D sys-
tem. The eigenvalues of Ax, typically calculated at some
averaged state, provide the speed of each characteristic
wave. Here we use the HLL approximate Riemann solver
(Harten et al. 1983) which is based on the knowledge of the
two highest (in absolute value) characteristic waves alone. In
GRMHD they correspond to the fast magnetosonic waves,
see Sect. 3.3. If λx

± are the requested speeds, calculated at
both left and right states, we then define the quantities

ax
± = max{0,±λx

±(P
L),±λx

±(P
R)} (55)

and the HLL upwind fluid flux function is

F x
j =

ax
+F x

j
L
+ ax
−F x

j
R − ax

+ax
−(UR

j
−UL

j
)

ax
+ + ax

−
(56)

where all quantities are calculated at S +x for each component

j and where F xL,R
= F x(PL,R), UL,R = U(PL,R). At the

same location we also calculate the upwind transverse trans-
port velocities and we average them as follows

V j
=

ax
+V jL

+ ax
−V jR

ax
+ + ax

−
, j = y, z. (57)

These quantities are saved and will be used at step 6 for the
calculation of the electric field needed in the induction equa-
tion. The coefficients ax

± are saved too, since they will be
needed at step 7 for the magnetic fluxes and at step 10 for
the timestep definition. Local Lax-Friedrichs is retrieved as
usual when ax

+ = ax
−.

4. The numerical fluid flux function is retrieved by means of
an additional high order procedure, named DER, which al-
lows one to obtain a high order approximation from the point
value quantities calculated at the same intercell locations:

[F̂ x
j ]S +x = Dx({[F x

j ]S +x }). (58)

This correction step is necessary to preserve the accuracy
in the calculation of spatial partial derivatives for high or-
der schemes, while it can be avoided for low order r ≤ 2
schemes, for which the DER operator is just an identity. In
the tests with r > 2 presented in Sect. 4 we use fourth or
sixth order fixed-stencil algorithms (see Sect. A.3 in the ap-
pendix).

5. The fluid flux functions are recovered for all directions i by
repeating steps 2-4 and the spatial operator in Eq. (47) is
calculated. The source terms [S]C are also worked out so
that we are ready for the Runge-Kutta time-stepping cycle as
far as the fluid part is concerned.

6. The induction equation is treated as follows. Let us concen-

trate on the magnetic flux [Êz]L+z , the other components are
found with similar strategies. First we need to reconstruct
the quantities Vx, Vy, Bx, and By from faces S +x and S +y to

the edge L+z , to be combined there in a four-state upwind nu-
merical flux (Londrillo & Del Zanna 2004). Exploiting the
uniqueness of the numerical representation of [Bi]S +

i
, as dis-

cussed at step 2, it is sufficient to reconstruct the following
quantities

[VxL,R
]L+z = RL,R

x ({[Vx
]S +y }), [ByL,R

]L+z = RL,R
x ({[By]S +y }), (59)

[VyL,R
]L+z = RL,R

y ({[Vy
]S +x }), [BxL,R]L+z = RL,R

y ({[Bx]S +x }), (60)

whereV j
( j = x, y) were saved at step 3.

7. The HLL numerical flux for the magnetic field can be then
defined as

Ez = −
ax
+V

xL
ByL + ax

−V
xR
ByR − ax

+ax
−(ByR − ByL)

ax
+ + ax

−

+
a

y
+V

yL
BxL + a

y
−V

yR
BxR − a

y
+a

y
−(BxR − BxL)

a
y
+ + a

y
−

, (61)

which coincides with the four-state formula presented in
Londrillo & Del Zanna (2004). Note that our flux formula
contains upwinding in the two directions x, y and reduces
correctly to the expected flux for 1-D cases.
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8. Following the same strategy as in step 4 the DER operation
is needed to recover numerical fluxes with appropriate ac-
curacy. Each magnetic flux component actually requires two
distinct high order corrections

[Êz]L+z = D j({[Ez]L+z }), j = x, y (62)

as Eq. (48) contains both x and y differencing of Êz.
9. The spatial derivatives in Eq. (48) are then calculated for

each direction and also the induction equation is ready for
time integration.

10. Runge-Kutta time-stepping can be finally achieved, and the
whole procedure to update the set of conservative variables
W must be repeated for each sub-cycle. Here we use for
r ≤ 2 the classical Heun (or improved Euler) second or-
der scheme (RK2), whereas for r > 2 it is convenient to
use correspondingly higher order methods, like those de-
scribed in Shu & Osher (1988). In ECHO we have imple-
mented their third order scheme (RK3, see also Paper I). Like
in all explicit schemes, the timestep ∆t is limited by the CFL
(Courant-Friedrichs-Lewy) condition 0 < c < 1 (we will
always use c = 0.5 in the tests presented) and is defined as

∆t =
c

maxi(a
i
M
/hi)
, (63)

where ai
M
= max({[ai

+]S +
i
}, {[ai

−]S +
i
}) are the maximum

speeds over the whole domain, for each direction i. Gravity
contributions to ∆t are included in the ai

M
definition via

the metric terms contained in the GRMHD speeds λi
± (see

Sect. 3.3).

Compared to our previous implementations for classical
MHD and RMHD, the ECHO scheme presented here is slightly
simpler. First, the DER operator is now based on fixed, symmet-
ric stencils, rather than adaptive like in REC (see the appendix).
As far as the induction equation and the related divergence-free
constraint are concerned, the use of the magnetic vector potential
is avoided and the primary magnetic field (staggered) compo-

nents for the UCT strategy are now [Bi]S +
i
, rather than [B̂i]S +

i

like in Londrillo & Del Zanna (2004), so that magnetic fields
are also easier to initialize. Moreover, it is easy to verify that
Eq. (49) is satisfied algebraically at all times regardless of the
value of r. This is because, when using Eq. (48) in the time
derivative of the solenoidal condition, the electric field compo-
nents (now with corrections along the two orthogonal directions)
cancel each other, due to the commutativity of the DER opera-
tors applied. Obviously this property holds only for fixed-stencil
procedures.

Finally, notice that the metric terms are needed at cell cen-
ter (where also their derivatives must be given) and at intercells,
but not at cell edges. This is due to our definitions of the Vi

and Bi components, already containing the metric terms needed
for the calculation of the electric field Ek. The components of
the metric tensor and their derivatives are here provided analyti-
cally. Another option (e.g. when solving Einstein’s equations) is
to interpolate and derive them, wherever needed, with high order
procedures as those described in the appendix.

3.2. Primitive variables

As we have seen in Sect. 3, in step 1 the primitive variables P
must be derived from the set of conservative variablesW at cell
centers. The problem is exactly the same as in special relativistic
MHD, that is:

[D, S,U, B]→ [ρ, v, p, B], (64)

with B acting at the same time as a conservative and primi-
tive variable. Here we basically follow the strategy outlined in
Paper II, see also Noble et al. (2006) for further discussion and
comparison of different techniques. The full system is first re-
duced to a 2×2 set of nonlinear equations in the variables x = v2

and y = ρhΓ2. Let us rewrite Eqs. (37) and (38) using Eq. (39)
for the electric field, and then calculate S 2 and S · B. After some
simple algebra, the unknown variables may be found by solving
the system F1 = 0, F2 = 0, where

F1(x, y) = (y + B2)2x − y−2(S · B)2(2y + B2) − S 2, (65)

F2(x, y) = y − p + 1
2
(1 + x)B2 − 1

2
y−2(S · B)2 − U, (66)

with p = p(x, y) to be specified according to the EoS employed.
Once x and y are found, the required primitive variables are given
by the relations

ρ = D(1 − x)1/2, (67)

v = (y + B2)−1[S + y−1(S · B)B], (68)

p =
γ − 1

γ
[(1 − x)y − D(1 − x)1/2], (69)

where the last expression is valid for the ideal gas EoS in Eq. (9),
see Mignone et al. (2005); Ryu et al. (2006) for other options.

In ECHO the following three inversion methods are imple-
mented.

1. The roots of Eqs. (65-66) are found simultaneously via a
two-dimensional Newton technique. This system requires a
rather accurate initial guess (provided by the quantities found
at the previous timestep, at the same grid point) and the in-
version of a 2 × 2 linear system at each iteration.

2. At each iteration, we derive x = x(y) from Eq. (65) and
then we find the root of f2(y) ≡ F2[x(y), y] = 0 by a one-
dimensional Newton scheme. This appears to be the most
straightforward method, since x = x(y) is just a simple alge-
braic expression, however in the searching process we must
ensure the condition x < 1 and sometimes several iterations
may be required to solve f2(y) = 0.

3. At each iteration, we derive y = y(x) from Eq. (66) and
then we find the root of f1(x) ≡ F1[x, y(x)] = 0 by a one-
dimensional Newton scheme. This is a variant of the method
suggested in Paper II and it can only be applied for EoS
where p is linear in y, as in Eq. (69). In this case, the root y is
found either simply as a ratio of two terms, if S · B = 0, or as
the only positive root of the cubic C(y) obtained multiplying
Eq. (66) by y2. This may be achieved either analytically or
numerically via a nested Newton scheme. The existence of
only one positive root is guaranteed by the following proper-
ties: C(0) < 0, C′(0) = 0, C(±∞) = ±∞.

In the tests presented in Sect. 4 we always use method 3 with
the nested Newton procedure to find the root of C(y) = 0 nu-
merically, since it appears to be rather efficient and robust, espe-
cially when applied to a Newton/bisection hybrid method ensur-
ing the search of the solution within given boundaries. In cases
of smooth flows where Eq. (10) replaces the energy equation
the inversion algorithm is greatly simplified, since sD is the new
conservative variable, hence the pressure p = sργ depends on x
alone and we just need to solve the equation f1(x) = 0.
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3.3. Characteristic speeds in GRMHD

The spectral properties of the 1-D GRMHD system in Eq. (54)
are basically the same as for the corresponding system in
RMHD. Given the structure of the fluxes it is obvious that, for
example, the eigenvalues of the JacobianAx will be of the form

λx = αλ′x − βx, (70)

where λ′ x is the corresponding eigenvalue in special relativistic
MHD. Thus, in the 3+1 approach the gravity terms do not mod-
ify substantially the hyperbolic structure of the GRMHD equa-
tions. Full descriptions of the spectral decomposition of the 1-D
RMHD system in can be found in Anile (1989).

Upwind HLL fluxes, described at step 3, just require the cal-
culation of fast magnetosonic speeds, and this should be accom-
plished by solving (for each cell and twice for each direction) a
quartic polynomial, as already described Paper II. However, an
approximation of these quantities could be also used in Eq. (55),
at a price of slightly higher viscosity. In ECHO we follow the
strategy by Gammie et al. (2003); Leismann et al. (2005), who
realized that, like in classical MHD, an upper bound for fast
waves is that corresponding to the degenerate case of normal
propagation kµb

µ = 0, where kµ = (−ω, kx, 0, 0) is the wave
four-vector. The dispersion relation reduces then to

(kµu
µ)2 = a2[(kµk

µ) + (kµu
µ)2], (71)

where the term in square brackets refers to the component of kµ
normal to u µ and

a2 = c2
s + c2

a − c2
sc2

a. (72)

The sound and Alfvén speeds are respectively defined as

c2
s =
γp

ρh
, c2

a =
b2

ρh + b2
, (73)

where we have introduced the comoving magnetic four-vector

b µ ≡ F∗µνuν = Γ(v · B)n µ + B µ/Γ + Γ(v · B)v µ, (74)

and the invariant quantity in Eq. (73) is

b2 ≡ bµb
µ = B2 − E2 = B2/ Γ2 + (v · B)2. (75)

In the degenerate case an analytical expression for the two fast
magnetosonic characteristic velocities is found by letting λ′x =
ω/kx in Eq. (71):

λ′x±=
(1−a2)vx ±

√

a2(1−v2)[(1−v2a2)γxx− (1−a2)(vx)2]

1 − v2a2
, (76)

and these upper bounds will be then used also for the general,
non-degenerate case. Note that the above relation, when plugged
into Eq. (70), correctly reduces to the 3 + 1 GR formula for the
hydrodynamical case when B = 0 (Banyuls et al. 1997).

3.4. Magnetodynamics

In the present section we summarize the equations of magneto-
dynamics (Komissarov 2002, 2004) and we discuss the few mod-
ifications implemented in ECHO for the corresponding GRMD
module. The recipes by McKinney (2006a), which allow one
to use the same framework of a GRMHD scheme and simply
neglect the matter contribution, are here followed. In GRMD
the fluid quantities disappear and the electric field E should re-
place them as primary variable, together with B. The equations

to use should be then the two Maxwell equations Eqs. (6-7), like
in electrodynamics. However, here we replace Eq. (6) with the
electromagnetic momentum-energy conservation law. Thus, by
setting T µν ≃ T

µν

f
≫ T

µν
m in Eqs. (2) and (5) in the limit of neg-

ligible plasma inertia and thermal contribution, we find

∇µT µν = JµF
µν = 0. (77)

This force-free situation is actually common to vacuum electro-
dynamics as well. However, in a highly conducting plasma we
assume that there is a frame where the electric field vanishes, due
to the presence of freely moving charges always able to screen
it efficiently, just like in the GRMHD approximation. This is the
reason why magnetodynamics is commonly known as degener-
ate force-free electrodynamics. If the electromagnetic fields are
decomposed according to the Eulerian observer in the 3 + 1 ap-
proach of Sect. 2.2, the condition for the existence of a frame
where the electric field vanishes is replaced by the two invariant
conditions

B2 − E2 ≥ 0, E · B = 0, (78)

which are valid in GRMHD too thanks to ideal Ohm’s law
Eq. (39). If we still indicate with u µ the unit time-like four-
velocity of this frame, and v is the associated three-velocity de-
fined in Eq. (21), the usual ideal MHD condition is unchanged
and the two constraints in Eq. (78) are automatically satisfied.
In order to close the GRMD system, we thus need to express
this unknown velocity in terms of the electromagnetic quantities
alone. The required v turns out to be the drift speed of magnetic
fieldlines

v =
E × B

B2
. (79)

All the (G)RMHD definitions in Eqs. (38) to (39) are still valid if
one neglects matter contribution, in particular S = E×B. Notice
that due to Eqs. (39) and (79) the three spatial vectors E, B, and
v are all mutually orthogonal in GRMD. When the three-velocity
in Eq. (79) is used, the equations for GRMHD remain unchanged
too. However, the continuity equation Eq. (30) is now useless,
while the energy equation Eq. (32) is redundant and may be used
as an additional check. Notice that, in particular, the treatment
of the metric terms and of their derivatives in the source part
remains exactly the same as in GRMHD.

From a computational point of view, the set of GRMD in
conservative form is easy to treat. The characteristic speeds are
two Alfvén waves and two magnetosonic waves, moving at the
speed of light. Thus, the expression needed for the simplified
Riemann solver employed in ECHO (along the x direction) is
derived from Eqs. (70) and (76) by setting a = 1, that is

λx
± = ±α

√

γxx − βx. (80)

Furthermore, the inversion from conservative to primitive vari-
ables is also greatly simplified. The magnetic field still enters
both as a conservative and primitive variable, hence we need to
derive the drift velocity v for given S and B. The expression em-
ployed in ECHO is

v =
1

B2

[

S − (S · B)

B2
B
]

, (81)

where the second term takes into account the possible numerical
errors leading to an initial non-vanishing S · B. Notice that the
above formula is equivalent to first derive the electric field as
E = −S × B/B2 and then use Eq. (79). In this way, our code
preserves the constraint E · B = 0 within machine accuracy.
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4. GRMHD numerical tests

In order to test our numerical scheme ECHO, several aspects
need to be checked. First we want to verify that in spite of the
UCT algorithm, based on staggered representation of the mag-
netic field components, the overall scheme is able to preserve
the nominal high order accuracy of the reconstruction and inter-
polation routines employed. Hence we propose a new test based
on the propagation of Alfvén waves (in flat space-time), which
are smooth solutions of the equations and thus suitable for such
kind of problems. However, to better compare ECHO’s perfor-
mances against other existing GRMHD codes, we will employ
ECHO at second order in most of the other numerical test prob-
lems. Thus, even if higher than second order reconstruction al-
gorithms will be used, in order to sharpen discontinuities and
reduce numerical diffusion (in particular MP5), all additional
corrections to achieve an effective higher order of spatial ac-
curacy will be sometimes disabled and RK2 will be used for
time stepping in these cases. We will see that the resulting sec-
ond order scheme (much simpler to be implemented) is a good
compromise between efficiency, accuracy, and robustness. The
other numerical tests considered here are: 1-D and 2-D prob-
lems to check the code shock-capturing properties (a shock tube
and the cylindrical blast wave); 1-D accretion onto black holes,
in Schwarzschild and Kerr metrics, to verify ECHO’s high or-
der properties in curved space-times too; stability of a thick disk
(with constant angular momentum and with a toroidal magnetic
field) around a Kerr black hole as a test in 2-D GRMHD. All
the problems discussed here will involve the presence of sub-
stantial magnetic fields with plasma beta (the ratio of thermal to
magnetic pressure) of order of unity or lower.

If not differently stated, in all our numerical tests we will use
a Courant number of 0.5, a γ-law EoS with γ = 4/3, and we will
solve the equation for the total energy density U. Grid spacing
will always be constant (though non-uniform grids are permitted
in ECHO), so the number of points is enough to specify the grid
in each direction (a single grid point is assigned to the ignorable
coordinates).

4.1. Large amplitude CP Alfvén wave

The first test we propose here is a novel one, not previously
employed in other works on numerical relativistic MHD to our
knowledge. It involves the propagation of large amplitude circu-
larly polarized (CP) Alfvén waves along a uniform background
field B0 in a numerical domain, 1-D or 2-D, with periodic bound-
ary conditions. Since the propagating wave is an exact solution,
as we will see below, the test is very useful to check the accuracy
(both spatial and temporal) and spectral resolution properties of
a numerical scheme. This is achieved by measuring the errors
in the solution after one or more periods compared to the ini-
tial conditions. Such test was first proposed in our Paper II in
the case of small amplitudes, where the solution was only an
approximate one. Here we show how to extend the exact solu-
tion valid in the non-relativistic case to the most general case of
large amplitudes in (special) relativistic MHD. For the general
properties of Alfvénic modes in RMHD see Anile (1989) and
Komissarov (1997), for other (but less straightforward) numer-
ical tests involving a different kind of Alfvénic exact solutions
see Komissarov (1999) and Duez et al. (2005).

Let us consider a CP Alfvén wave of normalized ampli-
tude η. In classical MHD the variable quantities are the trans-
verse components of B and v, which are parallel to each other
with vector tips describing circles in the plane normal to B0.

1-D 2-D
Method N L1 error L1 order L1 error L1 order

MC2 8 1.58e-1 – 1.81e-1 –
16 3.63e-2 2.12 4.60e-2 1.98
32 7.14e-3 2.34 8.23e-3 2.48
64 1.55e-3 2.20 1.71e-3 2.27

128 3.69e-4 2.07 4.01e-4 2.09
256 8.98e-5 2.04 9.76e-5 2.04
512 2.21e-5 2.02 – –

CENO3 8 8.25e-2 – 1.07e-1 –
16 1.25e-2 2.72 1.68e-2 2.67
32 1.65e-3 2.92 2.21e-3 2.92
64 2.09e-4 2.98 2.80e-4 2.98

128 2.62e-5 3.00 3.50e-5 3.00
256 3.28e-6 3.00 4.38e-6 3.00
512 4.10e-7 3.00 – –

WENO5 8 3.91e-2 – 4.76e-2 –
16 2.35e-3 4.06 3.14e-3 3.92
32 8.73e-5 4.75 1.16e-4 4.76
64 2.82e-6 4.95 3.76e-6 4.95

128 8.96e-8 4.98 1.19e-7 4.98
256 2.79e-9 5.01 3.71e-9 5.00
512 8.53e-11 5.03 – –

MP5 8 1.05e-2 – 1.37e-2 –
16 3.71e-4 4.82 4.98e-4 4.78
32 1.20e-5 4.95 1.16e-5 4.95
64 3.82e-7 4.97 5.08e-7 4.99

128 1.20e-8 4.99 1.59e-8 5.00
256 3.75e-10 5.00 4.98e-10 5.00
512 1.21e-11 4.95 – –

Table 1. Accuracy for the CP Alfvén wave test. The L1 errors
and orders are shown for various methods as a function of the
number of grid points, both in 1-D and 2-D. Notice that only
when the error becomes lower than ∼ 10−10 (the value of the tol-
erance in the inversion from conservative to primitive variables)
discrepancies from the nominal order start to appear.

Whatever the wave amplitude, these are the only fluctuating
fields and the background quantities are not affected by the wave
(in particular ρ and p, since the wave is incompressible). In the
RMHD case, let us look for an exact solution with the same prop-
erties. The transverse components of B are written

By = ηB0 cos[k(x − vAt)], Bz = ηB0 sin[k(x − vAt)], (82)

where we have assumed Bx = B0, vA is the (still unknown)
Alfvén speed, and k is the wave vector. Since the induction equa-
tion remains exactly the same as in the non-relativistic case, we
still take the velocity components in the form (let us take vx = 0
for simplicity):

vy = −vABy/B0, vz = −vABz/B0, (83)

as in the classical MHD, where in that case vA = B0/ρ
1/2 what-

ever the wave amplitude η (the minus sign gives propagation in
the positive x-direction). We will now see that in the relativis-
tic case this value is different, basically due to the contribution
of the kinetic and electromagnetic energies to the inertia of the
plasma and to the presence of no longer negligible electric forces
in the momentum equation.

The electric field is derived from Eq. (39), so Ey = −vzBx =

vABz, Ez = vyBx = −vABy, Ex = −vyBz + vzBy = 0. Notice also

that the quantities v2 = η2v2
A
, B2 = B2

0
(1 + η2), and E2 = η2v2

A
B2

0
are constant, as well as ρ and p (hence h too). It is easy to show
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Fig. 1. The large amplitude CP Alfvén wave test in the 2-D case (propagation along the diagonal). The L1 errors for the vz velocity
component, obtained by comparing the solution at the final time t with respect to the initial conditions, for different interpolation
schemes. In the left panel we show the dependence on the number of grid points N (for a fixed wave number k = 1), whereas in the
right panel we show the dependence on k for a fixed resolution of 128× 128. The dashed-dotted line in this second plot refers to the
run with MP5 at overall second order, and it roughly corresponds to a straight line with L1 ∼ k3.

that the transverse components of the momentum equation yield
the condition

[ρh + (1 + η2 − η2v2
A)B2

0]v2
A = B2

0, (84)

where in square brackets we have the total enthalpy ρh+B2−E2,
which depends on vA itself. Eq. (84) is a second order algebraic
equation for v2

A
, where in order to preserve the condition v2

A
< 1

the smaller solution must be chosen. Rearranging the terms we
finally find

v2
A =

B2
0

ρh+B2
0
(1+η2)
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. (85)

Notice that in the small amplitude limit η ≪ 1 we retrieve the
familiar expression v2

A
= B2

0
/(ρh + B2

0
) used in Paper II. When

we further have h ≪ 1 and B2
0
≪ ρ the classical MHD limit

v2
A
= B0/ρ is found, as expected.
From a numerical point of view, we test the accuracy of our

scheme by measuring the errors on one of the transverse quanti-
ties, say vz, at time t = T = L/vA (one period), compared to the
initial condition in Eq. (82) at t = 0. For the 1-D case we take a
periodical numerical domain along x of length L = 2π, while in
the 2-D case we rotate the initial conditions in the (x, y) plane so
to have propagation along the diagonal of a bi-periodical [0, 2π]2

domain. As discussed in Paper II, now two complete spatial peri-

ods are contained along the diagonal of length L = 2π
√

2, so we
can take t = T/2 as final time. With the above choices the wave
vector k coincides with the wave number, hence it corresponds
to the (integer) number of spatial periods present in the numeri-
cal domain. For this test we normalize our physical quantities by
assuming ρ = p = B0 = η = 1.

In Table (1) we show the errors and convergence orders in the
L1 norm (the absolute error averaged over the whole computa-
tional domain) for the test with k = 1 at various resolutions. This
is done for both the 1-D and 2-D cases, and for different recon-
struction schemes. The errors for the 2-D case are also plotted in
the left panel of Fig. (1). Note that the nominal order of accuracy
is achieved already at small numbers N of grid points, which

means that basically the reconstruction routines employed al-
ways use the full stencil at their disposal, as expected for smooth
solutions, without dropping to lower orders at wave extrema. In
order to achieve third order convergence the RK3 time stepping
algorithm has been employed for CENO3, while to be able to
reach an overall fifth order in time and space for WENO5 and
MP5 the RK3 routine has been used with ∆t ∝ N−5/3, so that the
accuracy in time becomes of order O(∆t3) = O(N−5) = O(∆x5),
i.e. the same of the spatial one, as needed in this kind of tests
(e.g. Jiang & Shu 1996). Here the best performing schemes are
obviously those with higher nominal orders (that for smooth so-
lutions), thus WENO5 and MP5 in our case. In spite of the same
fifth order of accuracy, MP5 return smaller errors, up to almost
a factor 10 at high resolution. This demonstrates that the limit-
ing conditions in MP5 never apply for this test and the optimal
stencil is always used, whereas the weights in the WENO5 rou-
tine do not precisely match to provide the corresponding optimal
stencil.

Finally, we test the spectral resolution of our schemes by
running the same problem at various wave numbers k, from 1
to 8, at a fixed resolution of 128 × 128 (in the 2-D case). The
L1 error now increases with k, as expected (an increasing k ba-
sically means a decreasing resolution), and the dependence is
stronger for increasing orders r. Indeed, higher order schemes
(here without the correction to the timestep, thus with a third or-
der temporal accuracy at most) are able to reproduce reasonably
the analytical solution even at the smallest wavelengths, where
second order schemes give poor results. A good compromise be-
tween efficiency and accuracy is MP5 with RK2 time-stepping
(3/2 times faster than RK3) and without higher order corrections
(with overall r = 2 second order accuracy), which appears to be-
have better than CENO3 with RK3 at small wavelengths.

4.2. Shock tube with gauge effects

Shock tubes are excellent tests to monitor the shock-capturing
properties of a numerical scheme. Until recently, however, an
exact solver for (special) relativistic MHD Riemann problems
was still missing, so that comparison was simply made by run-
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Fig. 2. The relativistic Brio & Wu shock tube modified to allow for gauge effects. The solution on the right hand side refers for a
run with α = 2, βx = 0, and t = 0.2 (diamonds), whereas that on the left hand side to a run with α = 1, βx = 0.4, and t = 0.16
(triangles). The numerical solutions are over-plotted to the results obtained with an exact Riemann solver (solid line).Both tests are
computed with MP5 (no DER and RK2) and N = 1600 grid points.

Fig. 3. Comparison of different schemes in the relativistic Brio
& Wu shock tube test. Only N = 100 grid points are used and
the density profile is shown for t = 0.4. Results obtained with
REC based on MP5 (diamonds) appear less smearing than those
obtained with MC2 (pluses), at the price of some oscillations.

ning the code at different resolutions and relying on the con-
vergence properties of the conservative numerical scheme em-
ployed. Now the situation has changed and we can test our nu-
merical solutions against the exact Riemann solver for RMHD
by Giacomazzo & Rezzolla (2006), kindly provided by the au-
thors. Since RMHD shock tubes have been extensively presented

in Paper II, here just an example will be given, namely the rel-
ativistic version of the Brio & Wu test (Brio & Wu 1988) by
van Putten (1993) and Balsara (2001). The initial conditions are

(ρ, p, Bx, By) =

{

( 1.0, 1.0, 0.5, 1.0), x < 0.5
( 0.125, 0.1, 0.5, −1.0), x > 0.5,

(86)

while the other quantities are set to zero. A γ−law EoS with
γ = 2 is used, and the final time is t = 0.4. Following Antón et al.
(2006), instead of showing the standard RMHD results, we turn
here the test in a sort of GRMHD problem by choosing different
gauges while preserving a flat metric. In Fig. (2) we show the
numerical results obtained by using α = 2.0 (diamonds), com-
pared with the exact solution plotted for t/α = 0.2, and those
obtained with βx = 0.4 (triangles), compared with the exact so-
lution shifted by δx = βxt = 0.16. For both runs MP5 is used (no
DER and RK2), and N = 1600 grid points are employed.

The first thing to notice is that all the usual structures aris-
ing from the breakout of the initial discontinuity (left-going fast
rarefaction wave, left-going slow compound wave, contact dis-
continuity, right-going slow shock, right-going fast rarefaction
wave) are well reproduced in both cases, so the chosen gauges
work as expected. In particular, note the presence near the initial
discontinuity position x = 0.5 (in the α = 2.0 test) of the so-
called compound wave, here appearing as a discontinuity. This is
the combination of an intermediate shock and a rarefaction wave,
a feature sometimes encountered in coplanar problems due to the
non-strict hyperbolicity of MHD. Given its nature, it cannot be
found by exact Riemann solvers and the physical acceptability
itself as solution of the ideal MHD equations is still debated
(Barmin et al. 1996; Myong & Roe 1998; Torrilhon 2004). On
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Fig. 4. The magnetized cylindrical blast wave test at t = 4.0. 2-D maps of density ρ, thermal pressure p , Lorentz factor Γ, and
magnetic pressure pm = B2/2 are shown on the four panels on the left hand side. On the two plots on the right we show cuts through
the center of the domain for thermal (upper panel) and magnetic (lower panel) pressure. Horizonthal cuts are indicated with crosses,
while pluses are used for vertical cuts.

the other hand, this feature is invariably found by means of any
numerical scheme, where some sort of dissipation, either physi-
cal or numerical, is always present. As far as the reconstruction
algorithm is concerned, we can see that MP5 gives sharp pro-
files at all discontinuities, which are captured within 5 − 10 grid
points.

In Fig. (3) we show a comparison of the reconstruction
(REC) performances of the scheme for the same test, now with
the original settings (α = 1, β = 0 and t = 0.4). Here we use low
resolution runs (N = 100 grid points) to better appreciate the
differences. The two reconstructions are MP5 and MC2, both at
an overall second order in space (non DER) and time (RK2). We
may notice that MP5 provides a more accurate capturing of the
various waves and discontinuities, in spite of the same overall
maximum order achieveable, with some extra oscillations, which
are anyway damped at higher resolutions, as in Fig. 2. Spurious
oscillations (Gibbs phenomena) near shocks are a well known
price to pay for high order schemes, especially for those avoid-
ing decomposition in characteristics, like ECHO. However, we
deem that the post-processing MP filter behaves quite well in
this kind of tests.

4.3. Cylindrical blast wave

Let us treat RMHD problems involving shocks in more than one
dimension. A notoriously hard test for relativistic codes is the
cylindrical blast wave expanding in a plasma with an initially
uniform magnetic field. This problem was already considered
in Paper II, here we test our new MP5 scheme and we adopt the
more widely used settings by Komissarov (1999). Unfortunately,
no exact solution is available for the present problem. From a nu-
merical point of view, in the multidimensional relativistic case it
is very difficult to treat correctly situations with flow of Alfvén
velocities close to the speed of light. This is because the numer-
ical errors, which are always present in the reconstruction pro-
cedures, act independently on, say, x and y components of v and
B in 2-D runs. This problem easily leads to uncorrect fluxes and
eventually provides unphysical states, e.g. with v2 > 1, when
primitive variables are recovered from the evolved conservative
ones. Moreover, terms in the total energy equation are strongly
unbalanced in these cases and, again, numerical errors may lead
to code crashing.

The initial conditions are as follows: a square Cartesian box
[−6, 6] × [−6, 6] contains an internal cylindrical region, within
r = (x2 + y2)1/2 ≤ 1, with ρ = 10−2 and p = 1. This region is
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Method CPU time iter. iter. / time sub-iter. / time

MC2-RK2 86.6 s 133 1.54 s−1 3.08 s−1

WENO5-RK2 97.6 s 132 1.35 s−1 2.70 s−1

MP5-RK2 100.1 s 132 1.32 s−1 2.64 s−1

WENO5-RK3 152.9 s 132 0.86 s−1 2.58 s−1

MP5-RK3 154.4 s 133 0.86 s−1 2.58 s−1

Table 2. Efficiency results for the cylindrical blast wave prob-
lem. CPU time (in seconds), total number of iterations, iterations
per second, and sub-RK cycles per second are reported for vari-
ous schemes (the DER routine is used only in schemes adopting
RK3).

surrounded by an external medium with ρ = 10−4, p = 5 × 10−4

and these values are reached by means of a smooth ramp func-
tion betwen r = 0.8 and r = 1. The velocity is zero everywhere
and the magnetic field is uniform, with Bx = 0.1. This is the
intermediate magnetization case by Komissarov, with a higher
external pressure as in Leismann et al. (2005). We are not able
to run this test with stronger fields or lower external pressure
without introducing ad hoc numerical strategies. In Fig. (4) we
show several quantities at t = 4.0, for a run with 200 × 200
grid points. The scheme used is, as in the previous test, MP5 for
REC, no DER, and RK2 for time-stepping (overall second or-
der in both space and time). We notice the presence of several
structures: an external fast shock, an inner region bounded by
a reverse shock, both almost circular, and complex anisotropic
discontinuities in between. Note, in particular, that the magnetic
field is almost completely swept out from the central region by
the explosion. The highest outflow speed is reached for y = 0
(Γmax = 3.69), since there is no magnetic force preventing the ex-
pansion in the direction along the fieldlines. This problem is also
a severe test because of the various degeneracies which may oc-
cur in the Riemann solver. In our case, the HLL procedure with
the simplified calculation of fast wave speeds does not suffer
this kind of problems. In spite of the simplified Riemann solver,
structures appear well defined thanks to the use of an accurate
REC routine.

As far as efficiency is concerned, we use the present test to
measure the CPU time for different scheme settings of ECHO.
Results are reported in Table (2), where data refer to double pre-
cision runs on an Intel Xeon 3.0 Ghz processor, for Linux op-
erating system, with the Intel Fortran compiler. The best per-
forming scheme is obviously that based on linear reconstruc-
tion, MC2 in this case, whereas MP5-RK3 is 1.78 times slower.
However, as we can see from the sub-cycles per second, it is
the order of the Runge-Kutta method that matters most, whereas
the DER procedure is quite efficient. When comparing recon-
struction schemes of the same order, we can notice that MP5 is
just slightly slower than WENO5 in our implementation, prob-
ably due to the minmod-type conditions in the limiting process.
However, from our tests we have found that MP5 is both more
accurate for smooth solutions and more robust (less oscillatory)
in problems involving shocks. Our conclusion is that MP5 em-
ployed at an overall spatial and temporal second order gives the
best trade-off among efficiency, accuracy and robustness, thus it
will be used as our base scheme in the next numerical tests.

4.4. Radial accretion in Schwarzschild metric

As a first test in a curved space-time we consider here the spher-
ical transonic accretion onto a non-rotating black hole (of mass
M = 1) in the presence of a radial magnetic field. The aim is to

Fig. 5. Results for the 1-D accretion flows in Schwarzschild
metric. Quantities are shown by plotting the numerical results
at t = 100 (diamonds) over the respective exact solution (solid
line). A resolution corresponding to 100 grid points and recon-
struction with MP5 are used.

Fig. 6. Errors for the 1-D accretion flow in Schwarzschild metric
of Fig. (5). The L1 norm of the density is shown as a function
of the grid points N, for MC2-RK2 (diamonds) and MP5-RK3
(squares). The plasma beta at rc is also varied, according to the
parameter k = − log10 βc.

check the code ability to preserve in time an analytical solution
in a curved geometry, where metric terms and their derivatives
are involved. A full description of the (fluid) transonic stationary
solution is given in Michel (1972), here we follow the setup of
Antón et al. (2006). We hence adopt Schwarzschild metric and
coordinates, with a singular horizon for rh = 2, where the lapse
function α = (1 − 2/r)1/2 vanishes and γrr = α

−2 diverges. The
numerical domain is 2.3 < r < 10, the critical point radius
is rc = 8, an isentropic condition is assumed, and the remain-
ing free constants are chosen by setting ρc = 1/16 (in order to
have a mass flux of r2ρΓvr = −1) and by assigning the value
of the plasma beta at the critical radius, βc = 2pc/B

2
c, which

we leave as a free parameter. Note that from an analytical point
of view the Michel solution does not change in the presence of
a monopole magnetic field, thus the fluid quantities are unaf-
fected by the value of the plasma beta (only the magnetic field
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Br will depend on it, namely as β
−1/2
c ), whereas numerically the

presence of a large magnetic field may lead to severe errors and
code breaking. This is mainly due to the fact that the numerical
derivatives of magnetic terms in fluxes do not balance exactly
the corresponding source terms in the momentum equation, and
secondly because of the difficulties encountered in the inversion
routine for the primitive variables.

In Fig. (5) we show the results of a simulation with βc = 1
and N = 100 grid points in the radial direction, comparing the
quantities obtained at t = 100 with the analytical solutions.
The scheme employed is MP5 at second order of overall accu-
racy. Small discrepancies can be seen only near the inner radius,
where gradients are the largest. To remove both these large gradi-
ents and the singularity at r = 2 horizon-adapted coordinate sys-
tems could also be used (Papadopoulos & Font 1998), but here
we prefer to use the standard Schwarzschild coordinates. For a
more quantitative comparison, we report in Fig. (6) the normal-
ized L1 errors of the density as a function of the grid points from
N = 100 to N = 800, for the two schemes MC2-RK2 and MP5-
RK3 (here with DER). The value of the plasma beta is also var-
ied, from 1 to 10−8 (for an increasing magnetization σ = B2/ρ,
approximately from 10−1 to 107). The first thing to notice is that
the expected scaling with N works also in this non-Cartesian
case (though there is the usual saturation effect around 10−10).
Then we see that the Runge-Kutta order is not an issue in this
kind of test, where stationary flows are involved (otherwise the
maximum order would have been 3). Moreover, high resolution
schemes allow us to reach much lower betas (for N = 800 down
to βc = 10−8 with MP5 at full spatial accuracy order r = 5, and
βc = 10−6 with MC2). If MP5 is employed at second order, inter-
mediate results are found (not reported in the plot). In order to be
able to reach such low plasma betas, we have here used Eq. (10),
the adiabatic equation for the entropy function s = p/ργ (the so-
lution is smooth). If the full energy equation is used errors are
larger by a factor ≈ 2.

4.5. Equatorial accretion in Kerr metric

As another example of 1-D test in a curved space-time, we pro-
ceed further in the level of complexity by studying an accre-
tion problem in Kerr metric, where not only the lapse func-
tion α is involved, but also the shift vector β. The problem
is the magnetized equatorial flow in Kerr metric described by
Takahashi et al. (1990). It is basically the general relativistic
analog of the Weber & Davis (1967) model for the solar wind,
where the radial velocity has to pass smoothly three critical
points (slow, fast and Alfvénic) in the equatorial plane where
the Parker spiral of magnetic field lies. The accretion solution
was later specialized to the region between the black hole hori-
zon and the marginally stable orbit by Gammie (1999), in which
a cold inflow has to cross just the Alfvénic critical point (co-
incident with the magnetosonic fast point for vanishing thermal
pressure). For our numerical test we use the settings proposed
by Gammie et al. (2003) and De Villiers & Hawley (2003), that
is we study the accretion onto a Kerr black hole with a = 0.5,
which gives an event horizon at rh = 1+ (1− a2)1/2 ≃ 1.866 (the
spherical surface where γrr diverges) and a marginally stable or-
bit at rmso ≃ 4.233. After choosing the other free parameters, the
critical point is located at rc ≃ 3.617. The pressure is initialized
with an isentropic law, preserving a vanishing thermal contribu-
tion p ≪ ρ⇒ h ≃ 1.

In this test we adopt Boyer-Lindquist coordinates and a ra-
dial domain 2.1 < r < 4.0 with N = 100 grid points. The results
are shown in Fig. (7), where the significant physical quantities

Fig. 7. Results for the 1-D accretion flow in Kerr metric.
Quantities are shown by plotting the numerical results at t = 100
(diamonds) over the respective exact solution (solid line). A res-
olution corresponding to 100 grid points and reconstruction with
MP5 are used.

are plotted at the output time t = 100 against the initial solution.
As in the previous case, at the outer boundary, where the inflow
is originated, all quantities are kept constant in time. The scheme
employed is MP5 at overall second order (no DER and RK2),
which is rather accurate already at this low resolution, even at
the inner boundary which is close to the event horizon. For a
quantitative comparison with the other reconstruction schemes,
we report here the L1 errors on the normalized density as in the
previous section, again for N = 100 and t = 100. MC2 gives
2.76e-3, CENO3 (r = 3 and RK3) gives 2.42e-4, both MP5 and
WENO5 (r = 5 and RK3) give 1.40e-4, while MP5 at second
order gives 3.22e-4. The improvement of high order methods is
not as apparent as in the previous test, due to limited precision
in the initializing routines.

4.6. Axisymmetric torus in Kerr metric

The final GRMHD test proposed here is to study the stabil-
ity of a constant angular momentum thick disk around a Kerr
black hole and threaded by a toroidal magnetic field. This will
be achieved through simulations in a 2-D domain, assuming ax-
isymmetry. For the analytical theory of equilibrium in the purely
hydrodynamical case the reader is referred to Abramowicz et al.
(1978); Kozlowski et al. (1978); Font & Daigne (2002), while
the GRMHD version with the addition of a purely toroidal mag-
netic field is due to Komissarov et al. (2006). This test may also
represent the basis for studying a class of relevant astrophysical
problems, since the dynamics of accretion disks orbiting around
black holes is believed to be strongly influenced by the presence
of magnetic fields. We summarize here the main features of the
equilibrium model, while addressing to Komissarov et al. (2006)
for a more detailed description. Under the assumptions of purely
toroidal velocity and magnetic field, the Bernoulli-like equation
that needs to be solved is

d ln(−ut) −
Ω dℓ

1 − ℓΩ +
dp

ρh
+

d(R2 pm)

R2ρh
= 0, (87)

where ℓ = −uφ/ut is the specific angular momentum, Ω = uφ/ut

is the angular velocity, pm = B2/2 is the magnetic pressure
(notice that the electric field vanishes since v ‖ B), and R2 =
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Fig. 8. The results of the magnetized disk evolution. Density (upper panels) and toroidal field (lower panels) are displayed at the
final output time t = 200. 2-D maps (cylindrical coordinates X = r sin θ, Z = r cos θ are used for ease of graphical presentation),
radial and latitudinal cuts through the disk center (rc, π/2) are shown for the two quantities. Solid lines in the 1-D profiles refer to
the initial analytical solutions.

(gtφ)
2 − gttgφφ is the generalized distance from the rotation axis.

We then assume a constant distribution of the specific angular
momentum, i.e. ℓ = ℓ0, such that Eq. (87) provides the potential

W = ln(−ut) =
1

2
ln













R2

gφφ + 2gtφℓ0 + gttℓ
2
0













. (88)

The equation of state is barotropic and it is convenient to choose
p ∝ (ρh)γ for the thermal contribution and similarly R2 pm ∝
(R2ρh)γ for the magnetic pressure. Under these assumptions
Eq. (87) can be integrated as

W −Win +
γ

γ − 1

p + pm

ρh
= 0. (89)

The disk is characterized by the condition W ≤ Win, where Win is
calculated at the inner disk radius rin on the equatorial plane. The
cusp and the center of the disk are defined as those points, again
in the equatorial plane, where the specific angular momentum
retains its Keplerian value. Here we use the radius of the disk
center, r = rc, to determine ℓ0. Notice that the potential W has a
local minimum at rc, though only in the purely hydrodynamical
case this point also corresponds to the maxima of ρ and p. The
overall disk structure is then completely specified by the two
radii rin and rc, and by the density ρc and plasma beta βc at the
disk center.

Outside the disk (W > Win) we define a static, unmagnetized
atmosphere in equilibrium with gravity. This can be obtained by

adopting the solution of the relativistic Bernoulli equation for an
isentropic plasma p ∝ ργ ⇒ dp/(ρh) = d ln h, and Eq. (87) is
readily integrated to give the simple relation

h (−ut) = h (R2/gφφ)
1/2 = const. (90)

The exact solution can be determined by providing the values
ρatm and patm, calculated for example at the disk center. Notice
that all the above relations are valid for both Boyer-Lindquist co-
ordinates and Kerr-Schild coordinates (e.g. Komissarov 2004),
which have non-vanishing gtr, gtφ and grφ terms needed to re-
move the (unphysical) singularity at the event horizon. In the
case of Boyer-Lindquist coordinates, employed here for the nu-
merical test, we have R2 = α2gφφ ⇒ −ut = α, so that the equilib-
rium condition for the static atmosphere is simply αh = const. A
more physical option for the external environment would be to
define the spherically symmetric Michel’s transonic inflow and
let the system relax to steady state. However, since here we are
mainly interested in the stability of the disk itself, we prefer to
use the above static solution, which is an exact one and it is much
simpler to be initialized.

The simulation setup is as follows. The numerical domain is
taken to be 2 < r < 10 and 0 < θ < π, with 200 grid points in the
radial direction and 100 in the polar angle direction. We keep the
quantities fixed in time at both radial boundaries, while reflect-
ing conditions are imposed at the poles. The first condition is
needed because otherwise numerical errors near the inner radial
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boundary, where the gradients are the largest, tend to destabi-
lize the whole atmosphere. This problem could be also cured by
choosing appropriate non-uniform grids with higher resolution
at small radii and/or by using Kerr-Schild coordinates, but here
we want to retain the simplest possible test conditions. The free
parameters are chosen to be a = 0.99, rin = 3, rc = 5, ρc = 1,
βc = 1, ρatm = 10−5ρc, patm = 0.1ρatm. Note that the value of
ρc is arbitrary since we are not evolving the metric, which is de-
termined by the central black hole mass (here taken as unity)
and angular momentum alone. With the present values we find
ℓ0 ≃ 2.80, Win ≃ −4.16 × 10−2, Wc ≃ −9.83 × 10−2 so that the
inner disk disk is located beyond the cusp point and there is a
finite outer radius (beyond the computational domain). The rota-

tion period at the disk center is 2π/ΩK(rc) = 2π(r
3/2
c +a) ≃ 76.5,

we take t = 200 as the final output time, corresponding to just a
few orbital periods but a much longer time with respect to the lo-
cal dynamical timescales. Here we use MP5 reconstruction at an
overall r = 2 accuracy (no DER and RK2 for time integration).

The results are shown in Fig. (8), where in the upper pan-
els we show the density (2-D map, radial cut through the disk
center, latitudinal cut through the disk center) and in the lower
panels the toroidal field Bφ. In the maps we show color images
and contours of the quantities evolved at the final time (indis-
tinguishable from those at t = 0), whereas for the 1-D cuts we
plot the numerical solution at t = 200 (diamonds) together with
the initial conditions (solid line). Note that our reconstruction
scheme based on MP5 behaves very well. Minor discrepancies
appear only near the steep boundaries between the disk and the
external atmosphere (where density jumps of order 103−104 are
initially captured by just 2-3 points). Angular momentum is also
transferred to the non-rotating external atmosphere due to nu-
merical diffusion in the vicinities of the disk boundaries. The L1

norm is 2.8e-4 for the density and 2.41e-5 for the magnetic field,
while the L∞ norm (the largest error in absolute value) is 1.60e-2
and 1.31e-3, respectively. These results appear to be comparable
to those presented by Komissarov (2006a), in spite of the use of
a much simpler Riemann solver, a constant radial grid spacing,
and retaining the same overall second order accuracy. Finally,
errors around the disk boundaries due to numerical diffusion are
much larger if MC2 is employed instead of MP5, confirming
that reconstruction based on large stencils may help even near
discontinuities. The situation is improved if a non-linear radial
grid is employed, in that case also MC2 provides a good accu-
racy. On the other hand, results obtained with the full fifth order
scheme (and RK3 for time-stepping) are similar for this case.
Finally, note that the present test has been performed by solving
the full energy equation, and no appreciable changes are noticed
when Eq. (10) is solved instead.

5. GRMD numerical tests

In the present section we perform a series of tests to check the
performances of ECHO when configured for special and gen-
eral relativistic magnetodynamics. The numerical settings are
the same as in the base scheme used for the GRMHD tests,
namely we employ the HLL solver coupled to MP5 for the re-
construction (switching off the additional corrections to achieve
effective higher accuracy) and RK2 for time integration.

5.1. Propagation of waves and discontinuities

Several 1-D tests have been proposed for special relativistic MD.
Here we select four of them and we change slightly some of the

Fig. 9. The set of four magnetodynamics 1-D test problems se-
lected in Sect. 5.1. All plots refer to the By(x) transverse field
component at the final output time corresponding to each test.
From above to below, the four test problems are: fast wave, sta-
tionary Alfvén wave, three-waves, current sheet.

original setups found in the literature in order to make the no-
tation more uniform. In all runs we assume a numerical domain
of 200 grid points in the interval −1.0 ≤ x ≤ 1.0 and a constant
background field Bx = 1.0. The results of the corresponding sim-
ulations, at different output times, are all plotted in Fig. 9, where
the transverse component By(x) is shown.

– (a) Fast wave. Here Bz = Ex = Ey = 0.0 and, following
Komissarov (2002), the transverse magnetic field component
is

By(x) =



















1.0, x < −0.6
1.0 − 1.5(x + 0.6), −0.6 < x < −0.4
0.7, x > −0.4,

(91)

whereas Ez(x) = 1−By(x). The fast wave is initially centered
at x = −0.5 and then should propagate with unchanged pro-
files at the speed of light. We use t = 1.0 as output time, so
that the final position will be x = 0.5. Some small wiggles
are barely visible in the numerical solution near the corners
of the wave profile, otherwise the agreement with the analyt-
ical solution is very good.

– (b) Stationary Alfvén wave. An initial setting similar to that
in Komissarov (2004) is assumed for this test, though we
swap the role of the transverse electromagnetic components
and the wave profile to make it more similar to the previous
test. Here we take Bz = Ey = 1.0, Ez = 0.0, and

By(x) =



















1.0, x < −0.1
1.0 + 1.5(x + 0.1), −0.1 < x < 0.1
1.3, x > 0.1,

(92)

now with Ex(x) = −By(x). This solution is a stationary lin-
early polarized MD Alfvén wave centered at x = 0, so its
profile should be preserved in time and only numerical dis-
sipation effects should be found. The output time used for
this test is t = 2 and from the plot we can see that numerical
dissipation is negligible for this test, as the initial and final
profiles are indistinguishable.

– (c) Three-waves. This test was proposed by Komissarov
(2002) and it is concerned with the splitting of a disconti-
nuity initially located at x = 0 into three waves: two oppo-
sitely propagating fast waves (traveling at the speed of light)
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and a standing Alfvén wave. It is thus a MD analogue of a
RMHD shock tube, with the only difference that shocks are
not allowed in the MD limit. The initial conditions are

(B, E) =

{

(1.0, 1.5, 3.5, −1.0, −0.5, 0.5), x < 0,
(1.0, 2.0, 2.3, −1.5, 1.3, −0.5), x > 0,

(93)

and the output time is t = 0.75. From the plot we can see that
the fast wave fronts are reasonably sharp and the the Alfvénic
discontinuity is preserved within only four grid points. The
combination of our simple two-waves HLL solver with high
resolution reconstruction methods like MP5, even when em-
ployed in an overall second order scheme, confirms thus its
validity in this kind of tests. Note in particular the absence
of spurious oscillations, a possible drawback of reconstruc-
tion methods based on large stencils in problems with sharp
discontinuities, which proves the limiting capabilities of the
monotonicity preserving algorithm.

– (d) Current sheet. A current sheet is easily set up by choosing
Bz = Ex = Ey = Ez = 0.0 and

By(x) =

{

0.5, x < 0,
−0.5, x > 0,

(94)

as in Komissarov (2004). With this value of the transverse
field, the constraint B2 − E2 ≥ 0 is easily preserved through-
out the evolution. At the output time t = 0.75 we can see
in the figure the two oppositely propagating fast wave fronts
located at x = ±0.75, as expected. The numerical diffusion
of these shocks is very similar to that in the previous test.

5.2. Uniform magnetic field in Schwarzschild metric

As a 2-D test in a curved space-time we consider the equilibrium
force-free solution found by Wald (1974), here in Schwarzschild
metric. An exact solution for the magnetic field is

Br = B0 α cos θ, Bθ = −B0 αr−1 sin θ, (95)

whereas Bφ = 0 and E = 0. When translated into cylindrical
coordinates (R = r sin θ, Z = r cos θ), this is a uniform verti-
cal field of strength B0 aligned with the Z axis. For our test we
choose B0 = 1 and a numerical domain 3 ≤ r ≤ 10, 0 ≤ θ ≤ π,
with 200 grid points in the radial direction and 100 in the latitu-
dinal direction. The initial equilibrium is evolved to a large time
t = 100 (the light crossing time in the radial direction is t = 7)
and in Fig. 10 we report the magnetic field in vectorial form (the
length of the arrow is proportional to its strength) for t = 0 and
t = 100. Only minor discrepancies are visible, for an average
error of ≈ 6 × 10−3 in the field strength.

6. Conclusions

We have presented a new code, ECHO, that is the exten-
sion of our central-type special relativistic scheme (Paper I
and II) to general relativistic MHD and magnetodynamics.
This is achieved by applying the general UCT strategies
(Londrillo & Del Zanna 2000, 2004) for MHD-like hyperbolic
systems of conservation laws. The resulting numerical scheme is
based on simplified Riemann solvers and finite difference high
order reconstruction methods. As far as the general relativis-
tic framework is concerned, we adopt here the so-called 3 + 1,
or Eulerian, formalism. This allows us to present the equations
(in conservative form) in the most familiar way, i.e. resorting
to three-dimensional vectors and tensors alone. The limits to

Fig. 10. The Wald solution in Schwarzschild metric at the ini-
tial time t = 0 and output time t = 100. The code employs
Boyer-Lindquist coordinates, here cylindrical coordinates X =
r sin θ, Z = r cos θ are used for ease of graphical presentation.

special relativistic MHD and classical MHD are then straight-
forward in this framework. Gravitational terms appear in fluxes
and in the external sources avoiding the use of complex four-
dimensional Christoffel symbols. The metric can also depend on
time and be provided by any solver for Einstein’s equations.

ECHO’s high order procedures are first tested in flat space-
time, with a new problem involving the propagation of large
amplitude Alfvén waves in 1-D and 2-D domains. We demon-
strate that the same settings valid for classical MHD can be em-
ployed in the RMHD problem too by only changing the prop-
agation speed. This now depends on the amplitude of the wave
itself, due to the electromagnetic energy contribution to the over-
all inertia. For the reconstruction routines tested the nominal
high order of overall accuracy is always reached, up to fifth or-
der. For the same problem, spectral properties are also checked
for various schemes by investigating the code behavior at small
wavelengths, where second order schemes usually fail. Moving
to discontinuous solutions, one magnetized shock tube is tested
and even in this case our reconstructions based on larger stencils
seem to provide sharp profiles also on contact-type discontinu-
ities, where approximate Riemann solvers usually give poor re-
sults. In 2-D we study the magnetized blast wave problem, where
difficulties are known to arise when Cartesian grids are used. We
find that when the Lorentz factor and/or the magnetization are
too high, then numerical errors (which are independent along
each direction) may lead the code to crash.

In curved space-times, we first study the radial accretion onto
Schwarzschild black holes in the presence of a monopole mag-
netic field. High order schemes are able to reproduce the analyt-
ical solution much better, and this allows us to reach a magne-
tization as high as 107 (for typical values of the other parame-
ters), while TVD-like second order schemes usually start to fail
around 102 − 103. The expected scaling with the accuracy or-
der is also reproduced for this test in non-Minkowskian metric.
In Kerr space-time we test the 1-D equatorial accretion and the
2-D stability of a constant angular momentum thick disk with
a toroidal magnetic field (a recently obtained exact solution).
The latter test provides a very important astrophysical scenario,
since magnetized tori and rotating black holes are the likely in-
gredients for AGN and microquasar energy release. Our scheme
with limited reconstruction based on a five-point stencil is able



18 L. Del Zanna et al.: ECHO: an Eulerian Conservative High Order scheme for GRMHD and GRMD

to maintain the equilibrium solution for several rotation periods
with negligible errors. This result is achieved without adopting
specifically designed non-linear grids or horizon adapted coor-
dinate systems, thus proving its robustness in complex situations
of astrophysical interest.

With only minor modifications the GRMHD scheme has
been also tested in the force-free, low-inertia limit of (ideal)
magnetodynamics (Komissarov 2002). The fluid velocity is re-
placed by the drift velocity of magnetic field lines and the same
conservative approach is kept unaltered (McKinney 2006a). We
then study the propagation of MD waves and discontinuities
in flat space-time and the stability of a uniform magnetic field
around a Schwarzschild black hole.

As far as efficiency is concerned, a scheme which is fifth
order accurate in space and third order in time is ≈ 1.8 times
slower than a TVD-like second order scheme (in a 2-D test with
typical resolution). However, most of the difference is due to the
use of a higher order Runge-Kutta time-stepping algorithm in the
first case. If the number of sub-cycles per unit time are measured
instead, then the ratio decreases to just ≈ 1.2, and therefore high
order procedures appear to be implemented in a quite efficient
way. The extra coding necessary to include such routines in an
existing second order code is not heavy: basically the stencils
needed for reconstruction must be enlarged, and before every
derivativation fluxes must be corrected with an additional high
order (1-D) procedure.

Concluding, thanks to the Eulerian approach applied to the
UCT method, we have developed a unified numerical framework
for MHD-like conservation laws, valid from the classical case
to special/general relativistic MHD/MD, working in any set of
curvilinear (even non-orthogonal) coordinates. The base scheme
conserves the solenoidal constraint for the magnetic field alge-
braically, due to the UCT strategy, and may be extended to any
formal accuracy order (for smooth solutions) with finite differ-
ence upwind reconstruction routines of different kinds. In par-
ticular, we have proposed here a limited (filtered) reconstruction
based on a fifth order stencil (Suresh & Huynh 1997), which has
proved to be both accurate and robust in all the tests performed.

Acknowledgements. We sincerely thanks Marco Velli, Simone Landi, Antonio
Scalabrella for fruitful discussions, and an anonymous referee for the precious
suggestions which have helped us to improve the scientific quality of this work.
Olindo Zanotti was supported by MIUR through COFIN funds (Pacini). Niccolo’
Bucciantini was supported by NASA through Hubble Fellowship Grant HST-
HF-01193.01A, awarded by the Space Telescope Science Institute, which is op-
erated by the Association of Universities for Research in Astronomy, Inc., for
NASA, under contract NAS 5-26555.

References
Abramowicz, M., Jaroszynski, M., & Sikora, M. 1978, A&A, 63, 221
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Banyuls, F., Font, J. A., Ibáñez, J. M., Martı́, J. M., & Miralles, J. A. 1997, ApJ,

476, 221
Barmin, A. A., Kulikovskiy, A. G., & Pogorelov, N. V. 1996, J. Comput. Phys.,

126, 77
Baumgarte, T. W. & Shapiro, S. L. 2003, ApJ, 585, 921
Blandford, R. D. & Znajek, R. L. 1977, MNRAS, 179, 433
Brio, M. & Wu, C. C. 1988, J. Comput. Phys., 75, 400
Bucciantini, N., Amato, E., & Del Zanna, L. 2005, A&A, 434, 189

Bucciantini, N., Thompson, T. A., Arons, J., Quataert, E., & Del Zanna, L. 2006,
MNRAS, 368, 1717

Colella, P. & Woodward, P. R. 1984, Journal of Computational Physics, 54, 174
De Villiers, J.-P. & Hawley, J. F. 2003, ApJ, 589, 458
De Villiers, J.-P., Hawley, J. F., & Krolik, J. H. 2003, ApJ, 599, 1238
De Villiers, J.-P., Hawley, J. F., Krolik, J. H., & Hirose, S. 2005, ApJ, 620, 878
Del Zanna, L., Amato, E., & Bucciantini, N. 2004, A&A, 421, 1063
Del Zanna, L. & Bucciantini, N. 2002, A&A, 390, 1177
Del Zanna, L., Bucciantini, N., & Londrillo, P. 2003, A&A, 400, 397
Del Zanna, L., Volpi, D., Amato, E., & Bucciantini, N. 2006, A&A, 453, 621
Duez, M. D., Liu, Y. T., Shapiro, S. L., Shibata, M., & Stephens, B. C. 2006a,

Physical Review Letters, 96, 031101
Duez, M. D., Liu, Y. T., Shapiro, S. L., Shibata, M., & Stephens, B. C. 2006b,

Phys. Rev. D, 73, 104015
Duez, M. D., Liu, Y. T., Shapiro, S. L., & Stephens, B. C. 2005, Phys. Rev. D,

72, 024028
Eulderink, F. & Mellema, G. 1994, A&A, 284, 654
Evans, C. R. & Hawley, J. F. 1988, ApJ, 332, 659
Font, J. A. 2003, Living Reviews in Relativity, 6, 4
Font, J. A. & Daigne, F. 2002, MNRAS, 334, 383
Font, J. A., Ibanez, J. M., Marquina, A., & Marti, J. M. 1994, A&A, 282, 304
Gammie, C. F. 1999, ApJ, 522, L57
Gammie, C. F., McKinney, J. C., & Tóth, G. 2003, ApJ, 589, 444
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Appendix A: Finite difference procedures

ECHO employs finite difference piecewise polynomial high or-
der procedures for interpolation, reconstruction, and derivation.
Compact-like (implicit) routines are also implemented, but we
do not discuss them here. Below we will indicate with n the or-
der of accuracy of the single procedures, while r will retain the
meaning of the spatial accuracy of the overall scheme.

A.1. Interpolation (INT)

Interpolation is explicitly needed to approximate the magnetic
field components at step 1 in Sect. 3.1, but it also provide the
building blocks for upwind reconstruction methods. For any kind
of polynomial interpolation, it is convenient to calculate the co-
efficients by means of the Lagrange formula. For a stencil of n
points xi (either cell centers or intercell points), the polynomial
approximating a function f (x) to n-th order is

pn(x) =

n
∑

i=1

ai fi, ai =

n
∏

k=1, k,i

x − xk

xi − xk

, (A.1)

where by construction pn(xi) = fi ≡ f (xi). For the case of mag-
netic field interpolation, we need to approximate a function f (x)
at cell center x j for given intercell values f j+1/2. Application of
Eq. (A.1) to a symmetric stencil around x j gives the expressions

f j = ( f j−1/2 + f j+1/2)/2, (A.2)

f j = (− f j−3/2 + 9 f j−1/2 + 9 f j+1/2 − f j+3/2)/16, (A.3)

f j = (3 f j−5/2 − 25 f j−3/2 + 150 f j−1/2 +

+150 f j+1/2 − 25 f j+3/2 + 3 f j+5/2)/256, (A.4)

respectively for n = 2, n = 4, and n = 6. Thus, the n-th order
formula should be used for an overall scheme with r ≤ n.

A.2. Reconstruction (REC)

The reconstruction process employed in ECHO is again an op-
eration based on piecewise polynomial interpolation. Given a
stencil of n grid points {x j} (cell centers) with corresponding val-
ues { f j} of the discretized function f (x) (in ECHO the primitive

variables, see step 2), the problem is to find a n-th order ap-
proximation of the intercell value f j+1/2. Note that in the numer-
ical literature high order reconstruction is usually implemented

to find directly the f̂ j+1/2 numerical fluxes of step 4 (called re-
construction via the primitive function), corresponding to our
REC+DER combined operations. Therefore, the polynomial co-
efficients presented here will differ with those usually found in
the literature. Contrary to the centered interpolations seen above,
in shock-capturing schemes upwind interpolation is needed, that
is based on either left-biased (L) or right-biased (R) stencils. To
achieve this, typically n is chosen an odd number and the two
stencils are taken symmetric with respect to x j+1/2. Moreover,
the same reconstruction routine R({ f j}) may be employed for
both L and R procedures:

f L
j+1/2 = R( f j−(n−1)/2, . . . , f j+(n−1)/2), (A.5)

f R
j+1/2 = R( f j+1+(n−1)/2, . . . , f j+1−(n−1)/2). (A.6)

For n = 1 we have the expected upwind constant approxima-
tions f L

j+1/2
= f j, f R

j+1/2
= f j+1. For n > 1 we have to face the

problem that the two stencils may contain a discontinuity, hence
sub-stencils should be used in order to avoid Gibbs oscillations
and the above formula actually refers to the optimal stencils pro-
viding an order n only for smooth solutions.

For n = 3 we have quadratic interpolation. By applying
Eq. (A.1), the left fixed-stencil reconstruction (only left recon-
structions will be considered hereafter) based on the optimal
stencil is

f j+1/2 = (− f j−1 + 6 f j + 3 f j+1)/8. (A.7)

In TVD-like reconstructions, based on the same n = 3 sten-
cil used above, third order is sacrificed for sake of stability by
resorting to second order for continuos fields and to first or-
der when a discontinuity is present. These schemes are based
on piecewise linear reconstruction and monotonicity is typically
enforced by making use of slope limiters

f j+1/2 = f j +
1
2
S (∆− f j,∆+ f j), (A.8)

where ∆± f j = ±( f j±1 − f j) and the slope S can be for example
the MinMod (MM2 in ECHO) limiter

mm(x, y) = 1
2
[sgn(x) + sgn(y)]min(|x|, |y|), (A.9)

or the so-called Monotonized Centered (MC2 in ECHO) limiter

mc(x, y) = 1
2
[sgn(x) + sgn(y)]min(2|x|, 2|y|, 1

2
|x + y|). (A.10)

Usually reconstruction based on MM2 is safer but more smear-
ing, while MC2 provides a good compromise between robust-
ness and accuracy. Note that at local (smooth) extrema all lim-
ited reconstructions of this kind drop to first order. ENO schemes
follow a different strategy. In ENO2, one between the two linear
interpolations based on 2-point sub-stencils

f
(1)

j+1/2
= f j +

1
2
∆− f j = (− f j−1 + 3 f j)/2, (A.11)

f
(2)

j+1/2
= f j +

1
2
∆+ f j = ( f j + f j+1)/2, (A.12)

is chosen, with selection procedures based on smoothness cri-
teria to ensure the (essentially) non-oscillatory behavior. Thus,
ENO2 always employs a piecewise linear interpolation. The
possibility to achieve the optimal third order reconstruction of
Eq. (A.7) is provided by the weighting process in the WENO3
procedure:

f j+1/2 = ω1 f
(1)

j+1/2
+ ω2 f

(2)

j+1/2
, (A.13)
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where the optimal reconstruction is found forω1 = 1/4 andω2 =

3/4. In the (nonlinear) selection process these are the limits for
smooth fields, otherwise a different combination (resulting in a
lower order) is achieved and for discontinuous fields WENO3 is
equivalent to ENO2.

Analogous possibilities for ENO-like schemes are offered by
reconstruction based on the n = 5 stencil. The optimal choice
yielding fifth order accuracy is

f j+1/2 = (3 f j−2 − 20 f j−1 + 90 f j + 60 f j+1 − 5 f j+2)/128, (A.14)

while the three 3-point sub-stencils provide the quadratic inter-
polations

f
(1)

j+1/2
= (3 f j−2 − 10 f j−1 + 15 f j)/8, (A.15)

f
(2)

j+1/2
= (− f j−1 + 6 f j + 3 f j+1)/8, (A.16)

f
(3)

j+1/2
= (3 f j + 6 f j+1 − f j+2)/8, (A.17)

which are easily obtained as usual by either use of Eq. (A.1)
or by Taylor expansion. In ENO3 third order reconstruction is
always obtained by choosing the smoothest among the above
interpolations. In WENO5 the combination

f j+1/2 = ω1 f
(1)

j+1/2
+ ω2 f

(2)

j+1/2
+ ω3 f

(3)

j+1/2
, (A.18)

is used, and the optimal fifth order reconstruction in Eq. (A.14) is
retrieved when ω1 = 1/16,ω2 = 10/16 and ω3 = 5/16, obtained
for smooth fields. Another possibility is provided by the CENO3
algorithm (Liu & Osher 1998), which is basically equivalent to
ENO3 for smooth fields (thus both achieve third order at most)
and it reduces to lower order TVD reconstruction (hence even to
first order) in the presence of discontinuities, but not at smooth
extrema. The robustness and accuracy of this scheme were com-
prehesively tested in Paper I and II.

A different strategy is followed by MP (Monotonicity
Preserving) methods (Suresh & Huynh 1997): first the high or-
der reconstruction, like that in Eq. (A.14) for MP5, is con-
structed, then, if spurious oscillations are found, a nonlin-
ear filter based on limiting algorithms is applied to reduce
them, retrieving first order approximations only where needed
(like in CENO). An approach similar to MP is that fol-
lowed in the celebrated PPM (Piecewise Parabolic Method,
Colella & Woodward 1984), very popular among astrophysi-
cists, due to the rather sharp profiles provided at disconti-
nuities, and used in special relativistic HD and MHD too
(Martı́ & Müller 1996; Mignone et al. 2005; Leismann et al.
2005). However, that method has the drawback of reducing to
first order even at smooth extrema, just like TVD. Moreover,
the post-processing filters for PPM are rather involved and heav-
ily system-dependent(especially the steepening of contact-like
discontinuities), thus in conflict with the philosophy adopted
here. On the other hand, MP methods are particularly suitable
for component-wise reconstruction and these filters can be ap-
plied to a variety of explicit interpolants, to higher order WENO
methods (Balsara & Shu 2000), or even to compact interpola-
tions with spectral-like resolution (Lele 1992). The MP5 algo-
rithm based on the n = 5 explicit reconstruction of Eq. (A.14)
has been shown here to be both highly accurate and robust in all
tests, and we thus recommend its use. We refer to the original
paper for a description of the nonlinear filter.

A.3. Derivation (DER)

The derivation operation was encountered at step 4 to provide the

numerical flux function f̂ j+1/2, given a stencil of intercell fluxes

{ f j+1/2}. This must be done in such a way that ( f̂ j+1/2− f̂ j−1/2)/h is
an appropriate high order approximation of the f ′(x) first deriva-
tive calculated at x = x j, where h is the (constant) grid spacing.
Let us then start by looking for a finite difference approximation
of the first derivative. It is convenient to write it as

h f ′(x j) ≈ f̂ j+1/2 − f̂ j−1/2 = a( f j+1/2 − f j−1/2) +

+b( f j+3/2 − f j−3/2) + c( f j+5/2 − f j−5/2), (A.19)

where we have truncated the approximation up to sixth order. If
we now expand both sides of the above equation in Taylor series
around x j we find the system

h f
(1)

j
=

∞
∑

k=0

f
(k)

j

hk

k!2k
[1 − (−1)k][a + 3kb + 5kc], (A.20)

where the exponents indicate derivation of the corresponding or-
der and where clearly all terms with even k vanish. For n = 2,
where b = c = 0, we simply find a = 1. For n = 4, where only
c = 0, the above system is readily solved by a = 9/8, b = −1/24.
Finally, for n = 6 the solution is a = 75/64, b = −25/384,
c = 3/640. The next step is to write

f̂ j+1/2 =d0 f j+1/2 + d2( f j−1/2 + f j+3/2) + d4( f j−3/2 + f j+5/2), (A.21)

and comparison with Eq. (A.19) provides the relations d0 = a +
b + c, d2 = b + c, d4 = c. For n = 2 d0 = 1, d2 = d4 =

0 and f̂ j+1/2 = f j+1/2, as expected. Thus, no extra high order
corrections on numerical fluxes are needed for schemes up to
second order. For n = 4 we find d0 = 13/12, d2 = −1/24, and
d4 = 0. Finally, for n = 6 we find d0 = 1067/960, d2 = −29/480,
and d4 = 3/640.

In order to highlight the nature of the DER procedure as a
correction for higher than second order approximations, it is con-
venient to rewrite Eq. (A.21) in the form

f̂ j+1/2 = f j+1/2 −
1

24
∆(2) f j+1/2 +

3

640
∆(4) f j+1/2, (A.22)

where only the first term is retained for n = 2, the second is
introduced for n = 4, and the complete expression is used for n =
6. For a generic index i the second and fourth order numerical
derivatives are respectively given by

∆(2) fi = fi−1 − 2 fi + fi+1, (A.23)

∆(4) fi = ∆
(2) fi−1 − 2∆(2) fi + ∆

(2) fi+1 =

= fi−2 − 4 fi−1 + 6 fi − 4 fi+1 + fi+2. (A.24)

Notice that here only DER operators based on centered, sym-
metric stencils have been considered. The high order corrections
described above can be easily turned into non-oscillatory algo-
rithms by any sort of limiting or stencil selection upwind pro-
cess, like those employed for REC.
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