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ABSTRACT In this paper, we present a novel user identification mechanism for smart spaces called

Echo-ID (referred to as E-ID). Our solution relies on inaudible sound signals for capturing the user’s

behavioral tapping/typing characteristics while s/he types the PIN on a PIN-PAD, and uses them to identify

the corresponding user from a set of N enrolled inhabitants. E-ID proposes an all-inclusive pipeline that

generates and transmits appropriate sound signals, and extracts a user-specific imprint from the recorded

signals (E-Sign). For accurate identification of the corresponding user given an E-Sign sample, E-ID makes

use of deep-learning (i.e., CNN for feature extraction) and SVM classifier (for making the identification

decision). We implemented a proof of the concept of E-ID by leveraging the commodity speaker and

microphone. Our evaluations revealed that E-ID can identify the users with an average accuracy of 93%

to 78% from an enrolled group of 2-5 subjects, respectively.

INDEX TERMS Smart-Spaces, User Identification, Sound-Signals.

I. INTRODUCTION

T
He recent evolution of pervasive computing technolo-

gies have brought to fruition the concept of smart spaces

which aim at seamless provisioning of customized services

to their inhabitants. For example, a shared smart office may

identify a particular occupant and automatically turn on his

computer (and other devices) and adjust the temperature and

light settings of his cubicle as per his preferences. Similarly,

it may also restrict the entry to a designated place (e.g.,

record or server rooms) only to a few individuals, and may

in addition keep a record of the authorized person(s) who

accessed that particular area. Likewise, a smart home may not

allow the vulnerable inhabitants (e.g., children and elderly

people) to operate risky appliances (e.g., oven). It may also

restrict the content viewed on the TV or the Internet for some

individuals (e.g., children). For all of the aforementioned

operations of smart environments, it is essential to establish

the identity of person(s) currently using the space. RFID

swipe cards (i.e., possession-factor relying upon something

user has) are widely used in smart spaces for authenticat-

ing the inhabitants. However, the requirement of carrying a

physical card is onerous for the users. In contrast, PIN-PADs

(i.e., knowledge-factor relying upon something user knows)

- which are ubiquitously used for authentication in smart-

spaces, do not require the user to carry a dedicated element

(e.g., swipe card). However, it is not possible to determine the

identity of the corresponding subject who has entered the cor-

rect PIN (since the same PIN is generally used by all autho-

rized individuals). Physical biometrics (i.e., inherence-factor

relying upon something user is) such as fingerprints, face-

images, and iris are increasingly being adopted for human

identification in smart spaces. However, they are shown to be

vulnerable to subversion. For example, fingerprints may be

collected from a surface which the victim may have touched

and used to circumvent the fingerprint based authentication

[1]. Likewise, facial-recognition may also be spoofed by

using the victim’s facial photograph (which is easy to find on

Internet) or a 3-D printed head [2] [3]. Similarly, iris based

authentication may also be breached by using the victim’s

photograph superimposed with the contact lens [4] [5] [1].

Camera-based gait recognition for human identification has

associated privacy concerns [6]. Other mechanisms either

require specialized floor-embedded sensors [7], or wearables

(e.g., smartwatch) for identifying the occupants [8]. Both

of these approaches are considered onerous by the users.

A few works such as [9], [10] have utilized the pervasive

WiFi signals to non-intrusively capture the user’s gait pattern

(i.e., behavioral biometrics) for human identification in smart
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spaces. However, these works require the user to walk along a

straight pre-defined path to perform the identification, which

may not be feasible for constrained smart spaces (i.e., where

such paths are not available). Likewise, authors in [11] also

leveraged WiFi signals to capture the user’s cardiopulmonary

activity and demonstrated its appropriateness for human

identification in small smart spaces. Although this approach

does not demand any explicit activity from the user (unlike

[9], [10] which necessitates to walk), it requires the user to

stand (or sit) still in front of a commodity WiFi device for a

duration of at least 20 seconds to perform the identification,

which presents usability challenges.

In this paper, we present a novel non-intrusive human iden-

tification system called Echo-ID (referred to as E-ID hereon)

for small smart spaces that does not demand any explicit

effort from the user. E-ID endeavours to re-purpose in -situ

PIN-PADs for human identification in smart spaces. PIN-

PADs are pervasive in smart-environments and are generally

used to restrict entry to a shared smart space (e.g., office or

home), and allow access only to the authorized users who

know the PIN (usually a 4 - 8 digit code). To identify an

individual from an authorized list (i.e., enrolled-set), we aim

to utilize the user’s tapping/typing behaviour (i.e., the way

user moves his fingers and hand) while entering the PIN on a

PIN-PAD deployed in smart space. There is a strong evidence

that different users have unique habitual tapping (or, typing)

pattern while entering the PIN which has been used for user

authentication on smartphones [12]. However, smartphones

are integrated with a plethora of sensors (e.g., accelerometer,

gyroscope, and touch sensors, etc) which makes it possible

to capture the user’s unique tapping/typing behaviour while

entering the PIN. In contrast, the PIN-PADs are generally

not equipped with the aforementioned sensors which thus

renders the above methods to be not relevant. In view of

this, we propose to use sound signals to capture the way user

types/taps and moves his fingers and hand while entering the

PIN. The PIN-PADs are generally equipped with a speaker

by default to facilitate the PIN entry process (e.g., to let user

know whether the entered PIN is correct or not), which can

be used to transmit a sound signal while user is entering the

PIN.

To make E-ID completely invisible to the user, we make

use of the inaudible frequencies as an audible sound would be

annoying. The commodity speakers (e.g., on PIN-PADs, mo-

bile phones, laptops, etc) can support a sampling frequency

in excess of 48KHz, and hence are capable of generating

and transmitting inaudible sound frequencies (i.e., 18KHz-

22KHz). When the user types the PIN, the inaudible sound

frequencies transmitted in parallel through the speaker get

reflected from the user’s moving fingers and hand, which

in turn leave a unique user-specific imprint in the sound-

echos recorded by a commodity microphone (which is easy

to interface with the existing PIN-PADs). We refer to such an

imprint as Echo-Signature (referred to as E-Sign hereafter)

and use it to identify the corresponding user from a set of N

enrolled inhabitants. To the best of our knowledge, E-ID is

the first work that utilizes the inaudible echos from the user’s

hand while entering the PIN to establish his identity.

Figure 1 depicts the typical usage scenario of the E-ID. We

assume that a shared smart space has N authorized users (e.g.,

employees in a smart office) who know the PIN (e.g., 1234)

to access the space. To identify the corresponding user from

a correct PIN entry (i.e., 1234), E-ID triggers the PIN-PAD

to simultaneously transmit and record the inaudible sound

while user types (or taps) the PIN and extract the E-Sign

from the recorded sound. E-ID utilizes the extracted E-Sign

to identify the corresponding user by comparing it with the

E-Sign samples of authorized users for whom the enrollment

samples are collected a priori. Once the corresponding user

is identified, the smart space may enable a number of cus-

tomized services for the identified user (e.g., automatically

turn-on the user’s computer and adjust temperature and light

settings as per the likings of the identified subject). Note that,

the E-ID is completely transparent to the user (i.e., user only

needs to type/tap the PIN as usual) and does not demand any

particular action unlike the prior works of this nature [9]–

[11].

The problem of identifying a subject from a large set of

enrolled users using an E-Sign sample is arguably complex.

To make the problem tractable, we consider a simple scenario

of small smart spaces, i.e., where the number of inhabi-

tants is limited to a maximum of 5-6 users. Although the

evaluated group-sizes may apparently seem small, they are

the representations of an average OECD household (average

occupants of 3) and micro-enterprises (with 5-6 occupants)

[13], [14]. Even with a smaller group-size, there are numer-

ous challenges involved in realizing a system such as E-ID.

The first technical challenge is to generate an appropriate

signal that can be used to record the echos that may be

reflected from the user’s moving fingers and hand while

entering the PIN. To this end, we generate and transmit an

inaudible chirp signal with an appropriate silence period so

as to record the required echos (Section II-A). The second

technical challenge is to track the echos that may be changing

due to the user’s moving fingers and hand while entering

the PIN. These changing echos represent the user’s habitual

tapping/typing pattern, which generate the E-Sign of the user.

To achieve this, we devise a threshold-based mechanism to

align the transmitted and recorded signals and compute the

cross-correlation between them (Section II-B). We form an

E-Sign by leveraging these correlation values and transform-

ing them into a matrix by doing an appropriate computation

(Section II-C). The third technical challenge is to identify the

corresponding individual from an enrolled-set by leveraging

the E-Sign samples. For this purpose, we make use of deep-

learning. Specifically, we utilize the Convolutional Neural

Network (CNN) for extracting the discriminating features

from the E-Sign samples. We then feed these features to a

multi-class SVM classifier which identifies the correspond-

ing subject given an E-Sign sample (Section II-D). Since

conventional PIN-PADs are generally not equipped with

microphone(s), we implemented a proof-of-concept of E-ID
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FIGURE 1: Echo-ID Usage Scenario

by leveraging the commodity speaker (i.e., built-in speaker of

a laptop) and microphone (i.e., interfaced to laptop via a USB

cable), while the users type the PIN on a smartphone placed

in the vicinity of the microphones (See Section III-A for the

details of set-up). Our extensive evaluations reveal that, E-

ID can identify the users with an average accuracy ranging

from 93.7% to 78.2% for a group-size of 2-5 individuals,

respectively.

The main contributions of this article are as follows:

• We propose an user identification (E-ID) for small

smart spaces that leverages the inaudible sound signals

for capturing the user’s behavioral tapping/typing be-

haviour while entering the PIN on a conventional PIN-

PAD.

• We propose an all-inclusive pipeline that generates

and transmits appropriate sound signals, and segregates

echo-signatures representing the user’s habitual tap-

ping/typing behaviour.

• We present a deep-learning model that can leverage the

echo-signatures to identify the corresponding subject

from an enrolled-set of users.

• We implement a proof-of-concept of E-ID by leveraging

the commodity speaker and off-the-shelf microphone,

and demonstrate that E-ID is capable of identifying

users with an accuracy of 93% to 78% for group-sizes

of 2-5 subjects, respectively.

The rest of the paper is organized as follows. Section

II presents the details of E-ID. Section III describes the

evaluation methodology along with the results. Section IV

details the related work, and finally the concluding remarks

appear in Section V.

II. ECHO-ID IDENTIFICATION WORK FLOW

In this section, we present the details of the proposed Echo-

ID system. Note that, we will only discuss the details re-

lated to the generation of E-Sign and proposed deep-learning

model for identify the corresponding user, as the verification

of PIN(s) is a standard. Since the same PIN is generally

used for accessing a restricted space, we do not present a

mechanism for detecting the unseen (i.e., not enrolled) users.

This will be accomplished through the usage of PIN (i.e.,

only the authorized subjects will know the PIN). Figure 2

shows the different steps involved in E-ID. We will discuss

each of these steps in detail in the subsequent sections.

A. SOUND SIGNAL GENERATION

Since E-ID is based upon tracking the echos that change due

to the movements of user’s fingers and hand while entering

the PIN, the first step is the generation of an appropriate

sound signal that can serve our purpose. Given that we want

E-ID to be completely transparent to the user, the sound

signal that we transmit from the speaker should be in inaudi-

ble frequency (i.e., beyond 18KHz). Although the audible

sound signals are conveniently transmitted by the commodity

speakers, they can be annoying for the users in the anticipated

usage scenario. The commodity speakers and microphones

support a sampling frequency of up to 48KHz. Therefore,

theoretically (in accordance with Nyquist theorem [15]) they

can transmit and record signals of up to 24KHz which falls

within the inaudible range. With this possibility, we use a

commodity speaker to generate a chirp signal of frequency

18 − 22KHz of duration 1ms (48 samples at Fs = 48KHz,

i.e., 1ms x Fs). To record the echos that reflect from the user’s

moving fingers and hand, we add a silence period of 4.3ms

(≈208 samples at Fs = 48KHz, i.e., 4.3ms x Fs). Note that, we
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FIGURE 2: Echo-ID Work-Flow for Identification

have empirically tested different values for the duration of the

chirp and silence signals, and selected the values that can best

capture the required echos. Consequently E-ID transmits a

signal of duration 5.3ms (i.e., 256 samples) from the speaker.

Figure 3 shows the signal that we transmit to record the E-

Sign of the user. This signal is transmitted for a total time

duration of 3 seconds (i.e., which corresponds to the typical

time required for PIN entry) at an approximate frame rate of

188 (i.e., 1/5.3ms), so as to record the echos due to the fingers

and hand movement during the entire PIN entry. Figure 4

shows a chunk of the transmitted signal, while Figure 5 shows

the spectrogram which depicts that the frequencies of this

signal lie in the inaudible range.

B. PRE-PROCESSING OF THE RECORDED SOUND

In order to generate the E-Sign, E-ID involves a number of

pre-processing steps which are discussed below.

1) Filtering the low-frequency noise

Figure 6 shows the sound signal recorded using a com-

modity microphone. The corresponding spectrogram of this

recording is depicted in Figure 7. It is evident from the

spectrogram that the recorded signal captures the signal of

interest -i.e., high energy is visible in the 18 − 22KHz

band. However, the recording also demonstrates the strong

presence of low-frequencies that may correspond to other

audible signals in the surroundings (e.g., people talking).

Such noise components are conspicuous in the spectrogram.

In order to generate the E-Sign of a user from the transmitted

signal, E-ID uses a band-pass filter with stop-band frequen-

cies of 17.5KHz and 22.5KHz, so as to alleviate the impact

of unwanted frequencies that fall outside the desired range.

Figure 8 shows a chunk of filtered recording, while Figure 9

shows the corresponding spectrogram. It is evident from the

spectrogram that the low-frequency signals are successfully

eliminated, while the filtered signal prominently contains the

frequencies of our interest. This also depicts that the E-ID

may not be impacted by audible sounds such as music or

conversations. Since the commodity speaker and microphone

are not perfectly synchronized, there is always a delay before

the microphone starts recording the transmitted chirp signal.

This is conspicuous in a filtered recording as shown in Figure

8. In order to generate an E-Sign from the recording, it is

important to eliminate this delay and align the recorded signal

with the transmitted signal - i.e., each chunk of 256 samples

of the recorded signal must contain the chirp signal arriving

4 VOLUME 4, 2016
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FIGURE 6: Recorded Signal FIGURE 7: Corresponding Spectrogram

at the microphone from the direct-path at the start followed

by a section that records echos (i.e., silence portion). Next,

we develop a strategy to align these signals, which helps in

generation of the E-Sign.

2) Alignment of Transmitted and Recorded Signals

To eliminate the aforementioned delay in the recorded signal,

we identify the prominent local peaks in the signal. Fig-

ure 10 shows the peak values plotted against the number

of peaks detected from the recording shown in Figure 8.

For eliminating the delay in the recording, we identify the

first peak that crosses a threshold value. We analytically set

this threshold to half the mean peak value which helps in

successful elimination of the aforementioned delay. Once the

first peak that corresponds to the first prominent direct-path

sound signal received by the microphone is identified, we

set the start of the recording to the sample number located

at length(chirp)/2 samples behind the identified peak. Our

reasoning is that, the identified peak corresponds to the centre

of the chirp signal that arrives at the microphone through the

direct-path, and hence the actual start of this signal will be

located halfway behind. Figure 11 shows the resultant signal

after the elimination of delay from the recorded signal shown

in Figure 8. It is evident that the delay in the recorded signal

is successfully removed. In addition to removing the delay,

we also normalize the recorded signal to [-1 1], since the

transmitted high-frequency signals attenuate quickly, and the

signal received by the microphone has much lower amplitude

than the transmitted chirp as can be visualized in Figure 8.

This also helps in identifying the echos that change due to the

user’s moving fingers and hand. The resultant recording after

the elimination of delay is aligned with the transmitted signal

- i.e., the first 256 samples of the resultant recording (and all

other succeeding chunks of 256 samples) correspond to the

transmitted chirp signal received from the direct-path along

with the echos that reflect from the user’s moving fingers and

hand during the silence period. Figure 12 shows the first 256

samples of the recorded signal along with the transmitted

signal (i.e., chirp + silence). It is evident that, these two

signals are aligned approximately. In addition, the echos are

also conspicuous in the recording during the silence period

of the transmitted signal. We utilize these echos to generate

the E-Sign to identify the corresponding individual from the

enrolled-set.

3) Computing Cross-Correlation

Once the signals are aligned in accordance with the method

detailed in the previous sub-section, the next step is to iden-

tify the reflections (or echos) that occur due to finger and

hand motion of the user. In a scenario when there is no finger

or hand movement, the static reflections (i.e., due to the static

objects in the vicinity) will appear same in the consecutive

recorded pulses (i.e., each of 256 samples). This is because

when there is no movement all the echos in consecutive

pulses will take same time to reach the microphone after the

reflections. For example, Figure 13 shows two superimposed

recorded pulses which are almost identical, showing that

there was no movement (of fingers or hand) when these
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FIGURE 8: Filtered Signal FIGURE 9: Corresponding Spectrogram

pulses were transmitted by the speaker and recorded by the

microphone. In contrast, Figure 14 show two other recorded

pulses where the variations that may correspond to the user’s

fingers and hand movement are visible (see the zoomed-

in section). This is because when user moves his finger(s)

and hand to enter the PIN, the echos that get reflected from

the fingers and hand arrive at the microphone at a different

time than the previous pulse. We are interested in extracting

these variations only, i.e., changes that correspond to the

user’s moving fingers and hand while entering the PIN. To

track these changes, we compute cross-correlation between

the transmitted chirp signal and all consecutive pulses of the

recorded signal (i.e., chunk of 256 samples). When there

is no movement, the computed correlation values of the

consecutive recorded pulses will be identical, while in case

of movement these values will change. This will help in

identifying the locations in every pulse that correspond to the

user’s fingers and hand movement. Since we have already

aligned the recorded sound with the transmitted signal (see

sub-section II-B), we only retain the correlation values from

lag zero onward. We also normalize the computed correlation

values to [-1 1] so that changes corresponding to the move-

ments become visible as compared to other sections of the

pulse.

C. GENERATION OF ECHO-SIGNATURE

We utilize the computed correlation values to generate the

Echo-Signature (i.e., E-Sign) of the user, and feed this to

deep-learning model (see Section II-D for details of the

model) to identify the corresponding user from the enrolled-

set. This section entails the steps involved in generation of

E-Sign.

1) Transforming Correlation Values to Matrix

To make an E-Sign, we first transform the computed cor-

relation values into a matrix. For this purpose, we form

a matrix of order 256 × 564, where 256 corresponds to

correlation values of each pulse of the recorded signal, while

564 represent the total frames that were transmitted (i.e.,

Frame Rate (188) x Time (3 sec) = 564). We append the

correlation values of the consecutive recorded pulses (i.e.,

256 samples) in successive columns of this matrix. Note that,

since we eliminate a certain portion of the recorded signal

(i.e., delay - see sub-section II-B), we may not end up having

exact 564 chunks (of 256 samples) of the recorded signal.

Hence, the last few values (or columns) in the matrix are set

to zero to maintain a consistent matrix size. Figure 15 shows

the correlation matrix of a sample recording while the user

enters the PIN.

2) E-Sign Generation

To make an E-Sign of the user, we compare the columns

of the correlation matrix so as to detect only the prominent

changes that correspond to the user’s moving fingers and

hand. To achieve this, we transform the correlation matrix

to a new matrix whose ith column is computed as CM(1 :
256, i + 3) − (CM(1 : 256, i), where CM represents

the correlation matrix. The column threshold (i.e., 3) is set

empirically (by changing it randomly between 1 and 100)

for detecting the changes occurring due to user’s fingers

and hand. A similar method is also used in [16] and [17]

to track the finger movements and use them for detecting

2 − D gestures and snooping the unlock patterns of mobile

devices, respectively. Figure 16 shows the newly generated

matrix by comparing the columns of the correlation matrix

shown in Figure 15 in accordance with the aforementioned

method. We refer to this new matrix as E-Sign of the user

and utilize this to identify the corresponding user from an

enrolled-set. However, in order to successfully use the E-

Sign for user identification, it should be consistent for the

same user across his multiple attempts of entering the same

PIN. Likewise, it must demonstrate distinctiveness from the

E-Sign samples of the other individuals for the same PIN. To

demonstrate this, we show four E-Sign samples belonging

to two different subjects in Figures 17 -20 (i.e., 2 of each

subject). It is conspicuous that E-Sign samples of the same

subject are similar in multiple instances of entering the same

PIN (e.g., see Figs 17 & 18 for subject #1, and Figs 19 & 20

for subject #2), while they are different for different subjects

even if they enter the same PIN (e.g., see Figs 17 & 19 to

visualize the difference in E-Signs of subject # 1 & 2). This

lends credence to our idea of using E-Sign for identifying
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the corresponding individual from an enrolled-set of subjects.

To achieve this, we feed the E-Sign samples to our designed

deep-learning model that can learn the appropriate features

from the E-Sign samples and is capable of identifying the

corresponding user given an E-Sign sample. In particular,

we use a Convolutional Neural Network (CNN) for feature

extraction. The reason behind using CNN is that, it helps in

automatic extraction of the discriminating features from the

E-Sign and has also shown success in prior works on human

identification like [18] [19]. The deep-learning also results

in superior identification performance than the conventional

machine learning which often requires the manual extraction

of the features [18]. Next, we describe the structure of the

deep-learning model that we employed as a part of E-ID, and

also present the key parameters that we used for performing

the user identification.

D. DEEP-LEARNING MODEL FOR USER

IDENTIFICATION

The aim of the model is to learn the representation of user’s

typing behaviour while entering the PIN on the PIN-PAD.

Let a single E-Sign sample be represented as Ei ∈ R
k,

where k represents dimensions of E-Sign (i.e., 256×564). We

feed the E-Sign to a CNN structure that helps in learning the

spatial-features. Once the features are learnt, we feed them

to a secondary SVM classifier which helps in discriminating

the subjects. Figure 21 shows the employed deep-learning

model. In this section, we present the details of the CNN

structure.

CNN as Feature-Extractor

The CNN structure employed in our implementation for

extracting the features is shown in Figure 21. The model is

stacked as follows: input layer, first convolutional layer (C1),

first Rectified Linear Unit (ReLU) layer, first pooling (max)

layer (P1), second convolutional layer (C2), second ReLU

layer, second pooling (max) layer (P2), fully-connected layer

and output layer. Table 1 shows the details of the parameters

used in the CNN. The dimensions of the E-Sign computed

in accordance with the method described in previous sub-

section is [256, 564, 1]. We first pass these E-Sign samples

through a set of convolution filters which scan the entire E-

Sign sample and learn different local features. In C1, we

empirically choose a total of 20 filters with a size of [3,3]

and stride [1,1], resulting in an output of dimensions [254,

562, 20]. The output of C1 is then passed through a ReLU)

which performs a thresholding operation by maintaining only

the positive values. Afterwards, we feed the output of ReLU

to a maximum pooling layer (i.e., P1) which performs the

down-sampling and helps in prevention of over-fitting of the

model [18]. We set the window-size and stride to [2, 2] in the

P1, which results in an output of order [127, 281, 20]. In C2,

we choose a total of 25 filters of same size and stride as in C1

(i.e., [3, 3] and stride [1,1]). We use the padding in C2 in such

a way that the size of the output remains the same as that of

the input (i.e, padding = 1). We then feed the output of C2 to
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FIGURE 15: Correlation Matrix of a Sample Recording
FIGURE 16: Generated E-Sign

FIGURE 17: Subject # 1 -

Sample 1

FIGURE 18: Subject # 1 -

Sample 2

FIGURE 19: Subject # 2 -

Sample 1

FIGURE 20: Subject # 2 -

Sample 2
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FIGURE 21: Deep-learning model employed in E-ID

P2, for which the window-size is empirically set to [3,3] with

a stride of [2, 2], resulting in an output of dimensions [63,

140, 25].

The output of P2 represents the local features learned from

different receptive fields of the input E-Sign sample. To make

an identification decision using the learnt features, we unfold

these features to flatten vectors (i.e., of order [1, 220500]).

This vector is then fed to a fully-connected layer whose size

is empirically set to 2048. As the name suggests, all the

neurons in the fully-connected layer are connected to those

in the previous layer and we treat its output as the feature-

vector(s). As these features can be seen as time-series, the

LSTM structure seems an appropriate choice since this helps

in determining the temporal-relevance in the sequential data.

LSTM networks have also shown promise in similar classi-

fication tasks [18]. However, our analysis has revealed that

feeding the features learnt by the CNN to a secondary LSTM

network results in a degraded performance of the E-ID. Our

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031899, IEEE Access

Shah et al.: Echo-ID: Smart User Identification Leveraging Inaudible Sound Signals

analysis also revealed that by feeding the CNN features to a

Support Vector Machine (SVM) results in good performance.

Therefore, in our implementation, we treat CNN as a feature-

extractor, and then employ a secondary SVM classifier which

helps in identifying the corresponding individual given an E-

Sign sample (i.e., learnt features).

III. EVALUATION SETUP AND EXPERIMENTAL

METHODOLOGY

In this section, we discuss the evaluation setup, experimental

methodology, and evaluation results of the E-ID.

A. EVALUATION SETUP

Figure 22 shows the evaluation setup of E-ID. Since the

stand-alone PIN-PADs are not equipped with the micro-

phones, we implemented the concept of E-ID by leveraging

a commodity speaker and a microphone. As can be seen in

Figure 22, we used a laptop (Hp Folio 9480m) to generate and

transmit the inaudible sound frequencies through its built-in

speaker (see section II-A for details of signal generation). For

recording these frequencies and their echos, we interfaced an

external microphone with this laptop. Although, the built-

in microphone of the laptop can also be used to record the

inaudible sound, our analysis revealed that these recordings

were too noisy as compared with the external microphone

(which may be due to the differences in build quality). In

addition, the external microphone also allows to place the

key-pad (i.e., upon which user enters the PIN) in its close

vicinity, which would be a representation of the anticipated

usage-scenario of the E-ID (i.e., on a typical PIN-PAD micro-

phone would be close to the key-pad). For entering the PIN,

we placed a mobile phone (upon which user enter the PIN

on the usual key-pad) in close proximity (about 10cm) of the

microphone so as to record the user’s E-Sign while entering

the PIN. Note that, the difference between the virtual buttons

on a mobile phone and physical buttons on a PIN-PAD may

impact the generated E-Sign. However, if the physical button

are used instead of virtual buttons, the enrollment process

will cater for this difference, i.e., the enrollment procedure

will capture the E-Sign accordingly. Hence, we anticipate

that E-ID is likely to work for any type of PIN-PADs (i.e.,

with virtual or physical buttons). The laptop that emits the

inaudible sound was placed at an approximate distance of

0.4m from the microphone and key-pad (i.e., on the mobile

phone). This whole setup is thus a close representation of the

real-world setting in which E-ID may be used (i.e., a PIN-

PAD device that can record the inaudible sound frequencies

in parallel while a user enters the PIN).

B. EXPERIMENTAL METHODOLOGY

For evaluating the performance of E-ID in identifying the

individual from an enrolled-set, we recruited a total of 5 sub-

jects (4M+1F). All of these subjects were PhD students aged

25-35 years. Although the number of enrolled subjects may

appear less, it is representative of a typical small smart space

which on an average has less than 5 inhabitants. For example,

in OECD countries a typical micro-enterprise has around 5-

6 occupants, while an average home has 2.4 inhabitants on

average [13] [14]. For generating the user’s E-Sign, we asked

each user to type the same PIN (i.e., 7913, randomly selected)

on the key-pad (of the mobile phone as shown in Figure

22), and collected around 50 (±5) data samples from each

user leading to a total of 250 samples (i.e., 50 × 5 = 250).

The length of the PIN may impact the E-Sign. However, this

will also be catered by the enrollment process and will not

affect the working of E-ID. While the user enters the PIN,

the laptop transmits the inaudible chirp signals, which are

simultaneously recorded by the microphone. The transmitted

signals are reflected from the user’s moving fingers and hand

(due to entering the PIN), which appear as a unique pattern in

the recorded signals. We process the recording in accordance

with the method detailed in subsections II-A -II.C to generate

the E-Signs and use these to identify the corresponding user

from the enrolled set by leveraging the deep-learning model

described in sub-section II-D. Out of 50 E-Sign samples/user,

we used 35 samples for training the deep-learning model,

while the rest are used for testing the performance of the

E-ID. We also varied the number of training samples from

15 − 35 to analyze the impact of the number of training

samples upon the accuracy of the E-ID (see Section III-D

for details). Note that, during the data collection process, the

subjects were allowed to converse with the co-author (who

was facilitating the experimentation). This depicts that our

experimental scenario is close to real-world setting where

the user is likely to talk with others (e.g., an accompanying

friend) while entering the PIN.

C. PERFORMANCE EVALUATION

We use the following metrics for evaluating the performance

of E-ID: i) Accuracy - which shows the percentage of cor-

rectly identified E-Sign samples across a set of enrolled users.

ii) Confusion Matrix - which shows the performance of E-

ID across all the test E-Sign samples in a matrix form. iii)

Receiver Operating Characteristics (ROC) - which plot the

TPR (True Positive Rate) vs FPR (False Positive Rate) at

various thresholds.

D. EVALUATION RESULTS

For evaluating the performance of E-ID, we analyzed every

possible combination of N subjects (i.e.,
(

5

N

)

), where N repre-

sents the size of the evaluated group. For every combination

of N subjects, we train a separate model with 35 training

E-Sign samples, and test its performance on remaining 15

samples (see Section III- B for details related to collection

of E-Sign samples). However, it is noteworthy that we do

not do any fine tuning of parameters or layers for different

group sizes – i.e., we keep our model generalized, and test it

with every possible combination of N users. The evaluation of

every possible combination helps us to ascertain the average

accuracy of E-ID for different group sizes.

Table 2 shows the accuracy of E-ID for every possible

combination of N subjects, while Figure 23 shows the per-
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TABLE 1: Parameters of CNN structure employed in E-ID

No. Parameter Description No. Parameter Description

1 Input Layer 256x564x1 E-Signs with zero-centre normalization 2 1st Conv Layer 20 3x3x1 convolution filters with stride [1 1] and padding [0 0 0 0]

3 Batch Normalization with 20 Channels 4 Activation ReLu

5 Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0] 6 2nd Conv Layer 25 3x3x20 convolution filters with stride [1 1] and padding [1 1 1 1]

7 Batch Normalization with 25 Channels 8 Activation ReLU

9 2nd Pooling Layer 3x3 max pooling with stride [2 2] 10 Fully Connected 2048

11 Activation Softmax 12 Cost Function Cross-Entropy

13 Optimizer SGDM 14 Learning Rate 0.0001

15 Max Epochs 15 16 Layers 10

Laptop emits in-audible 

sound

Microphone records 

the transmitted sound

User enters the PIN on 

a key-pad 

FIGURE 22: Evaluation setup of E-ID FIGURE 23: E-ID Performance

centage accuracy of the E-ID across the group-sizes of 2-5

individuals. Note that, the accuracy figures in Table 2 are

arranged in descending order and have no bearing with the

combinations. It is conspicuous from the Figure 23 that, the

accuracy drops as the size of enrolled set increases. A similar

trend is also observed in prior research [9]–[11] that utilize

the WiFi signals to capture the user’s gait characteristics

or cardiopulmonary activity to perform the identification in

small smart spaces. This may be due to the fact that the

inclusion of more individuals in an enrolled set increases

the chances of having similar E-Sign samples in the group,

resulting in a decrease in the accuracy. Similarly, we notice

that some of the combinations have relatively lower accuracy.

This may be due to noisy E-Sign -i.e., due to the movement

of some other body parts while entering the PIN which and

impact the echo reflection. This is also observed in prior

identification works such as [9]–[11] where accuracy for a

particular group-size fluctuate. We believe that techniques

such as ICA or PCA may help in segregating the echos

of different body parts and may be an interesting direction

for future research works. However, it is noteworthy that

the accuracy of E-ID remains above 78% for groups of any

size of up to 5 subjects. This is comparable with the prior

user identification mechanisms [9], [10] that require user

to walk explicitly on a long predefined path to perform the

identification. In contrast, the E-ID is completely transparent

to the user (i.e., user only enters the PIN as usual), and

does not demand any explicit activity (e.g., walk) as in

prior works [9], [10]. E-ID outperforms [11] that uses the

imprints of user’s cardiopulmonary activity manifested in

the WiFi signals for human identification in smart spaces

by approximately 5-15% for group-sizes of 2-5 individuals,

respectively. In addition, unlike E-ID, [11] requires the user

to sit (or stand) still in front of a commodity WiFi device for

a duration of at-least 20 seconds, which may be onerous for

the user. This suggests that E-ID offers significant benefits

over the other state-of-the-art mechanisms.

Figures 24 -31 show the confusion matrices and ROCs of

one combination (randomly selected) of group-sizes of 2-

5 subjects, respectively. The confusion matrices also depict

that as the number of enrolled subjects increases, some of the

E-Sign samples belonging to different users are incorrectly

classified (or mis-classified) by the E-ID, resulting in a drop

in the overall accuracy. Note that in ROCs, the classi repre-

sents the ith enrolled subject. The curves in ROCs are more

spread-out as the group-size is increased. For example, it is

conspicuous from Figure 31 that, for 4 subject (i.e., class1-

class4) the corresponding ROC curves cluster around the

top-left corner, which confirms that E-ID can discriminate

the E-Sign samples of these subject with high accuracy.

However, for the fifth user (i.e., class5), the corresponding

ROC curve is more spread-out at varying threshold values,

which shows that E-Sign samples of this subject are confused

with others. This is also evident from the corresponding

confusion matrix (see Fig 30), where it can be observed that

8 evaluated E-Sign samples of other subjects are mistakenly

classified as those of subject 5. This may be due to the

resemblance in the E-Sign samples of this individual with

others. Prior research has also shown the evidence of similar-

ity amongst the behavioral biometrics (e.g., gait pattern) data

of some individuals [20]. Nevertheless, even with all of these

possibilities, the average accuracy of E-ID is above 78% for

all group-sizes. E-ID is thus the first-step towards realizing an

inaudible sound based human identification system for small
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TABLE 2: Performance of E-ID across different combination of N enrolled subjects

Group-Size C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Avg Accuracy

2 100 100 97.30 97.14 97.06 96.88 96.15 93.75 87.10 72.4 93.77%

3 94.12 93.88 93.48 90.38 89.36 86.96 85.37 83.67 79.07 72.73 87%

4 91.80 87.88 85.7 75.86 73.44 - - - - - 83%

5 78.2 - - - - - - - - - 78.2

smart spaces (i.e., with 2-5 inhabitant) that does not demand

any participation from the user (unlike prior works [9]–[11]).

Table 3 shows the evaluation results of E-ID for every

possible combination of N subjects obtained by feeding the

CNN features to the Softmax classifier. These results show

that, for all the group-sizes, SVM outperforms the softmax

classifier by approximately 2-7%. This confirms the effec-

tiveness of our approach (i.e., feeding CNN features to SVM)

in identifying the corresponding subject from an enrolled-set

given an E-Sign sample. We also implemented a LSTM based

model which treats the CNN features as a time-series and

feed these time-series to a secondary LSTM structure to learn

the temporal-relevance in the learnt features. Our analysis

revealed that this approach fails to achieve an acceptable

performance for any group-size.

1) Impact of Number of Training Samples

Recall from Section 2.3 that, we train our deep-learning

model with 35 (out of 50) E-Sign samples/user (results

presented above are with 35 training samples). In this sub-

section, we analyze the performance of E-ID by varying the

training samples from 15 to 35 with an increment of 5 in

each iteration. Figure 32 shows the performance of E-ID with

different number of training samples (and with group-size

of 5 subjects). It is conspicuous that the accuracy initially

increases as the number of training samples are increased

from 15 to 25 (e.g., 74% with 15 samples vs 78% with 25

samples). However, beyond that, the accuracy stays almost

stable (i.e., around 78%). As discussed in Section I, E-ID

requires one-time enrollment of the user. The accuracy of

over 75% with less training samples (i.e., 20 - 25 samples)

will mean a swifter enrollment process which will aid in real-

world applicability of the E-ID. Note that, since the deep-

learning is highly dependent on the size of training data,

we anticipate that training with more E-Sign samples may

result in even better performance. However, this may not

be practically convenient for the users to provide a large

number of training samples (e.g., 100 or more) as a part of the

enrollment. In view of this, we have only tested the E-ID with

less number of training samples (i.e., 15 - 35) to demonstrate

its practical applicability.

2) Impact of Learning Rate

To achieve good performance, learning rate is an important

hyperparameter to tune. It controls the speed at which the

deep-learning model learns to approximate the corresponding

subjects given the training E-Sign samples. We optimize the

learning rate for CNN and select the one that achieve the best

performance. Figure 33 shows the E-ID performance (with

group-size of 5) at varying learning rates of CNN structure

(i.e., 1e−1, 1e−2, 1e−3, and 1e−4). It is evident that the

accuracy improves by reducing the learning rate (i.e., 78%

at 1e−4 vs 0% at 1e−2). However, our analysis revealed that

by decreasing the learning rate below 1e−3, the CNN fails

to learn any discriminating features from the E-Sign samples

that may help in identifying the corresponding individual (see

Fig 33). Therefore, we select the learning rate to be 1e−4 as

it results in best performance for different group-sizes of the

enrolled subjects.

IV. RELATED WORK

The closest work to ours is [21] that leverages the sound (both

audible and inaudible) reflected from the person’s ear canal

for authenticating the user. Since different individuals have

a different ear canal shape, the sound reflected from such a

cavity shows a discriminating frequency response that may

be used for establishing the identity of the user. However,

this mechanism demands an earpiece with a microphone for

sending the probe sound signal in the ear canal and recording

the echos reflected from the ear cavity. This requirement may

be arduous for the users which may hinder the adoption of

this approach in our anticipated usage scenario (i.e., smart

spaces). In contrast, E-ID does not demand any special

hardware (e.g., earpiece) for performing human identifica-

tion in smart spaces. Likewise, authors in [22] presented a

mechanism where a user’s identity is confirmed by utilizing

his breathing sound. However, this work requires the user to

place the microphone very close to the nose and also require

one to undertake a deliberate action (i.e., deep breath or

sniff). Contrary, E-ID neither demands a user to undertake

any particular action (e.g., breath gesture) nor requires any

explicit interaction with the hardware (e.g., placing a micro-

phone close to noise). Similarly, the authors in [23] proposed

a sound-based user authentication mechanism for online

services that may be extended to perform identification in

smart spaces. This mechanism records the ambient sound

on two co-existing devices of the user (e.g., user’s laptop

and mobile phone), and if both the devices record a similar

sound then they are deemed to be in proximity and results in

successful authentication of the user. This approach may be

modified to perform human identification in smart environ-

ments (e.g., user’s mobile phone and PIN-PAD records the

ambient sound). However, this mechanism requires user to

generate some sound (e.g., clearing throat) when no ambient
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TABLE 3: Performance of E-ID with CNN only

Group-Size C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Avg Accuracy

2 100 97.14 96.55 94.12 93.75 92.5 90.62 87.10 80.77 62.07 89.4%

3 91.84 89.11 87.76 86.54 86.27 85.37 85.11 82.6 69.77 68.18 83.2%

4 86.89 81.82 79.37 71.88 60.34 - - - - - 76.06%

5 76.92 - - - - - - - - - 76.92%
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sound is present which may be annoying for the other people

in the vicinity [24]. Additionally, this approach may not

work if the user’s mobile phone is lost, stolen, or discharged.

Furthermore, a person in unlawful possession of the victim’s

mobile-phone can potentially access the smart-environment

under the victim’s identity. In contrast, E-ID is not dependant

upon any secondary device like mobile phone. Authors in [6]

have utilized a camera for capturing the user’s gait-pattern

and used them for identification. However, unlike E-ID, this

approach has the privacy issues. Similarly, a few works

have used the sensors (e.g., accelerometer, gyroscope, etc)

embedded in the smartphone [25] [26] or in the smartwatch

[8] to capture the user-specific data (e.g., gait-pattern or arm-

motion) for identifying the user. However, the requirement

to carry a particular device for human identification may be

deemed to be onerous by the users. E-ID, on the other hand

does not require a user to carry such devices (i.e, smartwatch

or phone) for its operation. [27] shows the possibility of

using user’s voice to establish his identity. However, this

approached may be spoofed by furtively recording the vic-

tim’s voice and launching the playback attack. E-ID utilizes

the user’s behavioral characteristics while entering the PIN,

which are hard to capture (or imitate) by a potential adver-

sary. A few works have leveraged the ubiquitous WiFi signals

available in smart spaces to establish the identities of the

inhabitants. For example, [9], [10] used the WiFi signals to

capture the user’s gait-pattern and subsequently use the cor-

responding WiFi perturbations to establish the identity of the

user. Both of these approaches have demonstrated a similar

accuracy as that of E-ID for a maximum group-size of 5-6

subjects. However, unlike E-ID, these works require a user

to walk on a predefined path, which may be burdensome for

the user and not always possible. In addition, the small smart

spaces are unlikely to have a long straight path (e.g., 2.4m

required in [9]) for the successful operation of these mecha-

nisms. Similarly, the authors in [11] showed that it is possible

to utilize the user’s cardiopulmonary activity manifested as

perturbations in pervasive WiFi signals to perform the human

identification in small smart spaces. However, unlike E-ID,

this work requires user to stand in-front of a WiFi device

for a minimum duration of 20 seconds. E-ID outperforms

this work by around 10% for a group-size of 5 individuals

without necessitating any participation from the user (e.g.,

stand in-front of a commodity WiFi device). Furthermore,

all of the aforementioned mechanisms that utilize WiFi (i.e.,

[9]–[11]) requires a controlled environment - i.e., only the

authenticating person should be present in the vicinity of

the WiFi transceivers, which may not always be possible

in a real-world scenario. Unlike these approaches, E-ID can

operate in a real-world setting.

While there are numerous other mechanisms like fingerprint,

face-recognition, and iris scans that are already used for iden-

tifying the individuals, they suffer from a number of well-

known vulnerabilities. For example, fingerprints can easily

be collected from a surface that a victim may have touched

and used to circumvent the fingerprint based authentication

[28]. Likewise, face-recognition may be spoofed by using the

victim’s photograph (which is easy to find over social media)

or 3-D printed head [2], [3]. Similarly, iris based mechanisms

are also prone to subversion by using a victim’s photograph

(even captured from a long distance of up to 5m) super-

imposed with a contact lens [5]. Unlike these approaches,

spoofing E-ID is difficult as it utilize the user’s behavioral

characteristics while entering the PIN, which in general are
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FIGURE 32: E-ID performance with varying number of

training samples

FIGURE 33: Impact of Learning Rate (CNN)

not easy to imitate. This shows that E-ID offers significant

benefits over the other state-of-the-art mechanisms.

V. CONCLUSION

This paper undertook an investigation into the use of in-

audible sound signals for capturing the user’s behavioral

biometrics (i.e., habitual characteristics) while s/he taps (or

types) the PIN. We analysed the possibility of using these

characteristics for identifying the corresponding user from

an enrolled-set. To this end, we present E-ID, a novel non-

intrusive identification system that leverages the commodity

speaker and microphone for capturing the user’s behavioral

tapping/typing patterns in an inaudible range. We present

a comprehensive processing pipeline - i.e., from transmis-

sion of signal to generation of user-specific imprints in the

recorded echos. We also craft a deep-learning based identifi-

cation strategy that helps in accurate identification of subjects

from an enrolled-set of N subjects. Our evaluations revealed

that, E-ID can identify an individual with an average accuracy

93% to 78% for a group-size of 2-5 individuals, respectively.

In future, we plan to extend E-ID for bigger enrolled-sets

(e.g., 10 or more subjects). We also plan to implement E-

ID on small form factor devices with embedded speaker

and microphone. This will represent a more realistic usage

scenario and will help to analyse the impact on different

practicalities such as processing time and accuracy in real-

world situations. In addition, another interesting future re-

search direction could be to use E-Signs as a second-factor of

authentication in situations where every user has a separate

PIN. This would need comparing the E-Sign of a user with

his/her enrollment samples instead of comparing it with the

samples of all enrolled-set. We also plan to conduct these

investigations in future.
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