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Abstract

In an 2D echocardiogram exam, an ultrasound probe

samples the heart with 2D slices. Changing the orientation

and position on the probe changes the slice viewpoint, alter-

ing the cardiac anatomy being imaged. The determination

of the probe viewpoint forms an essential step in automatic

cardiac echo image analysis. In this paper we present a

system for automatic view classification that exploits cues

from both cardiac structure and motion in echocardiogram

videos. In our framework, each image from the echocar-

diogram video is represented by a set of novel salient fea-

tures. We locate these features at scale invariant points in

the edge-filtered motion magnitude images and encode them

using local spatial, textural and kinetic information. Train-

ing in our system involves learning a hierarchical feature

dictionary and parameters of a Pyramid Matching Kernel

based Support Vector Machine. While testing, each image,

classified independently, casts a votes towards parent video

classification and the viewpoint with maximum votes wins.

Through experiments on a large database of echocardio-

grams obtained from both diseased and control subjects,

we show that our technique consistently outperforms state-

of-the-art methods in the popular four-view classification

test. We also present results for eight-view classification to

demonstrate the scalability of our framework.

1. Introduction

Echocardiography is an important diagnostic aid in car-

diology for the morphological and functional assessment of

the heart. During an echocardiogram exam, a sonographer

images the heart using ultrasound by placing a transducer

against the patients chest. Reflected sound waves reveal the

inner structure of the heart walls and the velocities of blood

flows. Since these measurements are typically made using

2D slices of the heart, the transducer position is varied dur-

ing an echo exam to capture different anatomical sections

Figure 1. Images from the eight echocardiogram viewpoints in

this paper. In clockwise order from top left, Apical Four Cham-

ber (A4C), Parasternal Long Axis (PLA), Parasternal Short Axis

- Basal (PSAB), Parasternal Short Axis - Papillary (PSAP), Api-

cal Two Chambers (A2C), Apical Three Chambers (A3C), Apical

Five Chambers (A5C), Parasternal Short Axis - Mitral (PSAM).

of the heart from different viewpoints.

In current clinical practice, transducer positioning and

viewpoint capture requires manual intervention in both

imaging and in interpretation. The sonographer manually

delineates major anatomical structures like Left Ventricle

(LV) and computes numerical quantities like ejection frac-

tion from the images. This data is examined further by a

cardiologist who makes the diagnosis based on the interpre-

tation made from the echocardiogram. The knowledge of

the probe viewpoint plays a crucial role in the interpreta-

tion process as it tells the examiner what exactly is he or

she looking at. Fig. 1 shows some of the more common

viewpoints captured during an echo exam, including apical

4 chamber and parasternal long axis.

In the last few years, there has been tremendous progress

in the field of cardiac view recognition in echocardiograms

[17, 16] and similarity search based decision support sys-

tems for cardiology [3]. The primary focus in such sys-

tems is to be able to automatically detect features from the

echocardiogram video which can then be used to conduct

higher level disease discrimination and similarity search.

Hence, the automatic echocardiogram view classification,

the first step in any such system, has gained importance.

Being primarily an image based classification problem, it
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has attracted considerable attention from the computer vi-

sion and pattern recognition community [6, 20, 17, 3].

The problem that we tackle in this paper is that of au-

tomatically assigning view labels to echo videos obtained

from unknown viewpoints. This problem is hard because

even for videos belonging to same viewpoint, significant

variation arises from differences in pathologies, patients,

instruments, and sonographers’ expertise. The problem is

complicated further by the fact that the images obtained by

echocardiogram generally have high noise and low contrast.

Furthermore, even for videos belonging to different view-

points, its not trivial to label the viewpoints and experts like

cardiologist and cardiac sonographer are required. In ad-

dition to this, obtained images can be translated, rotated or

zoomed with respect to others.

A key component in any view classification system is

one of representation – what feature set is used to repre-

sent a video? It is well-known in the pattern recognition

community, for example, that the proper choice of feature

representation has a greater impact on performance than se-

lecting among the top network architectures. In this paper,

we present a view classification approach that uses a state-

of-the-art classifier, vocabulary-based PMK and multiclass

SVMs [9], and pairs it with a novel and powerful set of

motion and edge-based features. In our technique, interest

points are scale-invariant points in the motion magnitude

map that are also near intensity edges. This combination

of motion and intensity features allows out system to select

the important portions of echo cardiac anatomy to make the

classification stage a success. The eight viewpoints classi-

fied by our system are shown in Fig. 1.

The rest of the paper is organized as follows. Section 2

provides a survey of the existing techniques for view recog-

nition. In Section 3 we describe our framework for feature

detection and description. The training and testing algo-

rithms are presented in Section 4. Section 5 presents exper-

imental results and a comparison with state-of-the-art tech-

niques. Finally, we conclude in Section 6.

2. Previous Work

In the first automatic cardiac view recognition system,

Ebadollahi et al. [6] proposed a constellation-of-parts based

method. They used a generic heart chamber detector [2]

to locate heart chambers, and they represented the spatial

arrangement of the chambers using a Markov Random Field

(MRF) based relational graph. Final classification of a test

image was performed using a Support Vector Machine on

MRF network output. This method suffers from sensitivity

of the chamber detection method to frequently present noise

in the echocardiogram images while demonstrating limited

robustness to basic image transformations.

Aschkenasy et al. [1] represented each view by a sig-

nature obtained by multi-resolution spline filtering of the

Figure 2. The first column shows intensity images, the second and

third columns show motion magnitude and phase from optical flow

computed between the first column frames and next video frame.

The first two rows are Apical Four Chamber view while the last

two are Parasternal Long Axis. For motion magnitude and phase

images, brighter colors represent higher values. Intraclass simi-

larity and interclass disparity can be readily noted in the motion

magnitude images. All four rows belong to different patients.

training images. For a test image, these templates were

elastically deformed and the deformation energy along with

similarity were used to classify the test image using a linear

discriminant. Drawbacks of this method include the use of

a classifier with limited discrimination ability as well as the

use of features which are accurate only when the test image

and template are close to one another.

Zhou et al. [20] cast view recognition as a multi-class

object detection problem. Using a multi-class LogitBoost

network, this work exploited both positive examples corre-

sponding to viewpoint along with negatives corresponding

to background. The use of Haar-like rectangular features,

however, makes the method sensitive to presence of noise

in the images. Further, large number of Haar-like features

necessitated pruning and high recognition rates were only

guaranteed when sophisticated methods were included to

handle contradicting recognition results. Results for only

two-view classification were presented in this paper.

Otey et al. [16] proposed a hierarchical classification

strategy for view classification where first a classification

into corresponding view type (e.g. Apical, Parasternal etc)

was made, followed by a final view classification within the

type. Features included gradient, peak, raw pixels and other
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Figure 3. Images from top row, first two columns of Fig. 2 overlaid

(motion in green and intensity in red). Significant motion (bright

green) in the motion magnitude image corresponds to anatomical

features like heart valves, while extraneous motion is localized to

noise infested ”blank” regions e.g. heart chambers.

statistical features, which were then fed to dimensionality

reduction stage. The final classification was made using Lo-

gistic Model Tree classifier at both levels.

Park et al. [17] revisited boosting for view classification,

where they used the MLBoost learning algorithm along

with multi-object detection and integrated local-global fea-

tures. Their system was built around a Haar-like feature

based Left Ventricle (LV) region detector, and each view

was modeled according to the spatial layout of other heart

chambers with respect to the LV region. In this system, test

images were classified based on their spatial region layout

with respect to the template region layouts. View classifi-

cation is made based on a key frame from the given echo

video, the end diastolic frame. This method cannot be used

to detect views in which LV region is absent.

Roy et al. [18] proposed the use of simple intensity his-

tograms for view classification. They reasoned that as dif-

ferent regions and chambers are visible in different echo

viewpoints, the intensity distribution can help discriminate

viewpoint. The final classification was made using a mul-

tilayer perceptron where the number of hidden layer units

was empirically chosen. The signature histogram for a

given echo image is heavily dependent on the region of

interest for which intensity values are considered, and the

choice of this region is not made explicit in this work.

Most recently, Beymer et al. [3], for the first time,

proposed to exploit the motion information present in the

echocardiogram videos for view classification. They used

Active Shape Models (ASMs) to capture the shape and

texture information and then tracked these across differ-

ent frames to derive motion information. All the informa-

tion is concentrated by projecting it down to a low variance

eigenspaces and the final classification is done by minimiz-

ing a ”sequence fit” measure. One of the downsides of this

technique is that ASMs require manual delineation of shape

in the training data, which can be time consuming. This

work also presented a comparative study of some of the

competing view classification methods.

View recognition problem can also be looked at as an

object recognition problem if we identify each view as a

different object class. It has been purported that intraview

variation observed in echocardiogram videos is too compli-

cated for generic object recognition methods to handle [3].

We present comparison with one of the more effective ob-

ject recognition techniques [8], which uses SIFT features

[15] and Pyramid Matching Kernel (PMK) [8] based SVM

classifier, to address this issue.

With regards to previous work in echo view recognition,

out work acheives the highest recognition rate and is the

most extensible. Compared to the 4-class recognition ex-

periments in [17] and [3], our 4-class recognition accuracy

is higher. Built on a scalable framework, our system does

not require an initial LV detection stage as in [17] or an ex-

pensive manual labeling during training as in [3]. Also, our

system is the first to report good results on a larger 8-class

viewpoint class experiment.

But more generally, our paper makes an important con-

tribution in its fusion of motion and intensity to form a dis-

criminating “spatiotemporal” feature. As detailed in the fol-

lowing section, our features are unique both in their loca-

tion and description. Feature locations are scale invariant

interest points in motion magnitude that are also close to in-

tensity edges. Feature descriptions include position (x, y)
and histograms of local motion and intensity. The utility of

these features is borne out through a comparison with the

SIFT/PMK experiment in [3].

A survey of object, activity and scene recognition liter-

ature reveals that there has been attempts to use motion to

define features but none has explored detecting and encod-

ing features as we do. Jhuang et al. [11] used a hierarchy

of detectors for finding interest points, and one of stages in

the system uses features based on filtering of optical flow.

Sidenbladh and Black [19] used motion features obtained

from the time derivative of wrapped consecutive frames at

multiple scales. Dalal et al. [4] used oriented histogram of

differential optical flow over the entire image but did not

use optical flow to detect any interest points while Laptev

et al. [14] used the same histograms but at points detected

using [13]. Efros et al. [7] used rectified and blurred optical

flow over the whole image for human detection, but motion

is not used for interest point detection. Ke et al. [12] used

volumetric spatio-temporal features for activity recognition.

Dollar et al. [5] used histograms of x and y components of

optical flow for encoding features but the interest point de-
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tection was done using Quadrature Gabor Filters. Using

scale invariant features detected on the edge filtered motion

magnitude field has the distinct advantage of being able to

locate anatomical features with significant motion, which

these above methods lack. Further, since we use the his-

togram of motion magnitude to encode our feature vectors,

locating them where motion is interesting makes sense.

3. Modeling Viewpoint using Edge-filtered Mo-

tion Features

Since the native form of the data obtained from echocar-

diogram is a video of anatomical structures in motion, we

ideally seek a model which exploits all the information

(structural, textural and motion) present in video for view-

point discrimination and is not limited to using a few key

frames. Further, we want a method which can be seam-

lessly applied to any viewpoint and is not limited to any

particular subset of viewpoints (like in [17]), and thus our

technique should be independent of the presence of specific

anatomical structures in the images. And finally, our tech-

nique should provide recognition rates which are competi-

tive with respect to the existing state-of-the-art.

In order to satisfy these conditions, we propose a frame-

work which works with a few salient features obtained from

analysis of both intensity frames (structural and textural in-

formation) and optical flow (motion information) in a given

video sequence. In the next subsections we describe the ba-

sic preprocessing and the two important aspects of salient

feature selection process - localization and encoding.

3.1. Preprocessing

Echocardiogram videos undergo some basic preprocess-

ing before we begin the process of feature point localization

and encoding. This includes extraction of the fan sector

(which contains the actual image) and a rough alignment.

For extraction of the region of interest, either manual or

template matching based automated technique can be used

(or the method described in [16]). Once the fan sector has

been extracted, using the top, left and right extreme points,

we automatically align all the echocardiogram videos with

each other via an affine transform. The three points men-

tioned above are sufficient to compute the affine transfor-

mation matrix. Even though the classifier that we intend to

use, PMK based SVM, is capable to handling small amount

of image transformational discrepancies, this initial align-

ment improves the discrimination ability of our system.

3.2. Feature Localization

In a given echocardiogram video of a heart cycle, there

are image regions (corresponding to different anatomical

structures) which demonstrate significant amount of motion

and other regions which do not. Furthermore, these regions

Figure 4. Top rows shows echocardiogram frame and its edge map.

Second row shows the motion magnitude corresponding to frame

in the top row in red with detected feature points in green. Bottom

row shows the features filtered using the edge map.

are disparate for different viewpoints while similar for im-

age sequences belonging to same viewpoints.

To characterize this information, we analyzed the optical

flow for echocardiogram video sequences computed using

Demons algorithm [10]. There are two important things to

be noticed about the optical flow obtained for the echocar-

diogram image sequences: 1) the deformation field contains

a considerable amount of noisy motion (even after smooth-

ing) as an artifact of the noise present in the intensity im-

ages, and 2) of the two components of the motion field -

magnitude and phase, phase is sensitive to image transfor-

mations (rotation, translation etc) while magnitude is com-

paratively more stable (see Fig. 2).
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Figure 5. The proposed feature location and description algorithm. The frames of the training videos undergo affine alignment and

then optical flow for each video is computed. Scale invariant features are detected from the magnitude of the optical flow and only those

feature points which lie in vicinity of the intensity image edge are retained. The features are finally encoded using the location, local texture

histogram and local motion magnitude histogram.

Choosing features on motion magnitude alone would se-

lect a number of weak features that follow erroneous motion

and noise. Motion in echocardiogram images is meaningful

only when it is associated with anatomical structures, and

this information is absent in the motion magnitude images.

This is shown in Fig. 3, where intensity image has been

overlaid over the corresponding motion magnitude image.

We propose using the structural information present in the

intensity images to guide the feature localization process.

To achieve this we filter the motion magnitude images using

an edge map on image intensity. Thus, only motion which

corresponds to anatomical structures is retained while the

remaining extraneous motion is disregarded.

Given these edge-filtered motion maps, the next step is

to choose specific interest points. In the field of object

recognition, much work exists on locating interest points

(e.g. space time features [13], scale-invariant features [15]

etc). For our implementation we have chosen to use scale-

invariant features primarily due to their simplicity and ef-

fectiveness. It must be noted that a direct application of the

these object recognition methods to echocardiogram images

is largely ineffectual (as demonstrated by Beymer et al. [3])

primarily on account of low contrast and noise in echocar-

diogram images. To the best of our knowledge, we are the

first to exploit edge filtered motion magnitude images for

obtaining discriminating features in either echocardiogram

viewpoint or object recognition literature.

Filtering the motion magnitude image using the edge

map means that motion magnitude information only in the

neighborhood of intensity edges is retained. As scale in-

variant features [15] are sensitive to edges in the image, we

avoid features arising from artificial edges by first detecting

features on the motion magnitude image and then retaining

only those which lie in some neighborhood of the intensity

edges. This process is demonstrated in Fig. 4. Note that,

this process is not same as a mere sampling of the edges be-

cause the features points that we retain correspond to signif-

icant motion, and we will use this crucial information when

we encode the features.

3.3. Feature Description

Once the features have been located, the next important

step is to encode them using information which will be use-

ful in discrimination. Foremost, the location itself is impor-

tant information, so we want to include (x, y) image coor-

dinate of the feature in our description.

Next, in order to account for all important motion infor-

mation, we include a histogram of motion magnitude in a
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window around the feature point in our description. Here

we leave out the phase information because it is sensitive

to common image transformations like rotation. The ad-

vantage of including motion magnitude information is that

it can encode a certain amount of anatomical information

(e.g. feature points around heart valves would have a mo-

tion magnitude histogram skewed towards higher values).

The structural information present in the intensity im-

ages is also important and we include it using a histogram

of the intensity values in a neighborhood around the features

point. Using histograms of both motion and texture infor-

mation brings in robustness to possible presence of outliers

in the actual values of texture and motion magnitude.

Note that the scale invariant features (SIFT) [15] also in-

clude a method for feature description using oriented his-

tograms of image gradients but these are found to be in

effectual for echocardiogram images (as gradients are too

noisy). The novel description presented here outperforms

SIFT descriptors by a considerable margin (Section 5). The

complete feature selection and description framework is

presented in Fig. 5.

4. Training and Testing Algorithms

Once the salient features have been detected and en-

coded, an effective classification technique is required for

viewpoint discrimination. Most of the existing methods use

a single key frame from the echocardiogram video sequence

for classification purpose while we conjuncture that better

performance can be obtained if we more information that

is present in the video sequence. The classification frame-

work that we propose uses as many frames per video se-

quence as desired. We classify each frame independently

and each frame casts a vote towards parent video classifica-

tion. A given video sequence is assigned a class which gets

the maximum votes from the constituent frames. In case of

a tie reclassification is done only among tied classes. Em-

pirically we have noted that classifying the video randomly

is equally effective as the number of cases with ties are rare.

One advantage of this technique is that the crucial prob-

lem of key frame selection is resolved, as the frames we

use are obtained by uniformly sampling the video sequence.

Further, using multiple frames per video brings in some ro-

bustness to the classification process as misclassification by

a few outlier frames is automatically discounted.

The training algorithm in our system (Algorithm 1) de-

tects and encodes salient features for each frame in the train-

ing data. Then a hierarchical dictionary is learnt from all the

features in the system using non-uniform bins [9]. Then the

dictionary is used to learn the model parameters of a kernel-

based SVM [9]. The testing algorithm (Algorithm 2) detects

and encodes the salient features in the given test video se-

quence in a similar manner as the training algorithm. Then

using the learnt dictionary and SVM, each frame is indi-

Algorithm 1: View Classification Training

Input: Labeled Training Echocardiogram Videos:

trainSet, Neighborhood Size: nh, Number of

Frames: n

Output: SVM Parameters: M , Feature Dictionary: D

Pick a reference frame and detect its 3 anchor points1

foreach Video V ∈ trainSet do2

FV = {n equidistant frames ∈ V }3

foreach frame f ∈ FV do4

Feature Set for f , FS
f
V = {}.5

Extract Region of Interest (ROI).6

Detect the 3 anchor points.7

Compute Affine matrix w.r.t. reference frame.8

Apply the affine matrix and align ROI.9

M
f
V = Optical Flow w.r.t. next frame in10

sequence. [10]

E
f
V = Edge map of f .11

Mag = ||Mf
V ||2. (Motion Magnitude)12

FT ={ Scale invariant features in Mag [15]}.13

foreach Feature i ∈ FT do14

Loc = (x, y) coordinate of i.15

if Loc ∈ nh × nh neighborhood of some16

edge ∈ E
f
V then

THist = histogram of nh × nh17

intensity neighborhood of i.

MHist = histogram of nh × nh18

motion magnitude neighborhood of i.

FT i
V ec = concat(Loc, THist, MHist).19

FS
f
V = FS

f
V

⋃
{FT i

V ec}20

Learn Dictionary, D, from
⋃

V

⋃
f FS

f
V [9].21

Learn SVM parameters M using FS
f
V , D & PMK [9].22

vidually classified and final classification is made using the

voting scheme described earlier.

4.1. Parameter Selection

Like any other learning based method, there are a few pa-

rameters that need to be set in our system. Here we provide

some meaningful heuristics that can be used to set these pa-

rameters. Foremost is the number of frames per video to be

used for classification. We have noticed that as the num-

ber of frames increases so does the recognition rate, but at

the expense of computation time, so this parameter should

be set based on accuracy-efficiency trade-off. Next is the

neighborhood size selection for edge filtering, motion and

texture histogramming. Here we have noticed that a neigh-

borhood size of around 10 % of the ROI (rectangle con-

taining image sector/fan) size provides the best result. This

number is also used to set the number of bins in histograms.
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Algorithm 2: View Classification Algorithm

Input: Learnt SVM Model: M , Test Echocardiogram

Videos: testV ideo, Dictionary:D

Neighborhood Size: nh, Number of Frames: n

FtestV ideo = {n equidistant frames ∈ testV ideo }1

vote = zeros(numberOfPossibleV iews).2

foreach frame f ∈ FtestV ideo do3

Compute FS
f
testV ideo as described in Alg. 1.4

Classify f using FS
f
testV ideo, SVM M and D.5

class(f) = view obtained by classification.6

vote(class(f)) = vote(class(f)) + 1.7

Classify testV ideo as argmaxview{vote(view)}.8

Minor changes in this size does not have any significant im-

pact on recognition rates. Parameters of scale invariant fea-

tures detector are set to give around 200 features per frame.

The next parameter is the dictionary size used during the

learning phase. We set it such that 5 % of the total fea-

tures are retained in the dictionary with random initializa-

tion. And finally, each component of the feature vector is

uniformly weighted during dictionary creation.

5. Experiments

In order evaluate the performance of our view classifica-

tion framework, we present results from two sets of exper-

iments. First, in order to compare the performance of our

method with existing state-of-the-art techniques, we present

classification results using A4C, PLA, PLAB and PLAP

view points (same as those used in Beymer, et al. [3]). Sec-

ond, to demonstrate the capability of our method to easily

expand to classify more than just four views, we present re-

sults for a much larger and complicated eight way viewpoint

classification problem.

We conducted our experiments on a large collection of

echocardiogram videos1 which contains 113 echocardio-

gram video sequences belonging to eight different view-

points. Details of the database are listed in Table 1. The

videos were captured at 320 × 240 pixel size at 25 Hz. The

ECG waveform included in the video was used to extract a

heart cycle synchronized at the R-wave peak. These video

were manually labeled as belonging to one of the eight

views.

For the first experiment, we implemented the setup de-

scribed in [3]. We used four viewpoints from the data set

and conducted training and testing in a leave-one-out fash-

ion. The experiment was repeated 20 times with each time

a different random initialization of the feature dictionary.

Average recognition rates are reported in Table 2, where

1Downloaded from the web page of an author of [3]

http://www.cise.ufl.edu/∼fewang/echoview mmbia2008.html

View Videos Frames View Videos Frames

A2C 11 237 PLA 18 384

A3C 6 129 PSAB 12 271

A4C 26 597 PSAP 16 370

A5C 11 209 PSAM 13 237

Total Videos: 113, Total Frames: 2470

Table 1. Number of videos, frames and views in our data set.

Method/Views A4C PLA PBAB PSAP All

ICCV 2005,

SIFT+PMK [8]

59.3 65.5 47.7 73.2 62.0

ICCV 2007,

ML-Boosting [17]

80.3 75.5 67.5 70.9 74.9

MMBIA 2008,

ASM+Motion [3]

96.2 88.9 91.6 75.0 88.9

Our Method 96.2 98.9 100.0 100.0 98.4

Table 2. Comparison with the state-of-the-art method in recogni-

tion accuracies for four-way classification. Recognition percent-

ages are reported.

each row contains results using the method cited next to

the method name. Results for the competing methods were

taken from [3]. The best result in each column is high-

lighted in bold. Our method was run with 20 frames per

video and neighborhood size of 15 × 15 pixels with 15 bin

histograms. The dictionary was set to have approximately

14000 features (using the heuristic mentioned earlier).

The second experiment included all the eight classes

mentioned in Table 1. We conducted the training and test-

ing in a leave-one-out fashion and repeated the experiment

20 times each with a different random initialization of the

dictionary. The confusion matrix for the viewpoint classes

using our method, presented in Fig. 6, yields an average

recognition rate of 81%. Our method was run with 20

frames per video and neighborhood size of 15 × 15 pixels

with 15 bin histograms. The dictionary was set to have ap-

proximately 23000 features. Our implementation can pro-

cess a video with 20-30 frames in under 1 minute.

5.1. Discussion

It can be noted from the results reported in Table 2 that

our method outperforms all of the existing state-of-the-art

methods by a convincing margin. We attribute this primar-

ily to a better and more comprehensive use of the informa-

tion present in echo videos. When compared to the results

presented in [3], besides the better recognition rates, the sig-

nificant advantage of our techniques is that time and effort

consumed by manual labeling of the ASM features is not re-

quired. This translates to seamless expansion of our method

to more view classes and larger training sets.

We have also presented comparison to the classification

method presented in [17]. This method is built around a
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Figure 6. Confusion Matrix for eight-way view classification.

Numbers are the fraction of videos classified. Recognition rate

over all videos is 81.0 %.

Haar-like feature based Left Ventricle (LV) detector which

severely limits its capability to effectively classify those

views which lack LV region. Note that results presented are

from a re-implementation of the method which uses Left

Atrium region in place of LV for PSAB view and Haar-

wavelet local features (as in the original paper) for LV de-

tection. Our method demonstrates better recognition rates

as well as capability to include more view classes (with or

without LV) over this technique. Moreover, being a boost-

ing based method, [17] tends to only work well when very

large amount of training data is provided.

Finally, we have compared our method to an otherwise

quite effective object recognition method presented in [8].

This implementation used 25 images per view class and

PCA to reduce the dimension of 128-long SIFT feature vec-

tors to 2. Classification was done using PMK based SVM

with 6-D feature vectors ((x, y) location, scale, orientation,

2 PCA coefficients). This comparison is particularly impor-

tant here because it demonstrates the importance of look-

ing for good features at the right place, in our case, motion

magnitude images. SIFT features have been widely used

in various object and image recognition application, but as

demonstrated here, a direct application of SIFT based clas-

sification is ineffective.

From the results presented for the second experiment

(Figure 6), it can be noted that even when the problem of

view classification is complicated by presence of multiple

similar looking classes, our method can still yield good re-

sults. It can be noted that the 3 new Apical views create

confusion with A4C view while PSAM creates confusion

with the other Parasternal views. Recognition rate over all

videos is 81.0%.

6. Conclusion

We have introduced a novel scalable system for echocar-

diogram viewpoint classification which uses scale invariant

features detected on edge filtered motion magnitude images

and PMK based SVM. Through experiment on real data

we have demonstrated the our method convincingly outper-

forms existing state-of-the-art methods for echo view clas-

sification. We have also presented results for a more dif-

ficult eight-way view classification problem. Future work

may include exploring hierarchical classification strategies

with our features to attain higher recognition rates with even

more view classes.
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