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ABSTRACT

We address the problem of jointly localizing a robot in an unknown

room and estimating the room geometry from echoes. Unlike ear-

lier work using echoes, we assume a completely autonomous setup

with (near) collocated microphone and the acoustic source. We first

introduce a simple, easy to analyze estimator, and prove that the se-

quence of room and trajectory estimates converges to the true values.

Next, we approach the problem from a Bayesian point of view, and

propose a more general solution which does not require any assump-

tions on motion and measurement model of the robot. In addition to

theoretical analysis, we validate both estimators numerically.

Index Terms— Room geometry estimation, echo sorting, sound

source localization, simultaneous localization and mapping.

1. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a popular topic

in robotics and computer vision. It is a more complex, but far

more powerful alternative to localization in a known space, or map-

ping with a perfectly known sensing trajectory. Different flavors

of SLAM are characterized by different kinds of uncertainties and

sensing modalities. A common concept is that of landmarks—fixed

points in space whose locations may be accessed through measure-

ments (e.g. of range, azimuth, received power, visual information).

In this work we address SLAM based on echoes. We assume

no preinstalled infrastructure in the room, and the bare minimum of

sensing installed on the robot—a single omnidirectional source and

a single omnidirectional receiver.

Prior work has considered visual [1, 2, 3], range-only [4, 5], and

acoustic SLAM [6], as well as solutions based on multiple sensor

modalities [7]. In [6], the authors propose a framework to simulta-

neously localizes the mobile robot and multiple sound sources using

a microphone array on the robot. Echoes and multipath have been

used previously to do SLAM [8, 9], and for room geometry esti-

mation in general [10, 11]. But these prior works rely on a fixed

source or receiver, so that the echoes correspond to virtual beacons,

or virtual landmarks, and depending on the sensing setup we may get

measurements of range and/or azimuth of these virtual landmarks. In

contrast, in our case there is no beacon—source and receiver are col-

located on the same device. Moreover, we do not use a microphone

array, rather a single microphone. Thus our landmarks (from which

we get range-only measurements) are not static—they move with the

robot. Our problem can then be equivalently stated as jointly recon-

structing the trajectories of the robot and of the moving landmarks.
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Our contributions are as follows. We first propose an algorithm

based on elementary trigonometry in order to lay down the main

ideas. An additional benefit of simplicity is that we can show that

the algorithm converges to the correct solution when the robot is ex-

ploring the space randomly. Next, we formulate a Bayesian solution

inspired by FastSLAM [12]. We empirically observe that this more

sophisticated algorithm strictly (and by a large margin) outperforms

the elementary solution.

Section 2 introduces the notation, the problem setup, and the

adopted image source model. In Section 3 we propose two methods

for reconstructing the shape of a room from acoustic measurements.

In Section 4 we numerically compare the performance of these two

estimators, and we draw conclusions in Section 5.

2. PROBLEM SETUP

We assume that an omnidirectional acoustic source and a collocated

omnidirectional microphone are mounted on a robot. The robot

moves autonomously inside a room. At every step, the source pro-

duces a pulse, and the microphone registers the echoes. We define

the room as a 2D polygon, and derive all results in 2D. The deriva-

tions can be easily extended to 3D.

Image source model. In a multipath environment, a microphone

records both the direct path of the sound and its reflections from the

walls. In the image source (IS) model [13, 14] we replace the re-

flections from the walls with signals produced by image sources—

mirror images of the real sources across the corresponding walls—as

shown in Fig. 1. For a first-order echo and the kth wall, described

by the unit normal nk and any wall point pk, the image source s̃k
of the real source r is computed as s̃k = r + 2

〈
pk − r,nk

〉
nk.

The sound propagation is then described by a family of room im-

pulse responses where each RIR is idealized as a train of Dirac delta

impulses produced by the real and image sources, and recorded by

the microphone at position rn, hn(t) =
∑

k≥0
akφ(t − τn,k). ak

are the received magnitudes that depend on the wall absorption co-

efficients and the distance of the image source from the microphone.

The propagation time τn,k, also known as the time of arrival (TOA),

is proportional to the distance between the microphone rn and the

source s̃n,k:

τn,k =
‖s̃n,k − rn‖

c
, (1)

where c is the speed of sound.

The case of collocated microphone and source is illustrated in

Fig. 2. We focus on the kth wall of the room and explain how to

localize it with reference to the figure. The measurements consist of

TOAs extracted from RIRs, τn,k, and the robot motion commands

for each step, vn. Since the source and the microphone are collo-

cated, it is not possible to discriminate between translated, rotated



Fig. 1. Illustration of the image source model for first-order reflec-

tions.

Fig. 2. Setup with collocated source and microphone mounted on a

robot. The robot makes steps and obtains measurements. Distances

from the wall, extracted from RIRs are shown in purple, and motion

vectors in blue. The illustration presents the unique position of the

wall assuming noiseless measurements.

and reflected variants of the room about the robot. We resolve this

ambiguity by fixing some degrees of freedom—the initial robot’s

position r0 indicates the origin, and we set the orientation of the first

robot’s step to 0◦. Then, we can calculate robot’s position at any

step n, rn =
∑n

i=0
vi.

Proposition 1. Assuming ideal, noiseless measurements, we can

uniquely determine the wall line after three measurements as (2):

xn = rn +
d2n
‖qn‖2

qn ±
dn

√
‖qn‖2 − d2n
‖qn‖2

[
0 1
1 0

]
qn, (2)

where
pn =

dn
dn − dn+1

rn+1 −
dn+1

dn − dn+1

rn, (3)

and qn = pn − rn, rn is the robot’s position at step n, and dn is

its distance from the wall, dn = cτn/2.

Proof. The vector between the image source and the robot’s position

is given by
yn = s̃n − rn = 2

〈
pn − rn,n

〉
n (4)

for all n. We observe: i) the direction of yn is perpendicular to the

wall, and ii) the length of yn equals twice the distance between the

robot and the wall, denoted dn. The only line that satisfies both con-

ditions for all n is the common tangent of the circles with centroids

at rn and radii dn given by (2).

As Fig. 2 shows, having only two measurements gives two so-

lutions for the wall—there are two common tangents of two circles

such that the centroids are on the same side of the tangents. They are

shown as a thick black line and a dashed gray line in the figure. As-

suming that the robot does not move in parallel with the wall, three

measurements are sufficient to get a unique solution.

3. EchoSLAM

In practice, time measurements are imperfect. RIRs contain peaks

that are introduced by various sources of noise and that do not corre-

spond to any image source. It may be challenging to distinguish real

echoes from spurious peaks. Moreover, peaks are unlabelled—we

do not know which echo corresponds to which wall. It can happen

that echoes produced by second-order image sources arrive before

echoes produced by first-order image sources. We address both the

problem of extracting correct impulses, and the problem of matching

them with the corresponding walls. In addition to noise in acoustic

measurements, we also assume noise in the robot’s movements.

3.1. Echo labelling

Echo labelling solves the problem of matching the echoes with cor-

responding walls.

Uniqueness claim. Given the propagation times of the first-

order echoes, we can almost always correctly assign them to cor-

responding walls. The claim is based on the fact that in every two

consecutive steps robot’s real positions, along with its image sources,

define isosceles trapezoids with sides of the same length, equal to the

length of the robot’s step. This is illustrated in Fig. 3. We assume

that the length of the step ‖vn‖ is known up to some uncertainty, and

we claim that there is only one way to arrange the given propagation

times, τn−1,k and τn,k, to obtain such isosceles trapezoids.

Practical algorithm. In a real RIR, it is challenging to detect

impulses that belong to first-order echoes only. A possible strategy

is to extract a larger number of echo candidates from the record-

ings, and then group them using a combinatorial search based on the

above criterion. Although combinatorial, this can be executed fast

for typical q and K, and we can speed up using various heuristics.

An example of TOA measurements for one simulated trajectory is

illustrated in Fig. 4. The above steps are summarized in Algorithm

1, where we assume that the propagation times of echoes are stored

in the matrix U.

3.2. Robot’s localization and room reconstruction

We adopt a probabilistic model of the uncertainties in the robot’s

perception and motion. At time n, we seek to calculate a posterior

of the robot’s positions rn along with the parameters of the walls θ,

Fig. 3. Image source model for first-order echoes, and collocated

microphone and source. Sound rays at the measurement n − 1 are

shown in purple (dashed line) and sound rays at the measurement

n in green (dots). For every two consecutive steps, the robot’s real

positions, along with its image sources, define isosceles trapezoids

with sides of the same length—the length of the robot’s step.



Fig. 4. Left: An example of the robot’s trajectory in a room with

four walls. The trajectory is shown in gray, and the initial position

of the robot is marked with a circle. Right: TOA measurements of

echoes for 200 robot’s steps. Correspondence between the echo and

the wall is visualized with the same color.

Algorithm 1 Algorithm for echo labelling

Input: number of echo candidates, q ∈ N,

RIR from the nth measurement,

length of the robot’s step, ‖vn‖ ∈ R,

labelled TOAs for the (n−1)st measurement, Un−1 ∈ R
K

Output: labelled TOAs for the nth measurement at n, Un ∈ R
K

1: T← select TOAs of q candidate echoes from RIR

2: for all subsets τ of T with K el. and each permutation π(τ) do

3: if one can construct K isosceles trapezoids as in Fig. 3, given

the lengths of the bases τ , tops Un−1, and sides, ‖vn‖ then

4: return Un ← π(τ)
5: end if

6: end for

given all the motion vectors and TOA measurements up to time n,

p(rn, θ|v
n, dn). The superscript n refers to a set of variables from

step 1 to step n.

In the rest of the paper we assume to know the echo labelling and

estimate each wall independently. We study two estimators: The

first one is simply the mean of the independent estimators at each

robot’s step, which by the law of the large numbers converges to the

expectation E[p(θ|vn, dn)]. The second one is based on Bayes fil-

tering, where we simultaneously update the distribution of the wall

parameters and with the distributions of the robot’s positions. The

room geometry and the robot’s trajectory are both estimated using

the maximum aposteriori (MAP) rule. The reason for introducing

the first estimator is to show that a simple estimator converges to the

correct solution as the number of measurements grows. Even though

we have no formal proof of the same property for the second estima-

tor, we compare it with the first one and empirically observe that

it achieves correct solution, while the convergence rate significantly

improves.

3.2.1. Estimation of the wall

For the first estimator we assume that TOA measurements are noise-

less and that errors in robot’s steps have Gaussian distributions. The

wall is modelled as a line with slope tan(θ) and offset b. Since the

first robot’s position, r0, and the first measurement, d0, are known,

the only unknown parameter is the slope.

Proposition 1. Let us define each robot’s step by its length and

orientation, vn(xn, φn), where both variables have Gaussian distri-

butions

xn ∼ N (µxn
, σ2

x), φn ∼ N (µφn
, σ2

φ). (5)

Assume that µxn
= µx for every n. We define the estimator of θ for

each measurement n as:

θ̂n = µφn
+ arcsin

(dn+1 − dn
µx

)

= µφn
+ arcsin

(xn sin(θ − φn)

µx

)
, (6)

and the final estimate of θ after N measurements as:

θ̂N =
1

N

N∑

n=1

θ̂n. (7)

Then, θ̂N is unbiased when µφn
is uniformly distributed on the cir-

cle.

Sketch of the proof. The ratio xn/µx is distributed asN (1, σ2
x/µ

2
x)

for all n. Since it does not depend on n, so we delay taking the cor-

responding expectation. We introduce an auxiliary Gaussian random

variable, θ−φn ∼ N (θ−µφn
, σ2

φ). One can verify that the bias of

θ̂n depends only on the parameter µφn
. Therefore, we rewrite it as

θ̂n = θ + f(µφn
), where f(·) is a periodic with zero mean over the

period. Then we observe that

E(θ̂N ) = E

( 1

N

N∑

n=1

(θ + f(µφn
)
)

= θ +
1

N

N∑

n=1

E(f(µφn
)), (8)

and the uniform distribution of µφn
on the interval [0, 2π] provides

that E(f(µφn
)) = 0 ∀ n, so that E(θ̂N ) = θ.

The physical meaning is as follows: the estimator is positively

biased if the robot walks towards the wall E(θ̂N ) − θ ≥ 0, and

negatively biased if the robot walks away from the wall E(θ̂N )−θ ≤
0. These biases cancel for a robot that picks its direction at random.

As we assume that the robot performs a random walk, the values

of µφn
are uniformly distributed on the circle, and one can verify

from the graph that the function has zero mean. Thus E(f(µφn
)) is

zero. By the law of the large numbers, the sequence of estimates θ̂n
converges to the real value θ.

3.2.2. Bayes filtering

The second approach, based on Bayes filtering, is not bound to a

limited parametric subset of distributions for motion or measure-

ment models. Similar to [12], and the vast number of the papers

on SLAM that adopt this methodology, the approach is based on a

conditional independence property of the problem—knowledge of

the robot’s position renders the individual TOA measurements inde-

pendent. Therefore, knowledge of the exact position of one wall tells

us nothing about the other walls, when the robot’s location is known.

These conditional independences imply the following factorization:

p(rn, θ|v
n, dn) = p(rn|v

n, dn)
K∏

k=1

p(θk|rn,v
n, dnk )

The algorithm that simultaneously localizes the robot and esti-

mates the walls consists of three steps and is summarized in Algo-

rithm 2.



Algorithm 2 Bayes filtering

Input: TOAs for every n, n ≤ N
robot’s steps for every n, vn

Output: estimation of the angle of the wall after N steps, θ̂N

estimation of the robot’s positions for every n, r̂n

1: for every measurement n do

2: Predict the robot’s position for the nth measurement based on

the motion model:

p(rn|v
n, dn−1) =

∫
p(rn|vn, rn−1)p(rn−1|v

n, dn)drn−1

3: Assume the measurement model p(dn|v
n, rn−1, dn−1, θ) =

p(dn|rn, θ), and update the wall’s parameter θ:

p(θ|rn, dn,vn) ∼ p(dn|θ, rn)p(θ|r
n−1, dn−1,vn−1)

4: Update the robot’s position in order to incorporate the last

measurement:

p(rn|v
n, dn) ∼ p(dn|θ, rn)p(rn|v

n, dn−1)

5: Estimate θ̂N and r̂n using MAP:

θ̂N = argmax
rn,dn,vn

p(θ|rn, dn,vn), r̂n = argmax
vn,dn

p(rn|v
n, dn)

6: end for

(a) (b)

Fig. 5. Estimation of the wall’s parameter θ. (a) Dependence of

E(θ̂N )− θ on the number of steps for the first estimator. (b) Depen-

dence of the MSE on the number of steps for the second estimator.

The underlying idea of the second step is that all midpoints be-

tween the robot rn and the image source s̃n lie on the same line, and

that line is perpendicular to every line connecting the robot rn and

the image source s̃n, ∀n. The line has the same direction as the wall,

tan θ.

4. NUMERICAL SIMULATIONS

We validated both approaches numerically. In Fig. 5(a) we verify the

unbiasedness result from Section 3.2.1 empirically, and show that

E(θ̂N )− θ→ 0 as N grows. For the second algorithm we assumed

the same model as for the first estimator, for which we have proved

the convergence, and computed the mean squared error (MSE) in ev-

ery step. The result is given in Fig. 5(b) (the means of the Gaussian

distributions are µx = 30, and µφn
∼ U [0, 2π]). Faster conver-

gence of the second estimator shows that the room estimation signif-

icantly improves when we exploit the information about the possible

robot’s positions at each step and localize the robot simultaneously,

rather than observe the steps independently as in the first approach.

Figures 6 - 8 relate to the Algorithm 2. Distributions of the room

geometry at steps n = 2, 4, 6 and 8 are illustrated in Fig. 6; and

MAP estimates for n = 4, 6 and 8 are shown in Fig. 7. The estimator

recovers the room geometry with high accuracy after a small number

of steps. Distributions of the robot’s positions and its image sources

are shown in Fig 8.

(a) n = 2 (b) n = 4

(c) n = 6 (d) n = 8

Fig. 6. Sampled distribution of the room geometry estimated with

the Algorithm 2 at different steps. The lightness level of the lines

presents the probability of the estimation: darker line—higher prob-

ability that the line corresponds to the wall.

(a) n = 4 (b) n = 6 (c) n = 8

Fig. 7. Estimates of the room geometry at different steps, and the

actual room geometry are shown in blue and red, respectively.

(a) n = 1 (b) n = 3 (d) n = 5

Fig. 8. Estimates of the robot’s real positions and its image sources.

5. CONCLUSION

We proposed an algorithm for simultaneous localization and map-

ping based on multipath propagation inside a room. Our sensing

setup is rudimentary—we assumed a single omnidirectional sound

source and a single omnidirectional microphone collocated on a

robot, and no preinstalled infrastructure in the room. We demon-

strated that the measurement of distances between the robot and the

walls are sufficient to develop an algorithm that estimates robot’s

trajectory precisely, and recovers the geometry of the room.

Ongoing research includes building a generic range-only frame-

work for simultaneous localization and mapping, as we believe that

current solutions do not fully exploit the geometry of such setups.
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