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Objectives

Kernel ridge regression on N training points has
Θ(N 3) complexity due to inverting anN×N kernel
matrix. We investigate random feature approxima-
tions of the Laplace kernel that
• run in O(NC2) time, where C can be controlled
to trade-off speed and approximation accuracy

• can be trained for several hyperparameter values
at once efficiently, yielding a fast procedure for
selecting the right model complexity

Random kitchen sinks
Instead of inverting an N ×N matrix, randomly find a
feature map z : RD → RC (C � N) such that

k(x, x′) ≈ z(x)Tz(x′)
([2]). The resulting ridge regression problem has solution

θMAP = (ZTZ + δ2IC)−1ZTy

where Z ∈ RN×C is the feature matrix. We invert a
C×C matrix, solving the problem in timeO(C3+C2N).

Mondrian process
The Mondrian process [1] on an axis-aligned box Θ is
a stochastic process taking values in guillotine parti-
tions of Θ. It starts with no cuts at time 0 and as time
progresses, cuts randomly appear, hierarchically splitting
Θ into more refined partitions.
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Figure 1: A sample from a 2D Mondrian process on Θ = [0, 1]× [0, 1]
with lifetime λ = 1.5.

TheMondrian process on Θ with lifetime λ is the
law of a Mondrian process on Θ stopped at time λ (i.e.,
ignoring cuts after time λ). Useful property:

A box [a1, b1]× · · · × [aD, bD] contains no cut up
to time λ with probability exp(−λ

∑D
d=1(bd−ad)).

Mondrian approximation
The (symmetric) Laplace kernel is

k(x, x′) = exp (−λ‖x − x′‖1)

where λ is the inverse lengthscale hyperparameter.
We obtain our random feature mapping as follows:
• Sample from a Mondrian process with lifetime λ.
• Define z(x) to be the indicator vector of the partition
cell into which point x ∈ RD falls.

Inner products in this feature space are

z(x)Tz(x′) =
{

1 if x, x′ are in the same cell
0 otherwise

Mondrian approximation
Points x, x′ fall into the same cell if and only if no cut
of the Mondrian separates them. By properties of the
Mondrian process:

P(z(x)Tz(x′) = 1) = exp (−λ‖x − x′‖1) = k(x, x′)
Concatenating feature vectors z1(x), . . . , zM(x) from M
independent Mondrian samples we obtain a feature space
in which inner products are Monte Carlo estimates of the
target kernel:(

z(x)√
M

)T (z(x′)√
M

)
= 1
M

M∑
m=1

zm(x)Tzm(x′)→ k(x, x′)
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RMSE vs number C of generated features
λ=0.01, δ=0.10, data: CPU (Ntrain=3000, Ntest=818)
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Figure 2: Convergence (in terms of validation set RMSE) to exact ker-
nel regression as number C of generated features increases. Random
Binning is one of the random feature kernel approximation schemes
proposed in [2].

Entire regularization path
Instead of recomputing the approximation for several
lifetimes (inverse lengthscales) λ from scratch, we note
• decrease λ ≡ remove cuts from Mondrian samples
≡ merge partition cells together ≡ sum features
(columns of Z) together

• increase λ ≡ add cuts to Mondrian samples ≡ split
partition cells into two ≡ replace a feature (column
of Z) with two new ones

Under these operations, the inverse (ZTZ + δ2IC)−1 can
be updated in O(C2) time and the resulting regression
model evaluated in time O(CN).
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Figure 3: Entire regularization path of Laplace kernel approximation.

Our Laplace kernel approximation can be trained
and evaluated for all inverse lengthscale hyperpa-
rameter values λ ∈ [0,Λ] at essentially the same
cost as for just the single value Λ.

Mondrian Grid
The (general) Laplace kernel is given by

k(x, x′) = e−
∑D

d=1 λd|xd−x
′
d|

where λ1, . . . , λD are inverse lengthscales of the kernel.
A Mondrian grid is a collection of D independent one-
dimensional Mondrian processes, each running on one of
the coordinate axes of RD.

d = 1

d = 2

0t
(1)
1 t

(1)
2 t

(1)
3 t

(1)
4

t
(2)
1

t
(2)
2

t
(2)
3

Figure 4: Mondrian grid sample in 2D. Each cut is associated with
a time. Cuts in dimension d have times t(d)i ≤ λd, where λd is the
lifetime of the Mondrian running on the d-th coordinate axis.

We use the same feature mapping as before (indicators
of partition cells), so that z(x)Tz(x′) = 1 if and only if
x, x′ fall into the same cell. By independence

P(z(x)Tz(x′) = 1) =
D∏
d=1

e−λd|xd−x
′
d| = k(x, x′)

Again we concatenate feature vectors from M indepen-
dent Mondrian grids to obtain Monte Carlo estimates.

Lengthscale configuration exploration
Adjust the inverse lengthscale of the approximated kernel
in each dimension independently by changing the lifetime
of the 1D Mondrian(s) on the corresponding coordinate
axis. Amounts to adding or removing cuts from the grid,
which translates to adding and removing features from
the generated feature space. The resulting regression
model can be updated in time O(C2 + CN).
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Figure 5: Lengthscale configuration exploration where the second
dimension d = 2 is irrelevant. This exploration starts with lifetime 0
in all dimensions and at each step, the dimension in which the lifetime
is increased is chosen greedily.
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