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ABSTRACT

Deep extreme classi�cation (XC) seeks to train deep architectures

that can tag a data point with its most relevant subset of labels from

an extremely large label set. The core utility of XC comes from pre-

dicting labels that are rarely seen during training. Such rare labels

hold the key to personalized recommendations that can delight and

surprise a user. However, the large number of rare labels and small

amount of training data per rare label o�er signi�cant statistical

and computational challenges. State-of-the-art deep XC methods at-

tempt to remedy this by incorporating textual descriptions of labels

but do not adequately address the problem. This paper presents

ECLARE, a scalable deep learning architecture that incorporates

not only label text, but also label correlations, to o�er accurate

real-time predictions within a few milliseconds. Core contributions

of ECLARE include a frugal architecture and scalable techniques to

train deep models along with label correlation graphs at the scale of

millions of labels. In particular, ECLARE o�ers predictions that are

2–14%more accurate on both publicly available benchmark datasets

as well as proprietary datasets for a related products recommenda-

tion task sourced from the Bing search engine. Code for ECLARE is

available at https://github.com/Extreme-classi�cation/ECLARE
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Figure 1: Number of training points per label for two

datasets. Labels are ordered from left to right in increasing

order of popularity. 60–80% labels have < 5 training points

(the bold horizontal line indicates the 5 training point level).

(WWW ’21), April 19–23, 2021, Ljubljana, Slovenia. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3442381.3449815

1 INTRODUCTION

Overview. Extreme multi-label classi�cation (XC) involves tagging

a data point with the subset of labels most relevant to it, from an ex-

tremely large set of labels. XC �nds applications in several domains

including product recommendation [28], related searches [15], re-

lated products [31], etc. This paper demonstrates that XC methods

stand to bene�t signi�cantly from utilizing label correlation data,

by presenting ECLARE, an XC method that utilizes textual label

descriptions and label correlation graphs over millions of labels

to o�er predictions that can be 2–14% more accurate than those

o�ered by state-of-the-art XC methods, including those that utilize

label metadata such as label text.

Rare Labels. XC applications with millions of labels typically �nd

that most labels are rare, with very few training data points tagged

with those labels. Fig 1 exempli�es this on two benchmark datasets

where 60–80% labels have < 5 training points. The reasons behind

rare labels are manifold. In several XC applications, there may exist

an inherent skew in the popularity of labels, e.g, it is natural for

certain products to be more popular among users on an e-commerce

platform. XC applications also face missing labels [16, 50] where

training points are not tagged with all the labels relevant to them.

Reasons for this include the inability of human users to exhaustively

mark all products of interest to them, and biases in the recommenda-

tion platform (e.g. website, app) itself which may present or impress

upon its users, certain products more often than others.
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Need for Label Metadata. Rare labels are of critical importance

in XC applications. They allow highly personalized yet relevant

recommendations that may delight and surprise a user, or else al-

low precise and descriptive tags to be assigned to a document, etc.

However, the paucity of training data for rare labels makes it chal-

lenging to predict them accurately. Incorporating label metadata

such as textual label descriptions [31], label taxonomies [21, 29, 38]

and label co-occurrence into the classi�cation process are possible

ways to augment the available information for rare labels.

Key Contributions of ECLARE. This paper presents ECLARE,
an XC method that performs collaborative learning that bene�ts

rare labels. This is done by incorporating multiple forms of label

metadata such as label text as well as dynamically inferred label

correlation graphs. Critical to ECLARE are augmentations to the

architecture and learning pipeline that scale to millions of labels:

(1) Introduce a framework that allows collaborative extreme learn-

ing using label-label correlation graphs that are dynamically

generated using asymmetric random walks. This is in contrast

to existing approaches that often perform collaborative learning

on static user-user or document-document graphs [12, 14, 48].

(2) Introduce the use of multiple representations for each label: one

learnt from label text alone (LTE), one learnt collaboratively
from label correlation graphs (GALE), and a label-speci�c re-

�nement vector. ECLARE proposes a robust yet inexpensive

attention mechanism to fuse these multiple representations to

generate a single one-vs-all classi�er per label.

(3) Propose critical augmentations to well-established XC train-

ing steps, such as label clustering, negative sampling, classi�er

initialization, shortlist creation (GAME), etc, in order to incor-

porate label correlations in a systematic and scalable manner.

(4) O�er an end-to-end training pipeline incorporating the above

components in an e�cient manner which can be scaled to tasks

with millions of labels and o�er up to 14% performance boost

on standard XC prediction metrics.

Comparison to State-of-the-art. Experiments indicate that apart

from signi�cant boosts on standard XCmetrics (see Tab 2), ECLARE
o�ers two distinct advantages over existing XC algorithms, includ-

ing those that do use label metadata such as label text (see Tab 6)

(1) Superior Rare Label Prediction: In the �rst example in Tab 6,

for the document “Tibetan Terrier”, ECLARE correctly predicts

the rare label “Dog of Osu” that appeared just twice in the

training set. All other methods failed to predict this rare label.

It is notable that this label has no common tokens (words) with

the document text or other labels which indicates that relying

solely on label text is insu�cient. ECLARE o�ers far superior

performance on propensity scored XC metrics which place more

emphasis on predicting rare labels correctly (see Tabs 2 and 3).

(2) Superior Intent Disambiguation: The second and third ex-

amples in Tab 6 further illustrate pitfalls of relying on label text

alone as metadata. For the document “85th Academy Awards”,
all other methods are incapable of predicting other award cere-

monies held in the same year and make poor predictions. On

the other hand, ECLARE was better than other methods at pick-

ing up subtle cues and associations present in the training data

to correctly identify associated articles. ECLARE o�ers higher

precision@1 and recall@10 (see Tabs 2 and 3).

2 RELATED WORK

Summary. XC algorithms proposed in literature employ a variety

of label prediction approaches like tree, embedding, hashing and

one-vs-all-based approaches [1, 2, 4, 6, 8, 10, 11, 15–19, 22, 26, 31,

35–37, 40, 41, 44–47, 49]. Earlier works learnt label classi�ers us-

ing �xed representations for documents (typically bag-of-words)

whereas contemporary approaches learn a document embedding

architecture (typically using deep networks) jointly with the label

classi�ers. In order to operate with millions of labels, XC meth-

ods frequently have to rely on sub-linear time data structures for

operations such as shortlisting labels, sampling hard negatives,

etc. Choices include hashing [28], clustering [6, 36, 49], negative

sampling [30], etc. Notably, most XC methods except DECAF [31],

GLaS [10], and X-Transformer [6] do not incorporate any form of

label metadata, instead treating labels as black-box identi�ers.

Fixed Representation.Much of the early work in XC used �xed

bag-of-words (BoW) features to represent documents. One-vs-all

methods such as DiSMEC [1], PPDSparse [45], ProXML [2] decom-

pose the XC problem into several binary classi�cation problems,

one per label. Although these o�ered state-of-the-art performance

until recently, they could not scale beyond a few million labels.

To address this, several approaches were suggested to speed up

training [15, 22, 36, 47], and prediction [19, 33] using tree-based

classi�ers and negative sampling. These o�ered high performance

as well as could scale to several millions of labels. However, these

architectures were suited for �xed features and did not support

jointly learning document representations. Attempts, such as [15],

to use pre-trained features such as FastText [20] were also not very

successful if the features were trained on an entirely unrelated task.

RepresentationLearning.Recentworks such as X-Transformer [6],

ASTEC [8], XML-CNN [26], DECAF [31] and AttentionXML [49]

propose architectures that jointly learn representations for the

documents as well as label classi�ers. For the most part, these meth-

ods outperform their counterparts that operate on �xed document

representations which illustrates the superiority of task-speci�c

document representations over generic pre-trained features. How-

ever, some of these methods utilize involved architectures such as

attention [6, 49] or convolutions [26]. It has been observed [8, 31]

that in addition to being more expensive to train, these architec-

tures also su�er on XC tasks where the documents are short texts,

such as user queries, or product titles.

XC with Label Metadata. Utilizing label metadata such as label

text, label correlations, etc. can be critical for accurate prediction of

rare labels, especially on short-text applications where documents

have textual descriptions containing only 5-10 tokens which are not

very descriptive. Among existing works, GLaS [10] uses label corre-

lations to design a regularizer that improved performance over rare

labels, while X-Transformer [6] and DECAF [31] use label text as

label metadata instead. X-Transformer utilizes label text to perform

semantic label indexing (essentially a shortlisting step) along with

a pre-trained-then-�ne-tuned RoBERTa [27] architecture. On the

other hand, DECAF uses a simpler architecture to learn both label

and document representations in an end-to-end manner.



ECLARE: Extreme Classification with Label Graph Correlations WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

λℰ
……𝐑

ℰ 𝐯 = 𝐯 + 𝜆 ⋅ 𝐑 ⋅ RELU 𝐯
Text Embedding Block Attention Block

ො𝐳𝑙𝟐ො𝐳𝑙𝟑 ො𝐳𝑙1

… … …𝐀
𝛼𝑙1

SoftMax𝒜
ReLU

……𝐓Sigmoid

ReLU

……𝐓Sigmoid

ReLU

……𝐓Sigmoid

ReLU

𝛼𝑙2𝛼𝑙3

Figure 2: The building blocks of ECLARE. (Left) The em-

bedding block is used in document and label embeddings.

(Right) The attention block is used to fusemultiple label rep-

resentations into a single label classi�er (see Fig 3).

Collaborative Learning for XC. Given the paucity of data for

rare labels, the use of label text alone can be insu�cient to ensure

accurate prediction, especially in short-text applications such as

related products and related queries search, where the amount of

label text is also quite limited. This suggests using label correla-

tions to perform collaborative learning on the label side. User-user

or document-document graphs [12, 14, 24, 34, 42, 43, 48, 51] have

become popular, with numerous methods such as GCN [24], Light-

GCN [14], GraphSAGE [12], PinSage [48], etc. utilizing graph neural

networks to augment user/document representations. However, XC

techniques that directly enable label collaboration with millions

of labels have not been explored. One of the major barriers for

this seems to be that label correlation graphs in XC applications

turn out to be extremely sparse, e.g, for the label correlation graph

ECLARE constructed for the LF-WikiSeeAlsoTitles-320K dataset,

nearly 18% of labels had no edges to any other label. This precludes

the use of techniques such as Personalised Page Rank (PPR) [25, 48]

over the ground-truth to generate a set of shortlisted labels for

negative sampling. ECLARE solves this problem by �rst mining

hard-negatives for each label using a separate technique, and sub-

sequently augmenting this list by adding highly correlated labels.

3 ECLARE: EXTREME CLASSIFICATION
WITH LABEL GRAPH CORRELATIONS

Summary. ECLARE consists of four components 1) a text embed-

ding architecture adapted to short-text applications, 2) one-vs-all

classi�ers, one per label that incorporate label text as well as label

correlations, 3) a shortlister that o�ers high-recall label shortlists

for data points, allowing ECLARE to o�er sub-millisecond predic-

tion times even with millions of labels, and 4) a label correlation

graph that is used to train both the one-vs-all classi�ers as well as

the shortlister. This section details these components as well as a

technique to infer label correlation graphs from training data itself.

Notation. Let ! denote the number of labels and + the dictionary

size. All # training points are presented as (x8 , y8 ). x8 ∈ R
+ is a

bag-of-tokens representation for the 8th document i.e. G8C is the

TF-IDF weight of token C ∈ [+ ] in the 8th document. y8 ∈ {−1, +1}
!

is the ground truth label vector with ~8; = +1 if label ; ∈ [!] is

ො𝐱 = RELU ℰ𝐷 ො𝐱0Document Text Embedding

ℰ𝐷
Chevron

Faux

Fur

Women

for STOP 𝐆
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𝐰𝑙 = 𝛼𝑙3 ⋅ ො𝐳𝑙3⊕𝛼𝑙2 ⋅ ො𝐳𝑙2⊕𝛼𝑙1 ⋅ ො𝐳𝑙1

ො𝐳𝑙1ො𝐳𝑙3
𝐰𝑙

Classifier
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ℰ𝐿 ො𝐳𝑙2 ℰ𝐺Dog

STOPof

Osu

GALE ො𝐳𝑙𝟐 = ℰ𝐺 σ𝑚∈ 𝐿 𝐆𝑙𝑚 ⋅ ො𝐳𝑚0

𝛼𝑙1𝒜 𝛼𝑙3 𝛼𝑙2
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Figure 3: (Left) Document Embedding: ECLARE uses the

light-weight embedding block E (see Fig 2) to embed docu-

ments, ensuring rapid processing at test time (see Fig 6). Stop

words such as for, of ) are discarded. (Right) Label classi�ers:

ECLARE incorporates multiple forms of label metadata in-

cluding label text (LTE) and label correlation graphs (GALE),
fusing them with a per-label re�nement vector ẑ3

;
using the

attention block (see Fig 2) to create a one-vs-all classi�er w;
for each label ; ∈ [!]. Connections to and from the attention

block are shown in light gray to avoid clutter. A separate in-

stance of the embedding block is used to obtain document

embeddings (E� ), LTE (E!) and GALE (E� ) embeddings.

relevant to the 8th document and ~8; = −1 otherwise. For each label

; ∈ [!], its label text is similarly represented as z; ∈ R
+ .

3.1 Document Embedding Architecture

ECLARE learns �-dimensional embeddings for each vocabulary

token E = [e1, . . . , e+ ] ∈ R
�×+ and uses a light-weight embedding

block (see Fig 2) implementing a residual layer. The embedding

block E contains two trainable parameters, a weight matrix R and a

scalar weight _ (see Fig 2). Given a document x ∈ R+ as a sparse bag-

of-words vector, ECLARE performs a rapid embedding (see Fig 3) by

�rst using the token embeddings to obtain an initial representation

x̂0 = Ex ∈ R� , and then passing this through an instantiation E�
of the text embedding block, and a ReLU non-linearity, to obtain

the �nal representation x̂. All documents (train/test) share the same

embedding block E� . Similar architectures have been shown to be

well-suited to short-text applications [8, 31].

3.2 Label Correlation Graph

XC applications often fail to provide label correlation graphs di-

rectly as an input. Moreover, since these applications also face ex-

treme label sparsity, using label co-occurrence alone yields fractured

correlations as discussed in Sec 2. For example, label correlations

gleaned from products purchased together in the same session, or

else queries on which advertisers bid together, may be very sparse.

To remedy this, ECLARE infers a label correlation graph using the

ground-truth label vectors i.e. y8 , 8 ∈ [# ] themselves. This ensures

that ECLARE is able to operate even in situations where the ap-

plication is unable to provide a correlation graph itself. ECLARE
adopts a scalable strategy based on random walks with restarts (see

Algorithm 1) to obtain a label correlation graph G2 ∈ R!×! that
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Algorithm 1 Label Correlation Graph Genration. #, ! denote

the number of training points and labels. l and ? denote the walk

length and restart probability. Y = [y1, . . . , y# ] ∈ {−1, +1}
!×# is

a matrix giving the relevant training labels for each document. For

any set ( , Unif(() returns a uniformly random sample from ( . The

subroutineWalkFrom performs a walk starting at the label ; .

1: procedure WalkFrom(;,Y, l, ?)

2: v← 0 ∈ R! ⊲ Initialize visit counts

3: _ ← ; ⊲ Start the walk from the label ;

4: for C = 1; C ≤ l ; C++ do

5: q ← Unif( [0, 1]) ⊲ Random number in range [0, 1]

6: if q ≤ ? then

7: _ = ; ⊲ Restart if required

8: X ← Unif({8 : ._8 = +1}) ⊲ Sample a relevant doc

9: _ ← Unif(
{

9 : .9X = +1
}

) ⊲ Sample a relevant label

10: v[_]++ ⊲ Update the visit counts

11: return v

12: procedure RandomWalk(!,Y, l, ?)

13: G2 ← 00⊤ ∈ R!×! ⊲ Initialize visit counts

14: for ; = 1; ; ≤ !; ;++ do

15: G2
;
←WalkFrom(;,Y, l, ?) ⊲ Update row ; of G2

16: return G2

augments the often meager label co-occurrence links (see Fig 4)

present in the ground truth. Non-rare labels (the so-called head

and torso labels) pose a challenge to this step since they are often

correlated with several labels and can overwhelm the rare labels.

ECLARE takes two precautions to avoid this:

(1) Partition: Head labels (those with > 500 training points) are

disconnected from the graph by setting G2
ℎℎ

= 1 and G2
ℎC

= 0 =

G2
Cℎ

for all all head labels ℎ ∈ [!] and C ≠ ℎ (see Fig 5).

(2) Normalization: G2 is normalized to favor edges to/from rare

labels asG = A−1/2 ·G2 ·B−1/2, whereA,B ∈ R!×! are diagonal

matrices with the row and column-sums of G2 respectively.

Algorithm 1 is used with a restart probability of 80% and a random

walk length of 400. Thus, it is overwhelmingly likely that several

dozens of restarts would occur for each label. A high restart proba-

bility does not let the random walk wander too far thus preventing

tenuous correlations among labels from getting captured.

3.3 Label Representation and Classi�ers

As examples in Tab 6 discussed in Sec 4 show, label text alone

may not su�ciently inform classi�ers for rare labels. ECLARE
remedies this by learning high-capacity one-vs-all classi�ers W =

[w1, . . . ,w!] ∈ R
�×! with 3 distinct components described below.

Label Text Embedding (LTE). The �rst component incorporates

label text metadata. A separate instance E! of the embedding block

is used to embed label text. Given a bag-of-words representation

z; ∈ R
+ of a label, the LTE representation is obtained as ẑ1

;
= E! (ẑ

0
;
)

where as before, we have the “initial” representation ẑ0
;
= Ez; . The

embedding block E! is shared by all labels. We note that the DECAF

method [31] also uses a similar architecture to embed label text.

Anatolian 

Shepherd

Sarabi Mastiff

Gaddi Kutta

Kangal Dog

Akbash Dog

Bully Kutta

Tibetan Mastiff

Aksaray

Malaklisi Dog
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Bully Kutta Tibetan Mastiff

Anatolian 
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Sarabi Mastiff

Gaddi Kutta

Kangal Dog

Akbash Dog

Bully Kutta

Tibetan Mastiff

Aksaray

Malaklisi Dog

Ground-truth labelling

Random Walks

(different colors denote 

distinct restarts)

Discovered Label Correlations

(edge colors correspond to the 

restart that discovered them)

Documents Labels

documents

labels

known co-occurrences

inferred correlations

Legend

Aksaray

Malaklisi Dog

Figure 4: An execution of Algorithm 1 on a subset of the

LF-WikiSeeAlsoTitles-320K dataset starting from the label

“Kangal Dog”. (Left) ECLARE uses document-label associa-

tions taken from ground-truth label vectors (black color) to

infer indirect correlations among labels. (Middle) Random

walks (distinct restarts colored di�erently) infer diverse cor-

relations. (Right) These inferred correlations (marked with

the color of the restart that discovered them) augment the

meager label co-occurrences present in the ground truth

(marked with dotted lines).

Head label

Non-head label

Meta label cluster

Label correlation edge

Metalabel correlation edge

Legend

Figure 5: To avoid head labels from distorting label correla-

tion patterns, labels with > 500 training points are forcibly

disconnected from the label correlation graph and also clus-

tered into head meta-labels separately. Consequently, the

GALE and GAME steps have a trivial action on head labels.

Graph Augmented Label Embedding (GALE). ECLARE aug-

ments the LTE representation using the label correlation graph

G constructed earlier and a graph convolution network (GCN) [24].

This presents a departure from previous XC approaches. A typical

graph convolution operation consists of two steps which ECLARE
e�ectively implements at extreme scales as shown below

(1) Convolution: initial label representations are convolved in a

scalable manner using G as z̃2
;
=
∑

<∈[!] �;< · ẑ
0
< . Note that

due to random restarts used by Algorithm 1, we have�;; > 0

for all ; ∈ [!] and thus z̃2
;
contains a component from ẑ0

;
itself.

(2) Transformation: Whereas traditional GCNs often use a simple

non-linearity as the transformation, ECLARE instead uses a
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separate instance E� of the embedding block to obtain the

GALE representation of the label as ẑ2
;
= E� (z̃

2
;
).

ECLARE uses a single convolution and transformation operation

which allowed it to scale to applications with millions of nodes.

Recent works such as LightGCN [14] propose to accelerate GCNs

by removing all non-linearities. Despite being scalable, using Light-

GCN itself was found to o�er imprecise results in experiments. This

may be because ECLARE also uses LTE representations. ECLARE
can be seen as improving upon existing GCN architectures such as

LightGCN by performing higher order label-text augmentations for

^ = 0, . . . , : as ẑ^+1
;

= E^
�
(
∑

<∈[!] �
^
;<
· ẑ0<) where G

^
=
∏^
9=1 G

encodes the ^−hop neighborhood, and E^
�

is a separate embed-

ding block for each order ^. Thus, ECLARE’s architecture allows
parallelizing high-order convolutions. Whereas ECLARE could be

used with larger orders : > 1, using : = 1 was found to already

outperform all competing methods, as well be scalable.

Re�nement Vector and Final Classi�er. ECLARE combines the

LTE and GALE representations for a label with a high-capacity

per-label re�nement vector ẑ3
;
∈ R� (for a general value of : ,

ẑ:+2
;

is used) to obtain a one-vs-all classi�er w; (see Fig 3). To

combine ẑ1
;
, ẑ2
;
, ẑ3
;
, ECLARE uses a parameterized attention block

A (see Fig 2) to learn label-speci�c attention weights for the three

components. This is distinct from previous works such as DECAF

which use weights that are shared across labels. Fig 9 shows that

ECLARE bene�ts from this �exibility, with the re�nement vector ẑ3
;

being more dominant for popular labels that have lots of training

data whereas the label metadata based vectors ẑ2
;
, ẑ1
;
being more

important for rare labels with less training data. The attention block

is explained below (see also Fig 2). Recall that ECLARE uses : = 1.

C (x) = f (T · ReLU(x))

q; =
[

C (ẑ1
;
); . . . ; C (ẑ:+2

;
)
]

[

U1
;
, . . . , U:+2

;

]

=
exp(A · q; )

∥exp(A · q; )∥1

w; = U
1
;
· ẑ1
;
+ . . . + U:+2

;
· ẑ:+2
;

The attention block is parameterized by the matrices T ∈ R�×� and

A ∈ R(:+2)×(:+2)� . q; ∈ R
(:+2)� concatenates the transformed

components before applying the attention layer A. The above at-

tention mechanism can be seen as a scalable paramaterized option

(requiring only O
(

�2 + :2�
)

additional parameters) instead of a

more expensive label-speci�c attention scheme which would have

required learning ! × (: + 2) parameters.

3.4 Meta-labels and the Shortlister

Despite being accurate, if used naively, one-vs-all classi�ers require

Ω (!�) time at prediction and Ω (#!�) time to train. This is in-

feasible with millions of labels. As discussed in Sec 2, sub-linear

structures are a common remedy in XC methods to perform label

shortlisting during prediction [4, 6, 8, 15, 22, 36, 45]. These shortlist-

ing techniques take a data point and return a shortlist of O (log!)

labels that is expected to contain most of the positive labels for that

data point. However, such shortlists also help during training since

the negative labels that get shortlisted for a data point are arguably
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Figure 6: Prediction Pipeline: ECLARE uses a low-cost pre-

diction pipeline that canmakemillisecond-level predictions

with millions of labels. Given a document/query x, its text

embedding x̂ (see Fig 3) is used by the shortlister S to obtain

the O (log!) most probable labels while maintaining high

recall using label correlation graphs via GAME. Label classi-
�ers (see Fig 3) for only the shortlisted labels are then used

by the ranker R to produce the �nal ranking of labels.

the most challenging and likely to get confused as being positive for

that data point. Thus, one-vs-all classi�ers are trained only on pos-

itive and shortlisted negative labels, bringing training time down

to O (#� log!). Similar to previous works [31, 35], ECLARE uses

a clustering-based shortlister S = {C,H} where C = {�1, . . . ,� }

is a balanced partitioning of the ! labels into  clusters. We refer

to each cluster as a meta label. H = [h1, . . . , h ] ∈ R
�× is a set of

one-vs-all classi�ers, learnt one per meta label.

Graph Assisted Multi-label Expansion (GAME). ECLARE in-

corporates graph correlations to further to improve its shortlis-

ter. Let M ∈ {0, 1}!× denote the cluster assignment matrix i.e.

";< = 1 if label ; is in cluster <. We normalize M so that each

column sums to unity. Given a data point x and a beam-size �, its

embedding x̂ (see Fig 3) is used to shortlist labels as follows

(1) Find the top � clusters, say % = {<̃1, . . . , <̃�} ⊂ [ ] according

to the meta-label scores
〈

h<1 , x̂
〉

≥
〈

h<2 , x̂
〉

≥ . . .. Let p̃ ∈ R 

be a vector containing scores for the top � clusters passed

through a sigmoid i.e. ?̃< = f (⟨h<, x̂⟩) if< ∈ % else ?̃< = 0.

(2) Use the induced cluster-cluster correlationmatrixG" = M⊤GM

to calculate the “GAME-i�ed” scores p = G" · p̃.

(3) Find the top � clusters according to p, say<1, . . . ,<� , retain

their scores and set scores of other clusters in p to 0. Return the

shortlist S(x̂) = {<1, . . . ,<�} and the modi�ed score vector p.

Note that this cluster re-ranking step uses an induced cluster cor-

relation graph and can bring in clusters with rare labels missed

by the one-vs-all models h< . This is distinct from previous works

which do not use label correlations for re-ranking. Since the clus-

ters are balanced, the shortlisted clusters always contain a total of

|S(x̂) | = !�/ labels. ECLARE uses  = 217 clusters and a beam

size of � ≈ 30 − 50 (see Sec 4 for a discussion on hyperparameters).

3.5 Prediction with GAME
The prediction pipeline for ECLARE is depicted in Fig 6 and involves
3 steps that repeatedly utilize label correlations via GAME.
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(1) Given a document x, use the shortlister S to get a set of �

meta labels S(x̂) and their corresponding scores p ∈ R .

(2) For shortlisted labels, apply the one-vs-all classi�ers w;
to calculate the ranking score vector r̃ ∈ R! with Ã; =

f (⟨w; , x̂⟩) if ; ∈ �< for some< ∈ S(x̂) else Ã; = 0.

(3) GAME-ify the one-vs-all scores to get r = G · r̃ (note that G

is used this time and not G" ). Make �nal predictions using

the joint scores B; := A; · ?< if ; ∈ �<,< ∈ S(x̂) else B; = 0.

3.6 E�cient Training: the DeepXML Pipeline

Summary. ECLARE adopts the scalable DeepXML pipeline [8] that

splits training into 4 modules. In summary, Module I jointly learns

the token embeddings E, the embedding block E� and the short-

lister S. E remains frozen hereon. Module II re�nes P and uses

it to retrieve label shortlists for all data points. After performing

initialization in Module III, Module IV uses the shortlists generated

in Module II to jointly �ne-tune E� and learn the one-vs-all classi-

�ersW, implicitly learning the embedding blocks E!, E� and the

attention block A in the process.

Module I. Token embeddings E ∈ R�×+ are randomly initialized

using [13], the residual block within E� is initialized to identity.

After creating label clusters (see below), each cluster is treated as a

meta-label yielding ameta-XC problem on the same training points,

but with  meta-labels instead of the original ! labels. Meta-label

text is created for each< ∈ [ ] as u< =
∑

; ∈�<
z; . Meta labels are

also endowed with the meta-label correlation graph G" = M⊤GM

whereM ∈ {0, 1}!× is the cluster assignment matrix. One-vs-all

meta-classi�ers H = [h1, . . . , h ] ∈ R
�× are now learnt to solve

this meta XC problem. These classi�ers have the same form as those

for the original problem with 3 components, LTE, GALE, (with cor-

responding blocks Ẽ!, Ẽ� ) and re�nement vector, with an attention

block Ã supervising their combination (parameters within Ã are

initialized randomly). However, in Module-I, re�nement vectors

are turned o� for h; to force good token embeddings E to be learnt

without support from re�nement vectors. Module I solves the meta

XC problem while training E� , Ẽ!, Ẽ� , Ã, E, implicitly learning H.

Meta-labelCreationwithGraphAugmented LabelCentroids.

Existing approaches such as Parabel or DECAF cluster labels by

creating a label centroid for each label ; by aggregating features for

training documents associated with that label as c; =
∑

8:~8;=+1 x8 .

However, ECLARE recognizes that missing labels often lead to an

incomplete ground truth, and thus, poor label centroids for rare

labels in XC settings [2, 17]. Fig 8 con�rms this suspicion. ECLARE
addresses this by augmenting the label centroids using the label co-

occurrence graph G to rede�ne the centroids as ĉ; =
∑!
9=1�; 9 · c; .

Balanced hierarchical binary clustering [36] is now done on these

label centroids for 17 levels to generate  = 217 label clusters. Note

that since token embeddings have not been learnt yet, the raw TF-

IDF documents vectors x8 ∈ R
+ are used instead of x̂8 ∈ R

� .

Module II. The shortlister is �ne-tuned in this module. Label

centroids are recomputed as ĉ; =
∑!
9=1�; 9 · c; where this time,

c; =
∑

8:y8
;
=+1 Ex8 using E learnt in Module I. The meta XC prob-

lem is recreated and solved again. However, this time, ECLARE

allows the meta-classi�ers h< to also include re�nement vectors

to better solve the meta-XC problem. In the process of re-learning

H, the model parameters E� , Ẽ!, Ẽ� , Ã are �ne-tuned (E is frozen

after Module I). The shortlister S thus obtained is thereafter used

to retrieve shortlists S(x̂8 ) for each data point 8 ∈ [# ]. However,

distinct from previous work such as Slice [15], X-Transformer [6],

DECAF [31], ECLARE uses the GAME strategy to obtain negative

samples that take label correlations into account.

Module III. Residual blocks within E� , E!, E� are initialized to

identity, parameters within A are initialized randomly, and the

shortlister S and token embeddings E are kept frozen. Re�nement

vectors for all ! labels are initialized to ẑ3
;
=
∑

<∈[!] �;< · Ez< .

We �nd this initialization to be both crucial (see Sec 4) as well

as distinct from previous works such as DECAF which initial-

ized its counterpart of re�nement vectors using simply Ez; . Such

correlation-agnostic initialization was found to o�er worse results

than ECLARE’s graph augmented initialization.

Module IV. In this module, the embedding blocks E� , E!, E� are

learnt jointly with the per-label re�nement vectors ẑ3
;
and attention

block A, thus learning the one-vs-all classi�ers w; in the process,

However, training is done in O (#� log!) time by restricting train-

ing to positives and shortlisted negatives for each data point.

Loss Function and Regularization. ECLARE uses the binary

cross entropy loss function for training in Modules I, II and IV

using the Adam [23] optimizer. The residual weights R in the vari-

ous embedding blocks E� , E!, E� , Ẽ!, Ẽ� as well as the weights T

in the attention block were all subjected to spectral regularization

[32]. All ReLU layers in the architecture also included a dropout

layer with 20% rate.

Key Contributions in Training. ECLAREmarkedly departs from

existing techniques by incorporating label correlation information

in a scalable manner at every step of the learning process. Right

from Module I, label correlations are incorporated while creating

the label centroids leading to higher quality clusters (see Fig 8

and Table 7). The architecture itself incorporates label correlation

information using the GALE representations. It is crucial to initial-

ize the re�nement vectors ẑ3
;
properly for which ECLARE uses a

graph-augmented initialization. ECLARE continues infusing label

correlation during negative sampling using the GAME step. Finally,

GAME is used multiple times in the prediction pipeline as well.

As the discussion in Sec 4 will indicate, these augmentations are

crucial to the performance boosts o�ered by ECLARE.

4 EXPERIMENTS

Datasets and Features. ECLAREwas evaluated on 4 publicly avail-
able1 benchmark datasets, LF-AmazonTitles-131K, LF-WikiSeeAlso-

Titles-320K, LF-WikiTitles-500K and LF-AmazonTitles-1.3M. These

datasets were derived from existing datasets e.g. Amazon-670K,

by taking those labels for which label text was available and per-

forming other sanitization steps such as reciprocal pair removal

(see [31] for details). ECLARE was also evaluated on proprietary

1Extreme Classi�cation Repository [3]
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Table 1: Dataset Statistics. A ‡ sign denotes information that was redacted for proprietary datasets. The �rst four rows are

public datasets and the last two rows are proprietary datasets. Dataset names with an asterisk ∗ next to them correspond to

product-to-category tasks whereas others are product-to-product tasks.

Dataset
Train Documents

#

Labels

!

Tokens

+

Test Instances

# ′
Average Labels

per Document

Average Points

per label

Average Tokens

per Document

Average Tokens

per Label

Short text dataset statistics

LF-AmazonTitles-131K 294,805 131,073 40,000 134,835 2.29 5.15 7.46 7.15

LF-WikiSeeAlsoTitles-320K 693,082 312,330 40,000 177,515 2.11 4.68 3.97 3.92

LF-WikiTitles-500K∗ 1,813,391 501,070 80,000 783,743 4.74 17.15 3.72 4.16

LF-AmazonTitles-1.3M 2,248,619 1,305,265 128,000 970,237 22.20 38.24 9.00 9.45

Proprietary dataset

LF-P2PTitles-2M 2,539,009 1,640,898 ‡ 1,088,146 ‡ ‡ ‡ ‡

LF-P2PTitles-10M 6,849,451 9,550,772 ‡ 2,935,479 ‡ ‡ ‡ ‡

datasets P2P-2M and P2P-10M, both mined from click logs of the

Bing search engine, where a pair of products were considered sim-

ilar if the Jaccard index of the set of queries which led to a click

on them was found to be more than a certain threshold. ECLARE
used the word piece tokenizer [39] to create a shared vocabulary

for documents and labels. Please refer to Tab 1 for dataset statistics.

Baseline algorithms. ECLARE’s performance was compared to

state-of-the-art deep extreme classi�ers which jointly learn docu-

ment and label representations such as DECAF [31], AttentionXML

[49], Astec [8], X-Transformer [6], and MACH [28]. DECAF and

X-Transformer are the only methods that also use label text and

are therefore the most relevant for comparison with ECLARE. For
the sake of completeness, ECLARE was also compared to classi�ers

which use �xed document representations like DiSMEC [1], Para-

bel [36], Bonsai [22], and Slice [15]. All these �xed-representation

methods use BoW features, except Slice which used pre-trained

FastText [5] features. The GLaS [10] method could not be included

in our analysis as its code was not publicly available.

Evaluation.Methods were compared using standard XC metrics,

namely Precision (P@:) and Propensity-scored precision (PSP@:) [17].

Recall (R@ ) was also included since XC methods are typically

used in the shortlisting pipeline of recommendation systems. Thus,

having high recall is equally important as having high precision.

For evaluation, guidelines provided on the XML repository [3] were

followed. To be consistent, all models were run on a 6-core Intel

Skylake 2.4 GHz machine with one Nvidia V100 GPU.

Hyper-parameters.Abeam size of� = 30was used for the dataset

LF-AmazonTitles-131K and � = 50 for all other datasets. Embed-

ding dimension � was set to 300 for datasets with < 400K labels

and 512 otherwise. The number of meta-labels  = |C| was �xed

to |C| = 217 for all other datasets except for LF-AmazonTitles-131K

where |C| = 215 was chosen since the dataset itself has around 217

labels. The default PyTorch implementation of the Adam optimizer

was used. Dropout with probability 0.2 was used for all datasets.

Learning rate was decayed by a decay factor of 0.5 after an interval

of 0.5× epoch length. Batch size was taken to be 255 for all datasets.

ECLAREModule-I used 20 epochs with an initial learning rate of

0.01. In Modules-II and IV, 10 epochs were used for all datasets with

an initial learning rate of 0.008. While constructing the label corre-

lation graph using random walks (see Algorithm 1), a walk length

of 400 and restart probability of 80% were used for all datasets.

Results on benchmarkdatasets.Tab 2 demonstrates that ECLARE
can be signi�cantly more accurate than existing XC methods. In

particular, ECLARE could be upto 3% and 10% more accurate as

compared to DECAF and X-Transformer respectively in terms of

P@1. It should be noted that DECAF and X-Transformer are the

only XC methods which use label meta-data. Furthermore, ECLARE
could outperform Astec which is speci�cally designed for rare la-

bels, by up to 7% in terms of PSP@1, indicating that ECLARE o�ers

state-of-the-art accuracies without compromising on rare labels. To

further understand the gains of ECLARE, the labels were divided
into �ve bins such that each bin contained an equal number of posi-

tive training points (Fig 7). This ensured that each bin had an equal

opportunity to contribute to the overall accuracy. Fig 7 indicates

that the major gains of ECLARE come from predicting rare labels

correctly. ECLARE could outperform all other deep-learning-based

XC methods, as well as �xed-feature-based XC methods by a signif-

icant margin of at least 7%. Moreover, ECLARE’s recall could be up

to 2% higher as compared to all other XC methods.

Results on Propreitary Bing datasets. ECLARE’s performance

was also compared on the proprietary datasets LF-P2PTitles-2M

and LF-P2PTitles-10M. Note that ECLARE was only compared with

those XC methods that were able to scale to 10 million labels on a

single GPU within a timeout of one week. ECLARE could be up to

14%, 15%, and 15% more accurate as compared to state-of-the-art

methods in terms of P@1, PSP@1 and R@10 respectively. Please

refer to Tab 3 for more details.

Ablation experiments. To scale accurately to millions of labels,

ECLAREmakes several meticulous design choices. To validate their

importance, Tab 5 compares di�erent variants of ECLARE:

(1) Label-graph augmentations: The label correlation graphG is

used by ECLARE in several steps, such as in creating meaningful

meta labels, negative sampling, shortlisting of meta-labels, etc.

To evaluate the importance of these augmentations, in ECLARE-
NoGraph, the graph convolution component G was removed
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Table 2: Results on public benchmark datasets. ECLARE
could o�er 2-3.5% higher P@1 as well as upto 5% higher

PSP@1 which focuses on rare labels. Additionally, ECLARE
o�ered up to 3% better recall than leading XC methods.

Method PSP@1 PSP@5 P@1 P@5 R@10
Prediction

Time (ms)

LF-AmazonTitles-131K

ECLARE 33.51 44.7 40.74 19.88 54.11 0.1

DECAF 30.85 41.42 38.4 18.65 51.2 0.1

Astec 29.22 39.49 37.12 18.24 49.87 2.34

AttentionXML 23.97 32.57 32.25 15.61 42.3 5.19

Slice 23.08 31.89 30.43 14.84 41.16 1.58

MACH 24.97 34.72 33.49 16.45 44.75 0.23

X-Transformer 21.72 27.09 29.95 13.07 35.59 15.38

Siamese 13.3 13.36 13.81 5.81 14.69 0.2

Bonsai 24.75 34.86 34.11 16.63 45.17 7.49

Parabel 23.27 32.14 32.6 15.61 41.63 0.69

DiSMEC 25.86 36.97 35.14 17.24 46.84 5.53

XT 22.37 31.64 31.41 15.48 42.11 9.12

AnneXML 19.23 32.26 30.05 16.02 45.57 0.11

LF-WikiSeeAlsoTitles-320K

ECLARE 22.01 26.27 29.35 15.05 36.46 0.12

DECAF 16.73 21.01 25.14 12.86 32.51 0.09

Astec 13.69 17.5 22.72 11.43 28.18 2.67

AttentionXML 9.45 11.73 17.56 8.52 20.56 7.08

Slice 11.24 15.2 18.55 9.68 24.45 1.85

MACH 9.68 12.53 18.06 8.99 22.69 0.52

Siamese 10.1 9.59 10.69 4.51 10.34 0.17

Bonsai 10.69 13.79 19.31 9.55 23.61 14.82

Parabel 9.24 11.8 17.68 8.59 20.95 0.8

DiSMEC 10.56 14.82 19.12 9.87 24.81 11.02

XT 8.99 11.82 17.04 8.6 21.73 12.86

AnneXML 7.24 11.75 16.3 8.84 23.06 0.13

LF-AmazonTitles-1.3M

ECLARE 23.43 30.56 50.14 40 32.02 0.32

DECAF 22.07 29.3 50.67 40.35 31.29 0.16

Astec 21.47 27.86 48.82 38.44 29.7 2.61

AttentionXML 15.97 22.54 45.04 36.25 26.26 29.53

Slice 13.96 19.14 34.8 27.71 20.21 1.45

MACH 9.32 13.26 35.68 28.35 19.08 2.09

Bonsai 18.48 25.95 47.87 38.34 29.66 39.03

Parabel 16.94 24.13 46.79 37.65 28.43 0.89

DiSMEC - - - - - -

XT 13.67 19.06 40.6 32.01 22.51 5.94

AnneXML 15.42 21.91 47.79 36.91 26.79 0.12

LF-WikiTitles-500K

ECLARE 21.58 19.84 44.36 16.91 30.59 0.14

DECAF 19.29 19.96 44.21 17.36 32.02 0.09

Astec 18.31 18.56 44.4 17.49 31.58 2.7

AttentionXML 14.8 13.88 40.9 15.05 25.8 9

Slice 13.9 13.82 25.48 10.98 22.65 1.76

MACH 13.71 12 37.74 13.26 23.81 0.8

Bonsai 16.58 16.4 40.97 15.66 28.04 17.38

Parabel 15.55 15.35 40.41 15.42 27.34 0.81

DiSMEC 15.88 15.89 39.42 14.85 26.73 11.71

XT 14.1 14.38 38.13 14.66 26.48 7.56

AnneXML 13.91 13.75 39 14.55 26.27 0.13

from all training steps such as GAME, except while generat-
ing the label classi�ers (GALE). ECLARE-NoGraph was found

Table 3: Results on proprietary product-to-product (P2P)

recommendation datasets. ECLARE could o�er signi�cant

gains – upto 14% higher P@1, 15% higher PSP@1 and 7%

higher R@10 – than competing classi�ers.

Method PSP@1 PSP@3 PSP@5 P@1 P@3 P@5 R@10

LF-P2PTitles-2M

ECLARE 41.97 44.92 49.46 43.79 39.25 33.15 54.44

DECAF 36.65 40.14 45.15 40.27 36.65 31.45 48.46

Astec 32.75 36.3 41 36.34 33.33 28.74 46.07

Parabel 30.21 33.85 38.46 35.26 32.44 28.06 42.84

LF-P2PTitles-10M

ECLARE 35.52 37.91 39.91 43.14 39.93 36.9 35.82

DECAF 20.51 21.38 22.85 28.3 25.75 23.99 20.9

Astec 20.31 22.16 24.23 29.75 27.49 25.85 22.3

Parabel 19.99 22.05 24.33 30.22 27.77 26.1 22.81

Table 4: An ablation study exploring the bene�ts of the

GAME step for other XC methods. Although ECLARE still

provides the leading accuracies, existing methods show con-

sistent gains from the use of the GAME step.

Method PSP@1 PSP@5 P@1 P@5 PSP@1 PSP@5 P@1 P@5

LF-AmazonTitles-131K

Original | With GAME

ECLARE - - - - 33.51 44.7 40.74 19.88

Parabel 23.27 32.14 32.6 15.61 24.81 34.94 33.24 16.51

AttentionXML 23.97 32.57 32.25 15.61 24.63 34.48 32.59 16.25

LF-WikiSeeAlsoTitles-320K

Original | With GAME

ECLARE - - - - 22.01 26.27 29.35 15.05

Parabel 9.24 11.8 17.68 8.59 10.28 13.06 17.99 9

AttentionXML 9.45 11.73 17.56 8.52 10.05 12.59 17.49 8.77

to be up to 3% less accurate than ECLARE. Furthermore, in a

variant ECLARE-PPR, inspired by state-of-the-art graph algo-

rithms [25, 48], negative sampling was performed via Personal-

ized Page Rank. ECLARE could be up to 25% more accurate than

ECLARE-PPR. This could be attributed to the highly sparse la-

bel correlation graph and justi�es the importance of ECLARE’s
label correlation graph as well as it’s careful negative sampling.

(2) Label components: Much work has been done to augment

(document) text representations using graph convolution net-

works (GCNs) [12, 14, 24, 34, 42, 43, 51]. These methods could

also be adapted to convolve label text for ECLARE’s GALE
component. ECLARE’s GALE component was replaced by a

LightGCN [14] and GCN [24] (with the re�nement vectors in

place). Results indicate that ECLARE could be upto 2% and 10%

more accurate as compared to LightGCN and GCN. In another

variant of ECLARE, the re�nement vectors ẑ3
;
were removed

(ECLARE-NoRe�ne). Results indicate that ECLARE could be up

to 10% more accurate as compared to ECLARE-NoRe�ne which
indicates that the per-label (extreme) re�nement vectors are

essential for accuracy.

(3) Graph construction: To evaluate the e�cacy of ECLARE’s
graph construction, we compare it to ECLARE-Cooc where
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Figure 7: Analyzing the performance of ECLARE and other

methods on popular vs rare labels. Labels were divided into

5 bins in increasing order of popularity. The plots show the

overall P@5 for each method (histogram group “complete”)

and how much each bin contributed to this value. ECLARE
clearly draws much of its P@5 performance from the bin

with the rarest labels (histogram group 5), i.e ECLARE’s su-
periority over other methods in terms of P@5 comes from

predicting challenging rare labels and not easy-to-predict

popular labels. ECLARE’s lead over other methods is also

more prominent for rare bins (histogram groups 4, 5).

we consider the label co-occurrence graph generated by Y⊤Y

instead of the random-walk based graph G used by ECLARE.
ECLARE-Cooc could be up to 2% less accurate in terms of PSP@1

than ECLARE. This shows that ECLARE’s random-walk graph

indeed captures long-term dependencies thereby resulting in

improved performance on rare labels. Normalizing a directed

graph, such as the graph G2 obtained by Algorithm 1 is a non-

trivial problem. In ECLARE-PN, we apply the popular Perron

normalization [7] to the random-walk graph G2 . Unfortunately,

ECLARE-PN leads to a signi�cant loss in propensity-scored

metrics for rare labels. This validates the choice of ECLARE’s
normalization strategy.

(4) Combining label representations: The LTE and GALE com-

ponents of ECLARE could potentially be combined using strate-

gies di�erent from the attention mechanism used by ECLARE. A
simple average/sum of the components, (ECLARE-SUM) could

Table 5: An ablation study exploring alternate design deci-

sions. Design choices made by ECLARE for its components

were found to be optimal among popular alternatives.

Method PSP@1 PSP@3 PSP@5 P@1 P@3 P@5

LF-AmazonTitles-131K

ECLARE 33.51 39.55 44.7 40.74 27.54 19.88

ECLARE-GCN 24.02 29.32 34.02 30.94 21.12 15.52

ECLARE-LightGCN 31.36 36.79 41.58 38.39 25.59 18.44

ECLARE-Cooc 32.82 38.67 43.72 39.95 26.9 19.39

ECLARE-PN 32.49 38.15 43.25 39.63 26.64 19.24

ECLARE-PPR 12.51 16.42 20.25 14.42 11.04 8.75

ECLARE-NoGraph 30.49 36.09 41.13 37.45 25.45 18.46

ECLARE-NoLTE 32.3 37.88 42.87 39.33 26.41 19.05

ECLARE-NoRe�ne 28.18 33.14 38.3 29.99 21.6 16.32

ECLARE-SUM 31.45 36.73 41.65 38.02 25.54 18.49

ECLARE-k=2 32.23 38.06 43.23 39.38 26.57 19.22

ECLARE-8K 29.98 35.08 39.71 37 24.86 17.93

LF-WikiSeeAlsoTItles-320K

ECLARE 22.01 24.23 26.27 29.35 19.83 15.05

ECLARE-GCN 13.76 15.88 17.67 21.76 14.61 11.14

ECLARE-LightGCN 19.05 21.24 23.14 26.31 17.64 13.35

ECLARE-Cooc 20.96 23.1 25.07 28.54 19.06 14.4

ECLARE-PN 20.42 22.56 24.59 28.24 18.88 14.3

ECLARE-PPR 4.83 5.53 7.12 5.21 3.82 3.5

ECLARE-NoGraph 18.44 20.49 22.42 26.11 17.59 13.35

ECLARE-NoLTE 20.16 22.22 24.16 27.73 18.48 13.99

ECLARE-NoRe�ne 20.27 21.26 22.8 24.83 16.61 12.66

ECLARE-SUM 20.59 22.48 24.36 27.59 18.5 13.99

ECLARE-k=2 20.12 22.38 24.43 27.77 18.64 14.14

ECLARE-8K 13.42 15.03 16.47 20.31 13.51 10.22

be up to 2%worse, which corroborates the need for the attention

mechanism for combining heterogeneous components.

(5) Higher-order Convolutions: Since the ECLARE framework

could handle higher order convolutions : > 1 e�ciently, we val-

idated the e�ect of increasing the order. Using : = 2 was found

to hurt precision by upto 2%. Higher orders e.g. : = 3, 4 etc. were

intractable at XC scales as the graphs got too dense. The drop in

performance when using : = 2 could be due to two reasons: (a)

at XC scales, exploring higher order neighborhoods would add

more noise than information unless proper graph pruning is

done afterward and (b) ECLARE’s random-walk graph creation

procedure already encapsulates some form of higher order prox-

imity which negates the potential for massive bene�ts when

using higher order convolutions.

(6) Meta-labels and GAME: ECLARE uses a massive fanout of

|C| = 217 meta-labels in its shortlister. Ablations with |C| = 213

(ECLARE-8K) show that using a smaller fanout can lead to

upto 8% loss in precision. Additionally Tab 4 shows that in-

corporating GAME with other XC methods can also improve

their accuracies (although ECLARE continues to lead by a wide

margin). In particular incorporating GAME in Parabel and At-

tentionXML led to up to 1% increase in accuracy. This validates

the utility of GAME as a general XC tool.

Analysis. This section critically analyzes ECLARE’s performance

gains by scrutinizing the following components:
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Table 6: A subjective comparison of the top 5 label predictions by ECLARE and other algorithms on the WikiSeeAlso-350K

and P2PTitles-2M datasets. Predictions typeset in black color were a part of the ground truth whereas those in light gray color

were not. ECLARE is able to o�er precise recommendations for extremely rare labels missed by other methods. For instance,

the label “Dog of Osu” in the �rst example is so rare that it occurred only twice in the training set. This label does not have

any token overlaps with its document or co-occurring labels either. This may have caused techniques such as DECAF that

rely solely on label text, to miss such predictions. The examples also establish that incorporating label co-occurrence allows

ECLARE to infer the correct intent of a document or a user query. For instance, in the second example, all other methods,

including DECAF, either incorrectly focus on the tokens “Academy Awards” in the document title and start predicting labels

related to other editions of the Academy Awards, or else amorphous labels about entertainment awards in general. On the

other hand, ECLARE is able to correctly predict other labels corresponding to award ceremonies held in the same year as

the 85th Academy awards, as well as the rare label “List of . . .Best Foreign Language Film”. Similarly, in the third example,

ECLARE correctly determines that the user is interested in faux fur coats and not necessarily in the brandDraper’s & Damon’s
itself whereas methods such as DECAF that rely solely on label and document text, focus on the brand name alone and start

predicting shirts and jackets of the same brand which are irrelevant to the user query.

Algorithm Predictions

LF-WikiSeeAlsoTitles-320K

Document Tibetan Terrier

ECLARE Tibetan Spaniel, Tibetan kyi apso, Lhasa Apso, Dog of Osu, Tibetan Masti�

DECAF Fox Terrier, Tibetan Spaniel, Terrier, Bull Terrier, Bulldog

Astec Standard Tibetan, List of domesticated Scottish breeds, List of organizations of Tibetans in exile, Tibet, Riwoche horse

Parabel Tibet, List of organizations of Tibetans in exile, List of domesticated Scottish breeds, History of Tibet, Languages of Bhutan

AttentionXML List of organizations of Tibetans in exile, List of domesticated Scottish breeds, Dog, Bull Terrier, Dog crossbreed

Document 85th Academy Awards

ECLARE List of submissions to the 85th Academy Awards for Best Foreign Language Film, 33rd Golden Raspberry Awards, 19th Screen Actors

Guild Awards, 67th Tony Awards, 70th Golden Globe Awards

DECAF List of American �lms of 1956, 87th Academy Awards, List of American �lms of 1957, 1963 in �lm, 13th Primetime Emmy Awards

Astec 65th Tony Awards, 29th Primetime Emmy Awards, 32nd Golden Raspberry Awards, 64th Primetime Emmy Awards, 18th Screen

Actors Guild Awards

Parabel 1928 in �lm, 1931 in �lm, 1930 in �lm, 48th Academy Awards, 26th Primetime Emmy Awards, 31st European Film Awards

AttentionXML 29th Primetime Emmy Awards, 62nd British Academy Film Awards, 60th Primetime Emmy Awards, 65th Tony Awards, 29th Golden

Raspberry Awards

P2PTitles-2M

Document Draper’s & Damon’s Women’s Chevron Faux Fur Coat Tan L

ECLARE Grey Wolf Faux Fur Coat XXL / Grey, Big on Dots Faux-Fur Coat by LUXE, Avec Les Filles Bonded Faux-Fur Long Coat Size Large

Black, Roaman’s Women’s Short Faux-Fur Coat (Black) 1X, Dennis Basso Faux Fur Jacket with Stand Collar Size XX-Small Cappuccino

DECAF Draper’s & Damon’s Women’s Petite Cabana Big Shirt Blue P-L, Draper’s & Damon’s Women’s Petite Top It O� Stripe Jacket Blue

P-L, Draper’s & Damon’s Women’s Petite Standing Ovation Jacket Black P-L, Draper & Damon Jackets & Coats | Draper & Damons

Size L Colorful Coat Wpockets | Color: Black/Green | Size: L, Draper’s & Damon’s Women’s Impressionist Textured Jacket Multi L

Astec Draper’s & Damon’s Women’s Petite Cabana Big Shirt Blue P-L, Draper’s & Damon’s Women’s Petite Top It O� Stripe Jacket Blue

P-L, Draper’s & Damon’s Women’s Impressionist Textured Jacket Multi L, Draper’s & Damon’s Women’s Embroidered Tulle Jacket

Dress Blue 14, Draper’s & Damon’s Women’s Petite Standing Ovation Jacket Black P-L

Parabel Draper’s & Damon’s Women’s Impressionist Textured Jacket Multi L, Draper’s & Damon’s Women’s Over The Rainbow Jacket Multi

P-L, Draper’s & Damon’s Women’s Petite Painted Desert Jacket White P-M, Draper Women’s Drapers & Damons Pants Suit - Pant

Suit | Color: Black | Size: L, Draper’s & Damon’s Women’s Petite Floral & Stripe Knit Mesh Jacket Scarlet Multi P-L

(1) Clustering: As is evident from Fig 8, ECLARE’s o�ers signi�-
cantly better clustering quality. Other methods such as DECAF

use label centroids over an incomplete ground truth, resulting in

clusters of seemingly unrelated labels. For e.g. the label “Bulldog”
was clustered with “Great house at Sonning” by DECAF and the
label “Dog of Osu” was clustered with “Ferdinand II of Aragon”
which never co-occur in training. However ECLARE clusters

much more relevant labels together, possibly since it was able

to (partly) complete the ground truth using it’s label correlation

graph G. This was also veri�ed quantitatively by evaluating the

clustering quality using the standard Loss of Mutual Informa-

tion metric (LMI) [9]. Tab 7 shows that ECLARE has the least

LMI compared to other methods such as DECAF and those such

as MACH that use random hashes to cluster labels.

(2) Component Contribution: ECLARE chooses to dynamically

attend on multiple (and heterogeneous) label representations

in its classi�er components, which allows it to capture nuanced
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Figure 8: A comparison of meta-label clusters created by

ECLARE compared to those created byDECAF. Note that the

clusters for DECAF are rather amorphous, combing labels

with diverse intents whereas those for ECLARE are much

more focused. We note that other methods such ASTEC and

AttentionXML o�ered similarly noisy clusters. It is clear

that clustering based on label centroids that are augmented

using label correlation information creates far superior clus-

ters that do not contain noisy and irrelevant labels.
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Figure 9: Analysing the dominance of various components

in the label classi�er w; for rare vs popular labels. For rare

labels (on the left), components that focus on labelmetadata

i.e. ẑ1
;
, ẑ2
;
gain signi�cance whereas for popular labels (on the

right), the unrestricted re�nement vector ẑ3
;
becomes domi-

nant. This illustrates the importance of graph augmentation

for data-scarce labels for which the re�nement vectors can-

not be trained adequately owing to lack of training data.

variations in the semantics of each label. To investigate the con-

tribution of the label text and re�nement classi�ers, Fig. 9 plots

the average product of the attention weight and norm of each

component. It was observed that the label text components LTE

Table 7: An ablation study showing loss of mutual informa-

tion (lower is better) using various clustering strategies as

well as fanouts. Lowering the number of metalabels  =

|C| hurts performance. Competing methods that do not

use graph-augmented clustering o�er poor LMI, especially

MACH that uses random hashes to cluster labels.

Dataset ECLARE ECLARE DECAF MACH

|C| = 217 |C| = 215

LF-AmazonTitles-131K 5.44 5.82 7.40 29.68

LF-WikiSeeAlsoTitles-320K 3.96 11.31 5.47 35.31

and GALE are crucial for rare labels whereas the (extreme) re-

�nement vector ẑ3
;
is more important for data-abundant popular

labels.

(3) Label Text Augmentation: For the document “Tibetan Ter-
rier”, ECLARE could make correct rare label predictions like

“Dog of Osu” even when the label text exhibits no token similar-

ity with the document text or other co-occurring labels. Other

methods such as DECAF failed to understand the semantics of

the label and mis-predicted the label “Fox Terrier” wrongly rely-

ing on the token “Terrier”. We attribute this gain to ECLARE’s
label correlation graph as “Dog of Osu” correlated well with the

labels “Tibetan Spaniel”, “Tibetan kyi apso” and “Tibetan Mas-
ti�” inG. Several such examples exist in the datasets. In another

example from the P2P-2M dataset, for the product “Draper’s
& Damon’s Women’s Chevron Fauz Fur Coat Tan L”, ECLARE
could deduce the intent of purchasing “Fur Coat” while other
XC methods incorrectly �xated on the brand “Draper’s & Da-
mon’s”. Please refer to Tab 6 for detailed examples.

5 CONCLUSION

This paper presents the architecture and accompanying training

and prediction techniques for the ECLARE method to perform ex-

treme multi-label classi�cation at the scale of millions of labels. The

speci�c contributions of ECLARE include a framework for incorpo-

rating label graph information at massive scales, as well as critical

design and algorithmic choices that enable collaborative learning

using label correlation graphs with millions of labels. This includes

systematic augmentations to standard XC algorithmic operations

such as label-clustering, negative sampling, shortlisting, and re-

ranking, to incorporate label correlations in a manner that scales to

tasks with millions of labels, all of which were found to be essential

to the performance bene�ts o�ered by ECLARE. The creation of

label correlation graphs from ground truth data alone and its use

in a GCN-style architecture to obtain multiple label representa-

tions is critical to ECLARE’s performance bene�ts. The proposed

approach greatly outperforms state-of-the-art XC methods on mul-

tiple datasets while still o�ering millisecond level prediction times

even on the largest datasets. Thus, ECLARE establishes a standard

for incorporating label metadata into XC techniques. These �ndings

suggest promising directions for further study including e�ective

graph pruning for heavy tailed datasets, using higher order convo-

lutions (: > 1) in a scalable manner, and performing collaborative

learning with heterogeneous and even multi-modal label sets. This
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has the potential to enable generalisation to settings where labels

include textual objects such as (related) webpages and documents,

but also videos, songs, etc.
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