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Abstract 

Road transport consumes significant quantities of fossil fuel and accounts for a significant proportion of 

CO2 and pollutant emissions worldwide. The driver is a major and often overlooked factor that determines 

vehicle performance. Eco-driving is a relatively low-cost and immediate measure to reduce fuel consumption 

and emissions significantly. This paper reviews the major factors, research methods and implementation of 

eco-driving technology. The major factors of eco-driving are acceleration/deceleration, driving speed, route 

choice and idling. Eco-driving training programs and in-vehicle feedback devices are commonly used to 

implement eco-driving skills. After training or using in-vehicle devices, immediate and significant reductions 

in fuel consumption and CO2 emissions have been observed with slightly increased travel time. However, the 

impacts of both methods attenuate over time due to the ingrained driving habits developed over the years. 

These findings imply the necessity of developing quantitative eco-driving patterns that could be integrated 

into vehicle hardware so as to generate more constant and uniform improvements, as well as developing 

more effective and lasting training programs and in-vehicle devices. Current eco-driving studies mainly 

focus on the fuel savings and CO2 reduction of individual vehicles, but ignore the pollutant emissions and the 

impacts at network levels. Finally, the challenges and future research directions of eco-driving technology 

are elaborated. 
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1. Introduction 

Worldwide concerns regarding global warming and fossil fuel depletion have driven many countries to 

take more serious actions in energy saving and CO2 emissions reduction initiatives. On 12 December 2015, 

Parties to the United Nations Framework Convention on Climate Change (UNFCCC) reached a landmark 

agreement - the Paris Agreement - to combat climate change and to accelerate and intensify the actions and 

investments needed for a sustainable low carbon future. The central aim of the Paris Agreement is to keep 

global temperature rises well below 2 ℃ relative to pre-industrial levels and to pursue further efforts to limit 

the temperature increase to 1.5 ℃ [1-3]. The Paris Agreement entered into force on 4 November 2016 and 

175 Parties had ratified it as of April 2018 [4]. To meet the targets of the Paris Agreement, greenhouse gas 

emissions have to be reduced significantly. Fig. 1 shows the Intended Nationally Determined Contributions 

(INDCs) as percentages in CO2 reduction by 2030 below 2005 levels for the major CO2 emitting countries 

[5], together with their shares of global CO2 emissions in 2015 [6]. These major countries accounted for 80% 

of global CO2 emissions in 2015. As shown in Fig. 1, on average, most countries are planning to reduce their 

CO2 emissions by 33% in 2030 compared to 2005 levels. The transport sector consumes about 20% of global 

energy and is responsible for nearly 25% of global energy related CO2 emissions, 75% of which are emitted 

by road transport [7]. Moreover, it is estimated that the energy consumption and CO2 emissions of world 

transport in 2030 will increase by more than 50% due to population and economic growth [7, 8]. To achieve 

this abatement target, the road transport sector must make a significant contribution. 

 

 

Fig. 1. INDCs as percentages in CO2 reduction by 2030 below 2005 levels for the major CO2 emitting 

countries, as well as their shares of global CO2 emissions in 2015. Data sources are [5] for INDCs and [6] for 

shares of CO2. Error bars indicate the ranges of INDCs. Symbols for INDCs: * per unit of GDP, ‡ target for 
2025, † base level in 1990, § base level if business as usual. 
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A variety of efforts have been undertaken to improve fuel economy and reduce emissions of on-road 

vehicles, including more stringent automotive emission standards (e.g. Euro 6/VI standards [9]), new engine 

and vehicle technologies (e.g. engine downsizing and hybrid/electric vehicles [10, 11]), better fuel quality 

and renewable fuels (e.g. higher octane rating petrol and bio-fuels [12]). However, an important factor which 

is often overlooked and may improve vehicle fuel economy significantly is eco-driving technology. The 

investment for new vehicle technologies and fuels is usually significant and long-term, and an improvement 

of a few percentages may be considered significant. It was estimated that the potential efficiency 

improvements of advanced engine and vehicle technologies were only about 4-10% and 2-8% respectively 

[13]. However, the implementation of eco-driving is relatively low-cost and immediate, and the 

improvement in fuel efficiency can be up to 45% [14]. Eco-driving is also more cost-effective than fleet 

retrofit programs (e.g. replacing existing diesel buses with new compressed natural gas ones) [15]. Eco-

driving is an initiative which has seen worldwide adoption and investigation in the past decade [16] although 

great efforts are needed to convert the claimed benefits of eco-driving into real-driving practice with lasting 

and uniform effects. 

The aim of this study is to review and analyse the published studies on eco-driving technology. 

Specifically this review will cover the major influencing factors, research methods, implementation, and 

challenges and future research directions of eco-driving. 

2. Major factors of eco-driving 

Eco-driving involves a number of factors and has different definitions or scope in the literature. Sivak 

and Schoettle [14] defined eco-driving as decisions that a driver could make to influence the fuel economy of 

light-duty vehicles, ranging from vehicle purchase to post-purchase decisions. These decisions could be 

categorised into three groups, namely strategic decisions (vehicle selection and maintenance), tactical 

decisions (route planning and weight) and operational decisions (driving style). Among these decisions, 

vehicle selection was the single most important factor and post-purchase decisions could not fully 

compensate for buying a low-efficiency vehicle. Therefore it was suggested that the focus of policy should 

emphasize vehicle selection [14]. However, fuel economy was not the only factor that determined people’s 

vehicle selection and the post-purchase factors could still contribute a lot, in total up to 45% reduction of fuel 

consumption per driver. Based on the concept of behavioural functions, Sanguinetti et al. [17] identified six 

classes of eco-driving behaviour including driving, cabin comfort, trip planning, load management, fuelling 

and maintenance. The driving behaviour was further divided into accelerating, cruising, decelerating, waiting, 

driving mode selection and parking. Zhou et al. [13] identified six groups of factors affecting fuel 

consumption, namely travel-, weather-, vehicle-, roadway-, traffic- and driver-related factors. A broader 

scope of eco-driving also involved public education, driving feedback devices, regulation, fiscal incentives 

and social norm reinforcement [18]. 

In this study, eco-driving is narrowed to the driving behaviours or the control a driver has over the 

vehicle during a journey that can influence fuel consumption and emissions. These factors include driving 
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speed, acceleration, deceleration, route choice, idling and vehicle accessories (other factors). This is because 

these factors are the most common and useful eco-driving skills that every driver can implement in practice 

every day, rather than purchasing a new fuel-efficient car. In addition, changes in the these driving 

behaviours could lead to significantly higher reductions in fuel consumption and emissions than other 

behaviours such as better maintenance practices [16].  

2.1. Driving speed 

Constant speed is the optimal speed profile for fuel consumption under various road conditions [19, 20]. 

Therefore using cruise control when possible is commonly recommended for eco-driving [14, 21, 22]. Fuel 

economy also varies with the cruising speed. This is because each internal combustion engine (ICE) has a 

speed for optimal fuel economy. Fuel consumption rate firstly decreases with the increase of engine speed 

due to reduced heat losses, reaches the optimal point and then increases at high speed due to increased 

friction losses [23]. As a result, the fuel consumption-driving speed curve shows a U-shape. This curve also 

applies for hybrid and electric vehicles. The optimal speeds for hybrid vehicles are in similar ranges as ICE 

vehicles, but much lower for electric vehicles [17]. El-Shawarby et al. [24] investigated the effect of constant 

cruise speed on fuel consumption and emissions based on a sequence of 10 1-km trips. The results showed 

that the optimal fuel consumption and emission rates per unit distance were in the range of 60-90 km/h, with 

considerable increases outside this range. Wang et al. [25] reported that fuel consumption per unit time was 

positively correlated with cruise speed and fuel consumption per unit distance was optimal between 50-70 

km/h. Wang and Rakha [26] found that the optimal cruising speed of diesel buses (40-50 km/h) was lower 

than that of light-duty gasoline vehicles (60-80 km/h). The optimal speed for motor efficiency of electric 

vehicles was in the range of 50-60 km/h [27]. The Australian Department of Environment suggested that fuel 

consumption increased significantly over 90 km/h, so that a car would use up to 25% more fuel at 110 km/h 

than cruising at 90 km/h [21]. The US Department of Energy suggested that fuel economy usually decreased 

rapidly at speed above 80 km/h although each vehicle reached its optimal fuel economy at a different speed 

(or range of speed) [22]. It can be seen that the above suggested optimal cruising speeds are usually below 

the speed limits on motorways (e.g. 110 km/h in NSW Australia). Therefore, reducing motorway speed 

limits may help reduce fuel consumption and emissions. The European Environment Agency estimated that 

reducing motorway speed limit from 120 to 110 km/h could reduce fuel consumption significantly by 12% 

for diesel cars and 18% for gasoline cars, assuming smooth driving and 100% compliance with speed limit 

[28]. In addition, reducing speed limit would also achieve reductions of other pollutants, in particular NOx 

and PM emissions for diesel cars, and safety gains as well. However, fuel savings would be only 2-3% when 

relaxing the ideal assumptions to a more realistic situation (speed limit of 110 km/h was not fully respected 

and some speeding occurred). Therefore, to achieve the claimed benefits, it is essential to have tighter 

enforcement and improve people’s understanding on the benefits (fuel savings, emissions reduction and 

safety gains) and costs (slightly longer travel time) of lower speed limits. In some cases, time saving would 

have higher priority than reducing fuel consumption and emissions, such as emergency service operations 

(e.g. ambulances, police cars and fire trucks) and travellers with a tight time schedule. However, in most 

daily driving tasks, the benefits of eco-driving should outweigh its costs. There is no uniform optimisation 
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strategy for all drivers and the drivers should have the right to choose the driving strategy according to their 

needs. 

When it comes to real-world conditions, driving speed cannot be maintained ideally constant and must 

consider the speed limit, travel time, road grade, traffic signals and traffic flow [29]. Therefore, eco-driving 

speed is usually recommended at or safely below the speed limit [17, 18, 30]. Many studies have been 

carried out to estimate the optimal driving speed profile under various real-world conditions, such as 

congestion levels [31], road grades [32, 33], car-following scenarios [34], signalized roads [35-38], and 

hybrid electric vehicles [39]. 

2.2. Acceleration and deceleration 

A general rule of eco-driving is to change the aggressive driving style, which mainly refers to hard 

acceleration and deceleration, to a smoother one. The function of acceleration/deceleration is to 

increase/reduce the driving speed or to start/stop the vehicle. However, there are always more or less 

efficient ways to do that, and the strategies vary and have no consensus [17, 40]. Most eco-driving programs 

recommend smooth driving and minimising acceleration and braking [21, 22]. The US Department of 

Energy [22] suggested that aggressive driving could lower fuel economy by 15-30% at highway speed and 

10-40% in stop-and-go traffic. Drivers could avoid unnecessary acceleration/deceleration by keeping a good 

distance to the car in front so that drivers can anticipate the road and traffic flow as far ahead as possible [41]. 

However, a few studies [42, 43] reported that more aggressive acceleration/deceleration to the target speed 

would save fuel in certain situations. A Swedish eco-driving training program suggested bus drivers 

accelerate more strongly and start acceleration earlier, which worsened the passengers’ comfort [44]. 

Generally, a smooth driving style saves fuel and increases safety compared to aggressive driving. Eco-

driving usually encourages drivers to minimise the use of accelerator and brake pedals by looking ahead at 

the traffic flow, signals and road grade. This kind of anticipation can help shift the gear more efficiently and 

avoid unnecessary accelerating, braking, excessive speed and idling. A number of studies have been carried 

out to investigate the effect of acceleration/deceleration on fuel consumption and emissions. Ericsson [45] 

analysed the effect of 16 independent driving pattern factors on fuel consumption and emissions. It was 

found that nine factors played an important role, four of which were associated with acceleration and power 

demand, three were related to gear changing and two were related to driving speed. Pelkmans et al. [46] 

reported that acceleration was the dominant factor for a bus in real-city traffic, which shared 35% of the 

driving time but was responsible for 70% of fuel consumption and 60-80% of CO, HC and NOx emissions of 

the entire cycle. El-Shawarby et al. [24] found that aggressive driving at the maximum acceleration capacity 

had 50% more fuel consumption, 3% more CO2, 20 times more CO, six times more HC, but 65% less NOx 

emissions compared with mild driving (40% of the maximum acceleration capacity). Chen et al. [47] 

reported that low-speed conditions with frequent acceleration and deceleration, particularly in congested 

conditions, were the main factors resulting in high CO and HC emissions. Gallus et al. [48] used several 

acceleration based parameters to characterise the aggressiveness of driving style, including mean positive 

acceleration (MPA), relative positive acceleration (RPA) and 95th percentile of velocity multiplied by 
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positive acceleration (v×apos95%). The results showed that CO2 and NOx emissions of aggressive driving 

(larger MPA, RPA and v×apos95% values) were 20-40% and 50-255% higher than those of normal driving, 

respectively. However, CO and HC emissions did not show distinct difference between driving styles. Wang 

et al. [49] reported that frequent acceleration, especially sharp acceleration, would increase emissions and 

fuel consumption for buses. Berry [50] found that reducing speed on highways would save roughly the same 

amount of fuel as reducing acceleration during all driving. However, when it came to individuals, it was 

suggested that aggressive drivers should focus on reducing acceleration, while less aggressive drivers should 

focus on reducing speed on highways. The greatest fuel saving could be attained if the most aggressive 

drivers drove with lower acceleration. 

As reviewed above, acceleration and deceleration are the key factors that influence fuel economy and 

emissions. Therefore, efforts have been devoted to find the optimum acceleration/deceleration values or 

strategies. Choi and Kim [51] investigated the critical aggressive acceleration values that caused an abrupt 

increase in fuel consumption for a LPG passenger car. The results showed that the critical values were 2.598 

m/s2 for vehicle starting and 1.4705 m/s2 during driving. The most efficient use of gears and acceleration 

strategy was low engine speed and moderate throttle position (50%) for both petrol and diesel cars [41]. 

Birrell et al. [30] recommended using smooth and positive acceleration to reach high gears and the desired 

cruising speed sooner, and using a uniform throttle set at no more than 50%. Regarding deceleration, they 

recommended applying engine brake (without changing down through gears) for smooth deceleration and 

minimising the use of foot brake where appropriate. Sun et al. [52] proposed a speed smoothing scheme for 

eco-driving to avoid temporarily stopping and unnecessary acceleration/deceleration at road intersections. 

Hellström et al. [53] proposed a look-ahead control system which decelerated prior to travelling downhill 

and accelerated before going uphill so that vehicle speed was maintained in a defined range and the time lost 

at one point was gained at another point. Birrell et al. [54] investigated the effect of a vibrotactile accelerator 

pedal on driving performance, which was triggered when throttle pedal was pressed by more than 50%. The 

results showed a significant decrease in the mean acceleration values, as well as maximum and excess 

throttle use. 

2.3. Idling 

Idling should be minimised because every vehicle achieves zero fuel efficiency (0 km/L) when idling 

[17]. An idling vehicle consumes 0.6-5.7 L/h fuel depending on the vehicle type, engine size, fuel type and 

load [55]. It was estimated that idling wasted about 22.7 billion litres fuel in the US annually, half of which 

was contributed by personal vehicles [56]. Eliminating unnecessary idling of personal vehicles would be the 

same as taking 5 million vehicles off the road in terms of saving fuel and reducing emissions [56]. Idling also 

produces high pollutant emissions of CO, HC, NOx and PM [57]. 

Idling time can be reduced in many ways. Firstly, it is needed to update people’s understanding and 

knowledge on idling. Modern cars do not need to idle to warm up the engine or catalytic converter [56]. 

Reaching the ideal operating temperature is achieved more quickly by driving than idling. Even on the 

coldest days, most manufacturers recommend avoiding idling and driving off gently for about 30 s to warm 
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up the engine. Similarly, modern cars do not suffer damage by being turned on and off, and 10 s idling has 

more fuel consumption and emissions than stop-and-restart does [21, 56]. It was suggested that the engine 

should be turned off when waiting time was expected to be longer than 1 min and the fuel economy could be 

improved by 19% if turning the engine off for 10 2-min idling periods on a 10-mile course [14]. However, a 

survey showed that the average total idling time of American drivers was 16.1 min per day [58]. At least 

80% of the respondents thought that idling a vehicle for more than 30 s was better than stop-and-restart. The 

average respondent believed that a vehicle should be idled for at least 2 min before driving in mild weather 

and even longer in cool or cold weather. Consequently, a large amount of fuel was wasted in idling due to 

inaccurate or outdated knowledge. A recent online survey also demonstrated that although the majority of 

people were aware of eco-driving and had a positive attitude towards it, their knowledge of specific fuel 

saving behaviour was generally low [59]. Therefore, like the concept of eco-driving, changing people’s 

idling behaviour is a more efficient, faster and cheaper way to save fuel than idling reduction technologies. 

The above knowledge mainly targets idling off road, such as avoiding long idling before driving or 

stopping, and turning the engine off while waiting for passengers. However, drivers usually have less control 

over idling in traffic and it may be inconvenient or even unsafe to turn off the engine. This kind of idling can 

be reduced or avoided by more efficient speed, accelerating, decelerating and routing behaviours. By looking 

ahead at the changes in traffic flow or signals, idling time in congested traffic or intersections could be 

reduced by decelerating earlier and more smoothly (releasing throttle and using engine brake rather than foot 

brake) and avoiding unnecessary accelerating and hard braking again, which save fuel during both driving 

and idling. Mahler and Vahidi [60] proposed an optimal velocity-planning algorithm to minimise the idling 

time behind red lights and maximise the chance of going through green lights based on probabilistic traffic-

signal timing models. The model showed a 61% increase in fuel economy in a motivating case study (ideal 

and best condition), but 16% for fixed-time signals and 6% for actuated signals compared with the un-

informed drivers. Mandava et al. [61] developed an algorithm to provide drivers dynamic speed advice based 

on real-time signal information, so that drivers could maximise the probability of passing through green 

lights without idling and adjust their speed smoothly to minimise emissions from sharp acceleration and 

deceleration. The algorithm showed a 12-14% reduction in energy and emissions. Li et al. [62] proposed an 

advisory system to alert drivers to release the throttle earlier and brake gently in response to a change of 

traffic signal. The results showed 8% of fuel savings in medium congested traffic. Idling time at intersections, 

congestions and accidents could be reduced or avoided by eco-routing devices [63, 64]. New engine 

technologies can also help reduce idling in traffic. For example, many new vehicles are now equipped with 

stop-start technology which turns off the engine whenever idling and restarts comfortably when drivers touch 

the accelerator pedal [65, 66]. Fonseca et al. [67] reported that a vehicle with a stop-start system had more 

than 20% CO2 reduction than a similar vehicle without stop-start technology, partly due to zero idling 

emissions. Hybrid vehicles turn off the engine when idling and even at low driving speed. 
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2.4. Route choice 

Route choice is another major factor that determines the total fuel consumption and emissions for a 

given origin-destination trip. Once the route is chosen, the aforementioned eco-driving factors will be largely 

limited by the route characteristics. Route choosing involves a number of factors including travel time, 

distance, speed limit, and road and traffic conditions. There are usually several routes for a given origin-

destination trip. Mostly, a driver would choose a route with either the shortest travel distance or the fastest 

travel time. However, the shortest or fastest route is not always the best choice in terms of fuel consumption 

and emissions [68-70]. A Swedish study found that 46% trips of the drivers’ spontaneous choices were not 

the most fuel-efficient routes and 8.2% of fuel could be saved by using a fuel-optimised navigation system 

[71]. This is because the fastest route may be longer and include highways that do not allow the vehicles to 

run at the eco-driving speed (50-90 km/h, as discussed in Section 2.1), thus resulting in higher fuel 

consumption. While the shortest route may contain congested traffic, leading to higher fuel consumption and 

longer travel time. Trade-off is needed between travel time, distance and fuel consumption. Zeng et al. [72] 

developed an eco-routing approach to determine the path with minimum CO2 emissions while satisfying time 

constrains. They found that the average reduction of CO2 could reach 11% when the travel time buffer was 

10%. Kuo [73] proposed a model to calculate the fuel consumption for a time-dependent routing problem. 

The results showed that the proposed method could have 25% reduction in fuel consumption over the fastest-

route method and 23% over the shortest-route method. Ahn and Rakha [74] found that eco-routing system 

typically reduced travel distance but not necessarily travel time. 

Road type and grade could influence fuel economy and emissions significantly. Road type determines 

the speed, acceleration and deceleration profiles, and consequently fuel economy. For example, the average 

fuel economy of highways with an 80 km/h speed limit or higher is about 9% better than other roads [14]. 

Choosing a flat and constant speed limit road is not only safer, but also saves fuel. Gallus et al. [48] reported 

that, with accelerations within ±0.1 m/s2, CO2 and NOx emissions showed a linear correlation with road 

grade for all urban, rural and motorway conditions. The step from 0 to 5% road grade led to a 65-81% 

increase in CO2 and 85-115% increase in NOx. Jin et al. [75] reported that, for a 250-metre freeway segment 

with the same initial speed, final speed and trip time, the fuel consumption of a 6% grade route was 86% and 

171% higher than those of 0 and -6% grade routes, respectively. Higher road grade required the vehicle to 

run at high engine load condition more frequently, causing higher fuel consumption and emissions. A small 

proportion of the entire trip with high engine load condition was responsible for a significant amount of trip 

emissions and fuel consumption [70]. Therefore, routes with large road grade should be avoided. It was 

reported that fuel economy of flat routes would be 15-20% better than that of hilly roads [76]. 

Traffic conditions should also be considered when choosing the route. A fuel efficient route should 

avoid congested roads and minimise idling time at intersections or traffic lights. Several studies had been 

performed regarding this aspect. Boriboonsomsin et al. [69] presented an eco-routing navigation system 

based on the historical and real-time traffic information. The results showed that, compared with the fastest 

route, an eco-route would provide 12-14% average fuel savings but incur 16-22% longer travel time 
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depending on the trip distance. Sun and Liu [52] developed an eco-routing algorithm by considering vehicle 

arrival and signal status information in a signalized traffic network. On average, a 20% reduction of CO 

emissions was observed compared with a traditional shortest path algorithm. Yao and Song [63] proposed an 

eco-routing algorithm based on locally collected vehicle operation and emissions data and a dynamic traffic 

information database. Compared with the fastest route, the eco-route could reduce fuel consumption by 2.2-

7.4% depending on the vehicle type, travel distance and traffic flow. The maximum fuel savings could be 

achieved under heavy congestion and 10-15 km conditions. Nie and Li [64] presented an eco-routing model 

to find the path with the minimum total travel time and fuel costs, which considered the major acceleration 

events associated with link changes and intersection idling. The results showed that vehicle characteristics 

(especially weight and engine displacement), turning movements and acceleration had significant influence 

on the choice of the eco-route. Some of the above studies have mentioned that the amount of fuel savings on 

the chosen eco-route was dependent on vehicle type [63, 64], which should also be considered in eco-routing 

algorithms. Ahn and Rakha [70] found that each vehicle type would have a different optimal route for HC 

and CO, but the same route for NOx, CO2 and fuel consumption. Bandeira et al. [77] reported that eco-route 

differed according to the vehicle model and emissions estimation method. 

A commonly ignored factor in eco-routing studies was how individual vehicle’s route choice would 

affect others at network levels. The above studies mostly investigated the effectiveness of eco-routing system 

for individual vehicles. Rakha and Ahn used an INTEGRATION eco-routing framework to evaluate the 

network-wide impacts [74, 78]. The results showed that the system-wide benefits of eco-routing generally 

increased with the increase of system market penetration rate [74]. However, Garcia-Castro et al. [79] 

reported that a high percentage of eco-drivers would have negative effects on global emissions under high 

traffic demand conditions because higher headways and smooth acceleration/deceleration increased 

congestion. Moreover, it is possible that if too many drivers are directed into the same route, then the initially 

calculated eco-route may become congested and thus not be fuel efficient [69]. This will need not only real-

time traffic information, but also communication between vehicles. Jiang et al. [80] reported that the benefits 

of eco-driving increased with the market penetration rate of connected and automated vehicles until levelling 

off at a 40% penetration rate. 

2.5. Other factors 

Air conditioning system uses extra fuel and eco-driving principles suggest using it conservatively. It is 

the single largest auxiliary load on a vehicle [81]. An air conditioner compressor could use up to 5-6 kW 

power from the engine, equivalent to driving a vehicle steadily at 56 km/h. It was estimated that 13.5 billion 

litres fuel (or 3% fuel consumption) could be saved in the US by reducing the use of air conditioners by 50% 

[82]. Experimental results showed that a small passenger car consumed more fuel with maximum cooling 

than with windows-down when cruising speed was between 64-113 km/h [83]. However, fuel consumption 

with windows-down overtook air conditioner at 129 km/h due to the increased aerodynamic drag. Therefore, 

rolling windows down for ventilation and cooling is more efficient at low speed (e.g. on city streets) but air 

conditioner becomes more efficient at high speed (e.g. on motorways) if it is not operated at the maximum 
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cooling load. Parking the car in the shade in hot weather and in a warm place in cool weather could save fuel 

from the engine warm-up and usage of air conditioner. Using other vehicle accessories, such as cabin and 

seat heating, headlights, entertainment systems and cigarette lighters, also increases fuel consumption. 

Conservative use of these features is recommended [17]. However, generally their effect is insignificant and 

the drivers’ safety and comfort should not be compromised for eco-driving. 

Other factors influencing fuel consumption include vehicle weight, tyre pressure, maintenance and 

aerodynamic drag [14, 17, 21, 22, 41]. Vehicle weight should be minimised by removing unnecessary items. 

45 kg of extra weight can increase fuel consumption by 1-2% and the impact is more significant for small 

vehicles [16, 22]. It was estimated that each additional pound of average passenger weight would increase 

US petrol consumption by more than 148 million litres per year [84]. Proper maintenance can reduce fuel 

consumption. Fuel consumption could increase 1-2% by driving with under-inflated tires, by 4% with a 

poorly tuned engine, and by as much as 40% with a faulty oxygen sensor [14]. Aerodynamic drag should be 

minimised. Additional parts on the exterior of a vehicle or having the windows open could increase air 

resistance and fuel consumption by over 20% at high driving speed [21]. A large blunt roof cargo box can 

reduce fuel economy by 2-25% and a rear cargo box or tray can reduce fuel economy by 1-5% depending on 

the driving speed [22]. Therefore, it is recommended to store necessary cargo in the vehicle rather than on 

external racks, to use rear racks rather than roof racks, and to use aerodynamic racks and to pack cargo tight 

and low if roof cargo cannot be avoided [17]. However, drivers usually do not have much control over these 

factors during a trip and the chance of implementing these skills is relatively low. 

2.6. Comparison of eco-driving factors 

Fig. 2 compares the ranges of percentages of fuel savings or CO2 reduction contributed by each eco-

driving factor. Savings in fuel consumption are taken from experimental or numerical studies for a given 

origin-destination trip. Some data indicating the potential benefits of a single factor in ideal or extreme 

conditions is not comparable and thus excluded. For example, although fuel consumption of a 6% grade road 

is 86% and 171% higher than those of 0% and -6% grade roads [75], there are no three such routes 

containing only uphill, flat or downhill roads for a given origin-destination trip. It should also be noted that 

eco-driving factors are not independent and mostly overlap with each other, as shown in Table 1. As shown 

in Fig. 2, the primary eco-driving factor is acceleration/deceleration, contributing to 3.5-40% fuel savings or 

CO2 reduction. This justifies the effectiveness of avoiding aggressive driving style that is commonly 

recommended in eco-driving programs. Driving speed and route choice could contribute to 2-29% and 2.2-

25% fuel savings, respectively. They are followed by idling reduction (6-20%). Other factors (indicated by †) 

that the drivers have control over during a trip (e.g. air conditioner) have insignificant effect on fuel 

consumption (<10%). Although a faulty oxygen sensor can cause up to 40% more fuel consumption, such 

factors (indicated by ‡) are not frequent and drivers have no control over them during a trip. Therefore, the 

majority of eco-driving studies focused on the driving behaviours of acceleration, deceleration, driving speed, 

route choice and idling. 

 



 

11 

 

Fig. 2. Ranges of percentages of fuel savings or CO2 reduction contributed by each eco-driving factor. Data 

are derived from [22, 24, 48, 53] for acceleration/deceleration, [21, 22, 28, 32-38] for driving speed, [14, 60-

62, 67] for idling, [14, 63, 69-74, 76, 78] for route choice, [16, 22, 82] for other factors† that drivers have 

control over and [14, 17, 21, 22] for other factors‡ that drivers have no control over. 

 

Table 1. Driving parameters included in each eco-driving factor. 

Eco-driving factors Parameters considered Refs. 

Driving speed Cruise control, vehicle speed, speed limit, compliance 
of speed limit, travel time, traffic flow, traffic signal, 
fuel type, road grade, gear shifting. 

[21, 22, 28, 32-38] 

Acceleration/ 
deceleration 

Aggressiveness, anticipation, headways, traffic flow, 
traffic signal, road grade, throttle position, engine/foot 
brake. 

[22, 24, 48, 53] 

Idling Knowledge on idling, anticipation, traffic flow, traffic 
signal, vehicle speed, acceleration/deceleration, route 
choice, stop-start and hybrid technologies. 

[14, 60-62, 67] 

Route choice Travel time, travel distance, when to travel, road 
grade, road type, speed limit, congestion, idling at 
intersections, network-wide impacts, market 
penetration rate, vehicle type. 

[14, 63, 69-74, 76, 78] 

Other factors† Air conditioner, excess weight (45 kg), aerodynamic 
drag (windows). 

[16, 22, 82] 

Other factors‡ Under-inflated tires (1-5 psi), out of tune engine, 
faulty oxygen sensor, aerodynamic drag (external 
cargos). 

[14, 17, 21, 22] 

Other factors†: factors that drivers have control over during driving and can be frequently applied. 
Other factors‡: factors that drivers have no control over during driving and are not frequent. 

 

3. Research methods for eco-driving 

This section reviews the methods used to investigate eco-driving technology, including laboratory 

testing, on-road experiments and numerical modelling. Their mechanisms, advantages/disadvantages and 

applications are discussed and compared. 
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3.1. Laboratory experiments 

Fuel consumption and emissions for different driving styles can be measured in laboratory using a 

chassis dynamometer, engine dynamometer or driving simulator. Laboratory experiments are performed 

under controlled conditions and their accuracy and repeatability are relatively high. 

3.1.1. Engine dynamometer 

Engine dynamometers are commonly used to investigate the engine power and emission characteristics. 

In an engine dynamometer test cell, the engine driveshaft is directly coupled to the dynamometer shaft. An 

absorption unit is used to absorb any specific load and measure the engine power, torque and speed. In 

engine dynamometer testing, the engine and exhaust after-treatment system are required to be removed from 

the vehicle and the tests follow the procedures specified in regulations [85]. Various engine operating 

parameters can be monitored in real-time, including exhaust emissions, fuel consumption, torque, speed, in-

cylinder pressure, etc. The major advantage of an engine dynamometer is that the test cell can be climatically 

controlled (i.e. ambient temperature and humidity) to simulate driving under a wide range of climatic 

conditions. The operator has full control of all the engine parameters. Thus, engine dynamometer testing can 

be conducted to investigate the impacts of driving styles and ambient conditions on emissions and fuel 

consumption. Furthermore, the engine driveshaft is directly connected to the dynamometer so the results are 

not affected by transmission and driveline power losses. Therefore, the accuracy and repeatability of engine 

dynamometer test are relatively high. The limitations of engine dynamometer testing are that it does not fully 

represent the performance of a complete vehicle and the range of test conditions is limited although real-

world engine load test cycles can be run on modern engine test benches by simulating the vehicles on-road 

driving dynamics [86]. Furthermore, the fuel consumption and emissions of entire vehicle fleets cannot be 

represented by engine dynamometer testing as usually only a few engines in each vehicle type are tested. 

3.1.2. Chassis dynamometer 

Chassis dynamometers enable operators to simulate the resistive load on vehicle wheels. They consist 

of three main components, namely the load cell (absorption unit), the roller set and the power and torque 

indication system. During chassis dynamometer testing, the vehicle is tied down and placed on a set of 

rollers which are coupled to the dynamometer load cell or a belt drive system. Thus, load can be applied to 

the vehicle to simulate real-world driving resistance. The driving cycles and load can be controlled by 

operators, which are mainly transient cycles such as the New European Driving Cycle (NEDC) and Federal 

Test Procedure (FTP). These cycles are pre-defined driving profiles that operators have to attempt to emulate 

during testing. Operators must anticipate and follow the speed within ±2 km/h and time within ±1 s [87]. The 

vehicle fuel consumption and exhaust emissions are continuously measured and recorded along with driving 

parameters. As chassis dynamometers are built in laboratory and designed to meet regulatory standards, the 

testing results are highly precise and reliable. Moreover, test cycles, road resistance and climate conditions 

can be fully controlled by operators, thus the test results are not affected by real-world driving factors and the 

repeatability is relatively high. Chassis dynamometer testing can evaluate the impacts of driving behaviours 

on emissions and fuel economy, which will be analysed for further development of eco-driving technology. 
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On the other hand, the range of test conditions such as steep road gradients are limited in chassis 

dynamometer testing. Thus, chassis dynamometer testing cannot represent real driving. Furthermore, driving 

resistance that simulates road load is generated from vehicle coast down test under artificial conditions. So 

that vehicle emissions and fuel consumption are lower when compared to real driving results [88]. 

3.1.3. Driving simulator 

Driving simulators are mainly built in laboratory to study driving behaviours, to provide eco-driving 

training, and to evaluate new eco-driving training programs and in-vehicle devices. A driving simulator 

mainly consists of a fixed-base car mock-up with a steering wheel, acceleration and brake pedals and 

indicators. Road scenarios are displayed on a screen, which provide the road environment and traffic 

information to the driver. Driving behaviours are continuously monitored and fuel consumption and 

emissions are calculated accordingly. The major advantage is that driving simulators offer a safe and 

effective method for examining various factors on the driver performance [89]. Safety issues and traffic 

accidents are not a concern in a laboratory driving simulator study. The driving behaviours are recorded and 

used to improve the performance of individual drivers. Real-time driving information are displayed on the 

screen to drivers so that they can well understand the impacts of their behaviours on emissions and fuel 

consumption during the experiment. The limitation of driving simulators is that road and traffic conditions 

are pre-defined and fixed. Eco-driving studies on driving simulators usually only have a few runs to test the 

introduction of new training programs or in-vehicle devices. Real-world traffic and road conditions are not 

included. Furthermore, the results are highly dependent on the simulator program which calculates the 

emissions and fuel consumption corresponding to different vehicle operation conditions. The use of driving 

simulators may also cause simulator sickness mostly due to an incongruity of sensory input with conflicting 

signals from simulated and actual motion [90]. 

3.2. On-road experiments 

Emissions and fuel consumption measurements under on-road conditions provide valuable data for the 

actual driver performance of eco-driving. On-road experiments are typically less accurate and repeatable 

than laboratory testing [91]. Moreover, on-road experiments are highly affected by the uncertainties in traffic 

conditions, driver behaviours and transient operation due to the absence of standard testing cycles [86]. The 

commonly used on-road research methods for eco-driving include portable emissions measurement system 

(PEMS), data logger, odometer reading and fuel use, and surveys. 

3.2.1. PEMS 

A PEMS is a mobile emission measurement instrument that is used on-board the target vehicle to test 

under real driving conditions. A PEMS integrates advanced emission analysers, an exhaust flow meter, a 

weather station and a GPS system, and connects with the on-board diagnostics (OBD) system of the vehicle 

to acquire the driving parameters such as vehicle and engine speeds. A PEMS is installed either in the cabin 

or in the trunk of the test vehicle. Heated sample lines and exhaust flow measurement system are directly 

connected to the tailpipe. The sampling line is pre-heated to 190°C to avoid the condensation of HC. Exhaust 
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emissions, flow rate and temperature can be monitored in real-time together with the engine, vehicle and 

ambient parameters. A PEMS is well utilised and developed because the upcoming Euro-6c regulation will 

include Real Driving Emissions (RDE) as a new and additional type approval test for new vehicles [92]. The 

major advantage is that a PEMS can provide second-by-second emissions and fuel consumption data during 

real-world driving. It can be installed into different categories of vehicles to build up a large database under a 

wide range of driving conditions for further development of eco-driving technology. The effect of driving 

style on fuel consumption and emissions can be analysed. In addition, the impacts of road grade can be 

investigated [48], which would be difficult to replicate in laboratory testing. On the other hand, a PEMS 

usually measures a limited range of pollutants which are less comprehensive than laboratory testing can 

achieve. The total weight of a PEMS including accessories is about 100-500 kg which can affect the 

measurement results, especially for light weight vehicles (e.g. 45 kg of extra weight could increase fuel 

consumption by 1-2% [16, 22]). Moreover, the repeatability and accuracy of PEMS measurements are lower 

than laboratory testing due to the traffic conditions, driving behaviours and ambient conditions in a real 

driving. 

3.2.2. Data logger 

Data loggers are designed to collect the vehicle state and driver operation data under real driving 

conditions. Data loggers are plugged into the OBD II or control area network (CAN) of a vehicle to collect 

the vehicle speed, engine speed, fuel consumption, GPS and emissions data. OBD II is a standard port to 

provide real-time data of driving parameters and has been adopted by the US EPA since 1996 [93]. The 

major advantage of data loggers is that they can be simply connected with an OBD II or CAN and collect 

data during normal driving. They can minimise the effect of the added device mass on the measured results 

compared to a PEMS. Most vehicles manufactured after 1996 should have OBD II ports. The data collected 

can be used to investigate the impacts of driving behaviours on emissions and fuel consumption. In addition, 

data loggers can be used on a large number of vehicles during long-term normal daily driving at a low cost. 

On the other hand, the data available from OBD II or CAN differs by manufacturer, vehicle model and type. 

Not all driving parameters are available as some may not be found in OBD II or CAN data stream. 

3.2.3. Odometer reading and fuel use 

Eco-driving has been already implemented in normal daily driving. To evaluate its effectiveness, fuel 

consumption can be manually logged by paper forms, fuel cards and company records (how frequently and 

how much fuel is refilled) and vehicle usage can be recorded via the odometer readings. The advantage of 

this method is that it is relatively simple and inexpensive. It is applicable to a large number of vehicles and 

feasible for long-term studies. In addition, this method does not have impact on the driving behaviours. 

However, the limitation is that human errors may occur in recording the fuel use and mileage, and drivers 

may forget to record the data at gas stations. Another limitation is that the data available is very limited, 

mainly the fuel use and mileage. The calculated fuel consumption rates are only mean values in certain 

periods. 
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3.2.4. Surveys 

Surveys are assigned to drivers after they are involved in eco-driving programs. The levels of fuel 

savings and emissions reduction are strongly dependent on drivers’ motivation, attitude, acceptance, 

knowledge and behavioural change. Surveys are aimed to understand these factors. The advantages of 

surveys are relatively simple and inexpensive. Furthermore, the feedback of drivers’ experience can be used 

to improve the eco-driving training programs and in-vehicle devices. The major limitation of surveys is that 

the information collected is very limited and no quantitative data on fuel consumption or emissions is 

available. 

3.3. Numerical modelling 

Numerical modelling is widely used to evaluate the performance of new eco-driving and eco-routing 

algorithms. Numerical models predict the fuel consumption and emissions as a result of different driving 

behaviours. Based on transparency, Zhou et al. [13] classified fuel consumption models into white-box, grey-

box and black-box models, with ascending simplicity and descending accuracy. By comparing the model 

efficiency and accuracy, the grey-box models are recommended for eco-driving and eco-routing systems [13]. 

The major advantage is that numerical modelling can investigate the effectiveness of new eco-driving 

strategies or algorithms without conducting field experiments, saving greatly in both research time and cost. 

However, the limitation is that the results are less accurate and reliable than those of laboratory and on-road 

experiments. A model may only consider a few driving parameters (input variables) and ignore others that 

also have impacts on driver performance. In addition, the results are limited as well. Some models may only 

predict fuel consumption [25, 94-96] while some may be able to predict a few common emissions (mostly 

CO2, CO, HC and NOx) [51, 52, 70, 72]. 

3.4. Comparison of research methods and their applications 

Table 2 summarises the mechanisms, advantages and limitations of the research methods used for eco-

driving. As shown in Table 2, each method has its own advantages and disadvantages, which determine their 

applications in eco-driving research. Engine and chassis dynamometers are highly accurate and repeatable. 

They are commonly used for type-approval or inspection and maintenance (I/M) programs. Engine and 

chassis dynamometer testing results are also valuable for developing numerical models. Driving simulator is 

a safe and effective method to design and evaluate new eco-driving training strategies and in-vehicle devices. 

A PEMS measures second-by-second fuel consumption and emissions data, along with the driving, vehicle 

and ambient parameters under real-world driving. This dataset enables detailed analysis to be performed on 

the effect of each driving parameter on driver performance, thus to identify fuel-efficient and low-emission 

behaviours for developing more effective eco-driving strategies. Data loggers are suitable for evaluating the 

effectiveness of eco-driving training programs or in-vehicle devices during normal driving in the long-term 

and at large-scale due to the low-cost, simple setup and limited maintenance/supervision required. Odometer 

readings and fuel records are also suitable for long-term and large-scale studies. The cost is lower while the 

data collected is much more limited compared to data loggers. Surveys are used to understand drivers’ 

attitude, knowledge, motivation and acceptance of eco-driving training programs and in-vehicle devices, 
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which cannot be acquired by other methods. Numerical modelling is usually used to design and evaluate new 

eco-driving and eco-routing algorithms without performing field tests, which helps reduce both the research 

time and cost. 

 

Table 2. Comparison of eco-driving research methods. 

Method Mechanism Advantages  Disadvantages 

Engine 
dynamometer 

Measures engine operation 
parameters by applying simulated 
load via dynamometer 

High accuracy and repeatability 
Climatically controlled 
Full control on engine 

Not real-world data 
Not a complete vehicle 
Small scale studies 
High cost 

Chassis 
dynamometer 

Measures vehicle operation 
parameters by applying simulated 
resistive load via chassis roller 

High accuracy and repeatability 
Climatically controlled 
Large degree of control 

Not real-world data 
Limited road gradient 
Small scale studies 
High cost 

Driving 
simulator 

Records driver behaviours and 
performance data in driving 
simulator system 

No safety issues 
Low cost 

Driving conditions are pre-defined 
Not real-world data 
Simulator sickness 
Short-term studies 

PEMS Measures vehicle operation 
parameters by carrying instrument 
on-board the target vehicle 

Acceptable accuracy 
Real-world data 
Wide driving and ambient conditions 

Added weight may basis results 
Limited repeatability 
Small-scale and short-term studies 

Data logger Reads vehicle and engine operation 
parameters from OBD II or CAN 

Low cost, fast and easy setup 
Long-term and large-scale studies 
No impact on driver performance 
Real-world data 

Limited accuracy and repeatability 
Available data is limited and differs by 
vehicle model 

Odometer 
reading and 
fuel record 

Records odometer reading and 
fuelling frequency by drivers or 
company 

Low cost and simple 
Long-term and large-scale studies 
No impact on driver performance 
Real-world data 

May miss some records (human factors) 
Very limited information recorded 
Low accuracy and repeatability 

Survey Receives feedback from drivers after 
eco-driving programs 

Low cost and simple 
Large scale studies 
Understands drivers’ knowledge, 
attitude, motivation and acceptance 

No quantitative data on fuel consumption 
and emissions 

Numerical 
modelling 

Predicts effect of driving behaviours 
on fuel consumption and emissions 
by numerical models 

Low cost 
Shortens research cycle 

Not real-world data 
Low accuracy and reliability 
Limited factors considered 
Limited output data 

 

4. Implementation of eco-driving 

4.1. Training programs 

The purposes of eco-driving training programs are to provide drivers with the knowledge (theoretical 

training) and skills (practical training) to drive more fuel efficiently. Table 3 summaries the published eco-

driving training programs which compared the fuel consumption before and immediately after (or a certain 

period after) training. Some studies also included a control group to better assess the training effects. As 

shown in Table 3, the percentage of fuel savings is generally in the range of 2-15%, varying significantly 

between programs and individuals. Eco-driving programs usually included theoretical training, practical 

training or their combination. The training results have not reached a consensus and sometimes may be even 

conflicting. This is because each program varies greatly in eco-driving strategies, vehicle categories, trainees 
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and driving conditions. Andrieu and Pierre [97] compared the effects of simple advice and eco-driving 

training on driving behaviours. Their results showed that the average fuel consumption decreased by 

providing simple advice (12.5%) was slightly higher than that by training (11.3%). However, the routes and 

vehicles used for the two methods were different. Jeffreys et al. [98] compared the effectiveness of five eco-

driving interventions with increasing intensity, including (1) 1 h on-line learning and hardcopy brochure, (2) 

intervention 1 plus 2 h classroom lesson, (3) intervention 1 plus 50 min driving lesson, (4) interventions 1, 2 

and 3, and (5) intervention 1 plus a half-day workshop. The results showed that all the five interventions had 

apparent fuel savings and there was no statistically significant difference between them. Strömberg and 

Karlsson [99] compared the effects of two eco-driving strategies, namely an in-vehicle feedback system and 

feedback coupled with personal training. The results showed that both strategies showed 6.8% in fuel savings 

and no difference was observed between the two strategies. However, Schall et al. [100] reported that purely 

theoretical training had no effect in either the short-term or long-term, indicating the necessity of practical 

training elements. 

Generally programs that assessed the effectiveness immediately after training demonstrated obvious 

improvements in fuel consumption, emissions and driving behaviours [101-105], while long-term studies 

showed that the training impact faded over time [106-108]. This was because the driving habits developed 

through many years of practice were engrained and thus hard to change in short training programs. An 

exception was reported by Sullman et al. [109] who found that the fuel savings 6 months after training 

(16.9%)  were even larger than that immediately after training (11.6%). It should be noted that many factors 

could influence fuel consumption and thus the training results. For example, higher ambient temperature 

results in lower fuel consumption [108]. When taking this into consideration, the conclusion of an eco-

driving training program changed from “effect was stable over time [103]” to “effect was gradually lost 

[108]”. In addition, the training effect was highly heterogeneous between individuals [106]. A large 

percentage of trainees would exhibit no change or even become worse after training [103, 110]. A survey 

study showed that eco-driving interventions were more effective with high levels of pre-intervention 

motivation or supervisor support [111]. Studies also showed that eco-driving training was more effective 

under city conditions than highway conditions [106], and was more effective for manual transmission cars 

than automatic ones [101, 106]. A main challenge of eco-driving training programs is the fair evaluation of 

the effectiveness [112]. There are many variables in a real-driving task and some would be out of control 

during experiments, such as changes in routes, traffic and road conditions, weather, number of passengers, 

and turn-over of drivers (several drivers many share one vehicle and one driver may drive different vehicles 

in a company or family context) [109]. 

The above programs were all for the existing licenced/experienced drivers while few studies were for 

learner drivers. One training program for learner drivers was the ECOWILL project carried out during May 

2010 to April 2013 in 13 European countries. ECOWILL provided eco-driving seminars for both learner 

(level 1) and licensed (level 2) drivers [113]. The level 1 project integrated five golden and eight silver eco-

driving rules into driving school curricula and driver tests, aiming to educate 10 million learner and novice 

drivers with a sustainable lasting effect [114, 115]. The project was turned out to be very successful. By the 
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end of the project, the Commission Directive 2012/36/EU made eco-driving a mandatory element of the 

driver test in all 28 European countries, which entered into force on 19 January 2013 [116]. Strömberg et al. 

[117] investigated the effect of the introduction of eco-driving into driving school curriculum in Sweden. 

They found that new drivers’ understanding of eco-driving was at an operational level and had been clearly 

shaped by their driving education, while experienced drivers’ understanding was broader and included 

strategic and tactical decisions.  

 

Table 3. Summary of eco-driving training programs. 

Programs Training strategies, trainees and study periods* Fuel savings or CO2 reduction* 

Queensland Australia [98] 5 interventions with increasing intensity 
853 (EG) + 203 (CG) private drivers 
6-week before and 12-week after training 

 

Quebec Canada [106] 6h theoretical and practical training 
45 (EG) + 14 (CG) car drivers 
2-month before and 6-10-month after training 

Queensland Australia [101] Simple theoretical training 
13 drivers using one automatic car 
Immediately before and after training 

Athens Greece [174] Theoretical and practical training 
3 bus drivers 
1.5-month before, immediately and 2-month after training 

Helsinki Finland [109] 7h eco-driving (or first-aid) course 
29 (EG) + 18 (CG) bus drivers using a simulator 
Immediately before, immediately and 6-month after training 

Germany [100] Incentives and half-day theoretical training 
91 logistics drivers (<1/3 CG) 
12-month before and 6-month after training 

Uppsala Sweden [44] Theoretical and practical training (stronger acceleration) 
350 bus drivers + CG 
3-month short-term study 

Uppsala Sweden [107] Theoretical and practical training (stronger acceleration) 
350-400 bus drivers, 249 EG 
Several years before and one year after training 
 Ontario Canada [175] Tailored courses based on pre-training data 
64 drivers 
10-month before and 6-month after training 

California USA [110] Being asked to visit EcoDrivingUSA website 
51 (EG) + 53 (CG) drivers 
4-month survey study 

Portugal [102] 4h eco-driving education and individual performance report 
9 (EG) + 11 (CG) drivers 
2-3-month before and after training 

France [97] Eco-driving training and simple eco-driving advice 
20 (simple advice) + 19 (training) drivers 
Immediately before and after training 

Belgium [103, 108] 4h theoretical and practical course 
10 private drivers 
Several months before and after training 

Singapore [104] Theoretical and practical training 
116 drivers 
Immediately before and after training 

Sweden [99] In-vehicle feedback system and personal training 
54 bus drivers including CG 
3-week before and after training 

Calgary Canada [105] Tailored course based on pre-training data (focus on idling) 
200 drivers trained, 15 examined 
1-month before and after training 

* EG: experimental group. CG: control group. Error bars indicate the minimum-maximum values. 
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4.2. In-vehicle devices 

In-vehicle eco-driving devices are an important complement to the training programs whose impacts 

may attenuate over time. In-vehicle devices can continuously monitor driving and provide drivers with 

feedback. The parameters monitored usually include fuel consumption, speed, acceleration, deceleration, 

idling, and road and traffic conditions. Feedback on driving performance and advice on improving it are 

provided to drivers based on monitoring. There are a variety of in-vehicle devices, including dashboard, 

smartphone applications, GPS navigation system, offline feedback system, dedicated aftermarket feedback 

system and haptic pedals [118]. The type of feedback also varies greatly, such as visual versus auditory 

versus haptic [119], real-time versus delayed [120], continuous versus intermittent [121], and general versus 

personalised [122]. Regardless of the types of devices and feedback, there are mainly three factors 

considered on in-vehicle devices’ design and research, namely safety, acceptance and effectiveness. 

4.2.1. Safety 

Safety is the most important concern in a driving task. Generally, eco-driving largely overlaps with 

safe-driving [123]. Eco-driving recommends avoiding excessive speed and aggressive driving which are 

highly linked with crash risk and severity. However, the introduction of in-vehicle devices will inevitably 

draw some attention away from the driving task. These devices often present feedback visually. 

Investigations showed that a driver would spend 4-8% of the time looking at the eco-driving displays, with 

an average glance duration of 0.43-0.60 s and none or a few glances longer than 2 s [124, 125]. Staubach et 

al. [126] found that the distraction was initially very high (glance >2 s) but reduced over time when 

introducing a new in-vehicle device. The critical time-to-collision (<15 s) situations, hard braking and 

speeding were reduced by the device. Different types of in-vehicle devices would cause different distractions 

for drivers (e.g. visual, manual and cognitive). Studies were conducted to investigate their effects on safety. 

Kircher et al. [121] reported that intermittent visual eco-driving information had shorter dwell time than 

continuous information did. Stahl et al. [127] found that both attentional and interpretational in-vehicle 

displays could improve anticipatory performance for novice drivers but not for experienced drivers. 

Attentional display would be better for novice drivers because it had shorter and less frequent glances. 

Experiments on a driving simulator showed that the distraction risk caused by eco-driving task was lower 

than navigator and CD changing tasks which required cognitive and manual demands [128]. Jamson et al. 

[129] reported that continuous real-time visual feedback was the most effective but obviously reduced 

attention to the forward view and increased subjective workload, while haptic feedback had little effect on 

workload but was less effective than visual feedback. Gonder et al. [118] suggested that auditory feedback 

might be preferable from a driver distraction point of view and the information provided should be made as 

simple as possible to understand to minimise the cognitive effort required to process it. It was estimated that 

divers might have up to 50% spare attentional capacity during normal driving [124]. Therefore, the 

distraction caused by in-vehicle devices could be minimised if the attention needed is obtained from this 

spare capacity. Long glances (>2 s) away from the forward road scene at one time are associated with an 

increased risk of crash or near crash. The US Department of Transportation required that in-vehicle devices 
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be designed so that a task can be completed by the driver with a glance away from the roadway in ≤2 s and a 

cumulative glance time in ≤12 s [130, 131]. These guidelines apply for both the original (Phase 1) [130] and 

portable and aftermarket electronic devices (Phase 2) [131] that are operated by the driver through visual and 

manual means. 

4.2.2. Acceptance 

Acceptance of in-vehicle eco-driving devices largely determines their effectiveness. Although most 

drivers are willing to adopt eco-driving skills [132, 133], acceptance depends strongly on the design of the 

system, such as the type, content, complexity and presentation of information, which should be considered 

seriously from an ergonomics perspective [134]. It has been clearly shown that different drivers had very 

different preferences on the type of information and the majority preferred simple and clear information 

[135]. It was found that using a display with historical feedback and incorporating learning elements 

increased the acceptance for learning oriented drivers, while performance oriented drivers might prefer 

comparative feedback and game elements [136]. Therefore, a personalised feedback could increase drivers’ 

acceptance and motivation [136, 137]. Regarding the feedback type, auditory feedback, alone or in any 

combination with visual or haptic feedback, was not well accepted [138] and haptic systems were more 

acceptable than visual or auditory systems [126, 139].  

4.2.3. Effectiveness 

Fig. 3 shows the effectiveness of various types of in-vehicles eco-driving devices. As shown in Fig. 3, 

most of the studies used real-time (also referred as dynamic or online) feedback devices and only a few used 

delayed (also referred as static or offline) feedback. Both feedback types monitored the driving parameters 

during a trip using various data sources, such as CAN, OBD, GPS, sensors, map data or the internet. Real-

time devices evaluated the driving performance and provided the feedback on improving fuel efficiency to 

drivers in real-time. In contrast, delayed devices provided a feedback report after the trip was completed [140, 

141] or after a certain period (e.g. weekly) [120]. Experiments using field trials and driving simulators 

showed that real-time feedback was more effective than delayed feedback [120, 140, 142]. Real-time 

feedback was usually either visual, auditory, haptic or their combination. As shown in Fig. 3, the majority of 

studies used visual feedback devices. Visual feedback was effective to deliver detailed instructions on eco-

driving while the disadvantage was that it would distract drivers and increase cognitive workload [139]. 

Auditory feedback required less cognitive efforts and could be complementary to visual devices [118, 139]. 

However, a main drawback of auditory feedback was that drivers could not ignore it unless turning it off and 

might be annoyed by its prolonged use, making it the least accepted feedback [119, 126, 135, 143]. Haptic 

feedback provided drivers with advice through the accelerator pedal by either extra force, increased stiffness 

or vibration when over acceleration occurred [119, 144, 145]. Haptic feedback was effective for speed 

control and collision avoidance [143, 144, 146] while the limitation was that it only provided feedback on the 

use of the accelerator pedal. Fig. 3 also shows that the fuel savings of field trials are typically lower than 

those of driving simulators and modelling. It was often reported that in-vehicle devices were more effective 

in urban and congested traffic than in rural and highway traffic [147-150]. However, a driving simulator 
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study showed that the effectiveness of in-vehicle devices was not affected by traffic complexity in either 

rural or urban situations [150]. In-vehicles devices were also significantly more effective for aggressive 

drivers than normal or mild drivers [141, 149]. As shown in Fig. 3, the majority of studies were carried out in 

very short periods (a few runs in one or two days) and their percentages of fuel savings were typically higher 

than 10% [148, 149, 151, 152]. However, longer term studies (several weeks or months) showed much lower 

fuel savings (< 8%) [120, 153-157]. This indicates that in-vehicle devices have the same limitation as 

training programs. That is, the effectiveness attenuates over time. 

 

Fig. 3. Effects of feedback type and test methods on percentages of fuel savings or CO2 reduction. Error bars 

indicate the minimum-maximum values reported in the studies. Symbols indicate the testing methods: * 

Driving simulator, † Modelling, ‡ Field trials, ‡† Test track with no traffic. The references cited in this figure 

are [120, 126, 140, 141, 145, 147-157]. 

 

4.3. Regulations, incentives and social marketing 

Mandatory regulations can greatly promote the implementation of eco-driving. The most important one 

would be the Directive 2006/126/EC [158] and its amendment Commission Directive 2012/36/EU [116] of 

the European Parliament and of the Council, which made eco-driving a mandatory element in driving 

schools and driver tests in all 28 European countries. One of the marking criteria in the driver test is driving 

economically and in a safe and energy-efficient way by considering the engine speed, gear changing, braking 

and accelerating [116]. These criteria correspond to the five golden and eight silver eco-driving rules [113]. 
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Other legislative actions on eco-driving is the Engine Idling Laws in the US [56, 159] and Hong Kong [160], 

which restrict unnecessary idling time. Vehicles in special or emergency conditions (e.g. congestion, 

ambulance, fire and police) are usually exempted. Although eco-driving has attracted much attention in 

research globally, few regulations have been issued. 

Financial incentives can be used to encourage eco-driving. Such incentives could be awards for fuel-

efficient public drivers or eco-driving based insurance for private drivers. Schall and Mohnen [161] 

investigated the effects of monetary and tangible non-monetary incentives on eco-driving in a Germany 

logistics company. The results showed an average reduction of 5% in fuel consumption due to non-monetary 

incentive and 3.5% due to monetary incentive. Lai [162] reported a more than 10% reduction in fuel 

consumption after introducing a monetary reward system to bus drivers. Moreover, the benefit showed no 

decline over time and the money saved from fuel reduction was much more than the rewards given. 

Liimatainen [163] developed an eco-driving incentive system using fuel consumption data for heavy-duty 

vehicle drivers. The pay-as-you-drive (PAYD) or usage-based insurances (UBI) could be used to encourage 

eco-driving [142, 164, 165]. Several car insurance companies have adopted these schemes by using 

telematics to monitor people’s driving behaviours and offer a discount depending on how they drive, such as 

Admiral’s Black Box Insurance [166, 167], Progressive’s Snapshot Program [168] and OnStar’s Smart 

Driver Program [169]. 

It is also important to increase people’s awareness and understanding on eco-driving by social 

marketing and advertising. For example, many drivers still believe that it is better to idle their cars several 

minutes before they drive or stop, which wastes a large amount of fuel [58]. Drivers also usually put a lower 

priority on fuel saving than time saving and convenience [134, 170], making excessive speed common on 

highways and reducing speed limit being extremely unpopular [18, 28]. However eco-driving does not 

increase travel time in urban situations and only increases slightly in rural situations, and slower driving 

gains safety as well. To address these barriers, social marketing and advertising of eco-driving are necessary. 

The eco-driving skills and benefits have been given on many governments’ websites, such as US [22], 

Australia [21], Europe [115], Japan [171] and China [172]. However, only the motivated drivers would visit 

these websites and implement the eco-driving tips provided. So far very few efforts have been made for the 

general public. 

5. Challenges and future research directions 

Road transport consumes a large amount of fossil fuel and emits significant CO2 and pollutant 

emissions. Driving behaviours are considered as the last major factors that determine vehicle fuel efficiency 

and emissions. Eco-driving is a relatively low-cost and immediate measure to significantly improve fuel 

efficiency. As reviewed in Section 4, it has attracted worldwide investigation and adoption in recent years. 

However, the effectiveness of eco-driving varies greatly due to their different research scopes, methods and 

factors. The following challenges should be considered and investigated as future perspectives. 
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 The effects of both eco-driving training programs and in-vehicle devices were significant in the short 

term, but faded over time. Efforts are needed to design more effective and lasting training programs 

and in-vehicle devices. 

 The benefits claimed by modelling and laboratory testing were usually much greater than those of 

field trials. Efforts are needed to convert the potential benefits of eco-driving from research studies 

into practical driving.  

 The many variables in a real-world driving task make it difficult to accurately and fairly evaluate the 

effect of eco-driving on fuel consumption and emissions. Better experimental design is needed to 

focus on key variables with the most significant effects on fuel savings and emissions reduction. 

 Current eco-driving skills are mostly qualitative. Investigations are needed to provide quantitative 

suggestions that could be integrated into hardware to generate more constant and uniform 

improvements. 

 Most studies mainly investigated the effect of eco-driving on reducing fuel consumption and CO2 

emissions, but did not cover pollutant emissions such as CO, HC, NOx and PM. Trade-offs may be 

needed between fuel economy, pollutant emissions and travel time [173]. Different eco-driving 

strategies may be required for different purposes. 

 Current eco-driving studies mostly focus on individual’s driving behaviours, but lacks consideration at 

network levels. The recommended eco-driving styles may be constrained by surrounding vehicles or 

may even be unrealistic under real-driving conditions. 

 Current eco-driving studies are mainly for licensed or experienced drivers, while fewer studies have 

been carried out for learner or novice drivers. Investigations on how eco-driving can shape and 

improve new drivers’ driving performance are needed. 

6. Conclusions 

Eco-driving technology has been critically reviewed based on extensive scientific articles. It is found 

that eco-driving is a relatively low-cost and immediate measure to reduce fuel consumption and emissions 

significantly. The major factors influencing fuel consumption and emissions that a driver has control over 

during driving are acceleration/deceleration, driving speed, route choice and idling. Training programs and 

in-vehicle feedback devices are commonly used to implement eco-driving skills. Immediate and significant 

reductions in fuel consumption and CO2 emissions have been observed with a slightly increased travel time. 

However, the impacts of both methods can attenuate over time due to the ingrained driving habits developed 

over the years. This implies the necessity of developing quantitative eco-driving suggestions and integrating 

them into vehicle hardware to generate more constant and uniform improvements. Efforts on developing 

more effective, sustainable and lasting training programs and in-vehicle devices are needed for drivers. 

Future studies on the effect of eco-driving on pollutant emissions are required as road transport continues to 

be the single largest contributor of air pollution in urban areas. The effect of eco-driving on fuel consumption 

and emissions at network levels should also be considered. 
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