
Appears in the 10th International Parallel Processing Symposium

ECO: Efficient Collective Operations for
Communication on Heterogeneous Networks

Bruce B. Lowekamp∗and Adam Beguelin†

Email: {lowekamp,adamb}@cs.cmu.edu
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
Phone: 412-268-5295
Fax: 412-268-5576

February 26, 1996

Abstract

PVM and other distributed computing systems have enabled the use of networks of work-
stations for parallel computation, but their approach of treating all networks as collections of
point-to-point connections does not promote efficient communication—particularly collective
communication. The Efficient Collective Operations package (ECO) contains programs which
solve this problem by analyzing the network and establishing efficient communication pat-
terns. These patterns are used by ECO’s library of collective operations. The analysis is done
off-line, so that, after paying the one-time cost of analyzing the network, the execution of ap-
plication programs is not delayed. This paper describes ECO and gives performance results of
using ECO to implement the collective communication in CHARMM, a widely used macro-
molecular dynamics package. ECO substantially improves the performance of CHARMM on
a heterogeneous network. ECO facilitates the development of data parallel applications by
providing a simple interface to routines which use the available heterogeneous networks effi-
ciently. This approach gives a programmer the ability to use the available networks to their full
potential without acquiring any knowledge of the network structure.

1 Introduction

The availability of networks of high-performance workstations and software packages such as
PVM [8] has made networks of workstations (NOWs) a legitimate alternative to traditional high-
performance machines such as supercomputers and massively parallel processors (MPPs). Fur-
thermore, networks of supercomputers can be utilized when even more computational power is

∗Partially supported by an NSF Graduate Research Fellowship
†Joint appointment with Pittsburgh Supercomputing Center

1



needed. However, the networks forming NOWs are almost never as powerful as the networks
within MPPs, so most applications run on NOWs have been coarse-grain computations which re-
quire relatively little communication. The advent of high-performance and gigabit networks, such
as 100Mb ethernet [15], FDDI, ATM [17], and HIPPI [10] networks, has begun to reduce this
limitation. Unfortunately few users are lucky enough to have any or all of their machines on such
networks, therefore it is critical that efficient use is made of the available network bandwidth. Even
with high-performance networks, it is necessary to use appropriate communication patterns based
on the topology of these networks. This is made difficult by the fact that local area networks, unlike
MPP networks, tend to hide information about topology.

The Efficient Collective Operations package (ECO) is focused on the optimization of communi-
cation in the data parallel computational model. Most communication in data parallel programs can
be divided into two categories: nearest neighbor, where processors communicate to exchange data
with a small set of other processors which contain “nearby” data, and collective, or global, com-
munication, where all processors contribute data to a result that may arrive at one or all processors.
Optimization of both types of communication should be addressed by a complete communications
package.

Collective operations have long been a component of vendor supplied communication libraries
for MPPs, and the supplied routines are optimized for performance on that vendor’s hardware.
PVM has several collective communication routines and MPI [7, 9] provides a more complete set
of collective communication routines. However, neither PVM nor MPI’s specification address the
issues of optimizing the performance of collective communication on heterogeneous networks.

Collective communication can be implemented using the native multicast capabilities of net-
works such as ethernet and ATM, however there are several difficulties with using this solution.
Such a technique would only be usable on the same local network, requiring alternate solutions for
systems spanning multiple networks. There are currently no portable techniques for identifying
an underlying physical network. Finally, the multicast protocols may be unreliable, which further
complicates an implementation of reliable collective communication needed for applications.

ECO addresses these concerns by analyzing the characteristics of the networks to which the
machines are attached and developing optimized communication patterns which are used by col-
lective communication routines. These routines provide the same functionality as the collective
communication suite in the MPI standard [7]. Efficient nearest neighbor communication is pro-
vided by routines that map common communication topologies to the network topology. ECO
requires no user input to determine the characteristics of the network and has almost no appli-
cation run-time overhead. Its design makes it possible to utilize more efficient communication
techniques, such as those provided by MPP libraries, while maintaining the flexibility to run on an
arbitrary collection of machines and networks.

ECO is used for collective communication by Dome [1], an object-oriented distributed pro-
gramming environment currently under development. It has also been used to provide the collec-
tive communication required by CHARMM [4], a macromolecular dynamics program extensively
used by chemists. The original communication routines provided with CHARMM are highly op-
timized for a switched or MPP network. ECO provides substantial improvements in the run-time
of CHARMM on heterogeneous networks, while suffering only a slight penalty in efficiency on
single switched networks.

2



2 Related Work

Collective communication provides important functionality for many applications. Efficient im-
plementations of core collective operations is crucial for achieving maximum performance of ap-
plications on message-passing systems [14].

PVM provides only a limited set of collective communication routines. Moreover, a powerful
implementation presents difficulties because of the portable, heterogeneous nature of PVM. When
writing a library for a specific MPP, the developer knows the topology and characteristics of the
interconnection network. The developer of such a library for PVM has no such assumptions to
work with. Because PVM does not provide a large set of collective communication routines,
developers of PVM applications have been forced to design their own [16]. Although this gives
application developers the opportunity to write code specific to their target architecture, if they
have one, it is an undue burden.

There has already been substantial work on collective communication packages. The MPI
standard [7] acknowledges the importance of collective communication by including it as a chapter
in the specification. Papers from the InterCom project discuss general techniques for building
high-performance collective communication libraries, implementation of their library on several
architectures [3], and other packages and approaches to collective communication [14].

Bala, et al. describe a collective communication library originally designed for the IBM SP1 [2].
They discuss performance tuning issues and provide a detailed discussion of the semantics of col-
lective communication and group membership, including the correctness of collective operations.

Considerable work has been done on collective operations, and multicast communication in
general, which can be used as the underpinnings for collective communication, on a variety of
specific physical networks. McKinley, et al. have written several papers on issues involved in
implementing such operations on bus-based networks [12], wormhole routed MPPs [13], and ATM
networks [11].

Many applications require the notion of communication topology, such as a mesh or a ring,
which is used by the application for nearest neighbor communication. Developers have expressed
a desire for a basic set of topologies [16] for both programming ease and efficiency reasons. PVM
currently does not support topologies. The MPI standard dedicates a chapter to the discussion of a
mechanism for describing arbitrary topology needs to the message passing system [7].

Of particular interest to ECO development is research done on grouping hosts on the basis of
network topology. This technique has been used in two areas. Evans and Butt make use of this
technique to facilitate load balancing [6]. In their approach, full load balancing information and
communication occurs within subnets, while communication between subnets is more carefully
controlled. Also related to this subject is the work of Efe on grouping related tasks together in a
subnet for a system with deterministic task dependencies [5]. Both of these systems share ECO’s
principle of limiting communication between subnets. However, a major difference between these
systems and ECO is that they attempt to avoid global communication whereas ECO tries to opti-
mize it. Furthermore, only ECO addresses the issue of automatically identifying subnets.

3



3 Network Characterization

ECO is designed so that the application programmer need know nothing of the underlying network
topology. Accordingly, ECO’s network characterization program must function starting only with
the list of machines to be used. The goal of the characterization program is to obtain a metric
reflecting the performance of each link.

The first issue in network characterization is the physical structure of the network. A full
description of a network can be very complicated. There are two broad classifications of networks:
bus-based and switch-based. In a bus-based network several hosts share the same “wire.” Each
host in a switched network has its own wire and a switch connects pairs of wires as they exchange
messages. Bridges can be used to connect different network components together and can directly
or indirectly slow down message transfer rates but are invisible to most software. Routers are used
to connect networks, and they generally delay packets for longer than bridges. MPPs have very
fast internal networks, but the connection between the MPP and the outside network, such as on
the Cray T3D or Intel Paragon, frequently has relatively low bandwidth.

Secondary to the physical nature of the network is the computational load in preparing the
message on the sending and receiving processors. The processor has to marshal the data and attach
several headers before placing the message on the network. This cost can vary widely depending
on the message passing implementation, operating system, and hardware, but it is frequently a
substantial consideration.

A third issue which affects the communication work is the traffic on the network caused by
sources other than the application in question. This is referred to as ambient traffic in this article.
This traffic further reduces bandwidth available to an application and increases the latency of mes-
sage transfers. Furthermore, the amount of ambient traffic will vary over time, possibly changing
the optimal communication strategy for that network.

Several techniques were examined in the hope of developing a portable technique for auto-
matically and robustly adapting communication patterns to network topology. IP addresses are
not appropriate because bridges separate traffic without regard to IP address. Network manage-
ment protocols are not portable or powerful enough to determine all varieties of routers, bridges,
and switches that may exist. These difficulties motivated the use of an empirical measurement
technique where the communication time between two hosts is measured by timing round-trip
messages. This metric is desirable because it expresses the sum of all these terms in a single
measurable quantity.

To measure these times, a program is run on all hosts which are anticipated to be used for
running parallel programs. A host exchanges a message with another host several times. The total
time is divided by twice the number of round trips and recorded. Several round trips are used for
each measurement to minimize the influence of the clock granularity. The communication time is
measured with one pair of hosts exchanging messages at a time, in order to prevent the program
from causing network congestion which would distort the results. This exchange is repeated for
each pair of hosts, and the whole process is repeated several times. This technique assumes a single
route between machines.

Although this measurement process is anO(p2) process when run onp machines,p is small, so
it does not take excessively long and requires little processor time, which should make it inexpen-
sive for those who pay for CPU time. Since these results are used to determine physical network

4



topology and are saved to disk, it is only necessary to perform the characterization on occasions
where a change is made in the network or the location of machines.

After the measurements are completed, it is necessary to label the communication time for
each pair of hosts with a single value. It seems intuitive that the mean observed time would most
accurately reflect the cost to communicate between hosts. However, experience has shown that the
mean time is a poor indicator, due to the large delay which can be caused by collisions. The high
cost of delays caused by a brief burst of heavy traffic can be made worse by the exponential back-
off scheme used on ethernet. A single exchange which experiences this type of effect can skew
the mean so that hosts which may share the same network bus appear to have a worse network
connection than those hundreds of miles away. Although these collisions result from ambient
traffic and should be accounted for, it would be necessary to run the program over a period of
several hours to gain even an approximate measure of the frequency of these occurrences.

Other possible measures are the minimum, maximum, and median times. The maximum time
will reflect the worst collision which occured, as discussed above. The median time is likely not
to reflect the delays caused by infrequent collisions or traffic burstiness if enough measurements
are taken. The minimum time has been chosen for use by ECO. This is because, as discussed
in Section 4.1, ECO uses these measurements to determine the physical structure of the network,
and the minimum time most accurately reflects this, as it reflects the least influence from ambi-
ent traffic. Using the minimum time also has the advantage of allowing the smallest number of
measurements to obtain an accurate result. These results, which characterize the throughput of the
communication links, are stored for use by the partitioning algorithm.

4 Optimizing Collective Communication

There are several important collective operations. To introduce ECO’s approach, consider a broad-
cast, where one processor sends a message to all other processors. Our goal is to utilize the time
measurements taken previously to determine an efficient communication pattern for broadcasts.

A few terms must be defined first. A processor is referred to as a node. The communication
pattern is represented as a directed graph, with edge AB representing a message sent from node A
to node B. The depth of a node is the number of edges between it and the broadcasting node. The
width of the graph at a given depth is the number of nodes at that depth. The cost of an edge is the
measured time for communication between nodes A and B.

The performance of a broadcast is determined by the communication completion time, which
refers to the elapsed time between when the message is first sent out from the broadcasting node
and the time when the message is received by all nodes. It is not possible to determine this measure
exactly using the edge costs. This is because the measurements determine the time from initiating
a send to the data being available at the receiving end. However, a host can begin transmitting a
second message as soon as the first has reached its network adaptor, which can happen significantly
before the message is available at the receiving host. The discussion in this section will assume
that it is possible to calculate the communication completion times by adding up the edge costs,
but this is done for illustration only and does not work in the general case.

It is immediately evident that the proper representation for a broadcast communication pattern
is a tree. To optimize this form of communication pattern, one intuitive algorithmic approach is to

5



1

1

1 1
c

d

a e

f

b

1

1 1

3 3

3
c

d

a e

f

b

c

d

a e

f

b

3

c

d

a e

f

b

3
3

3

3 3

3

3

3

3

(a) (b)

(c) (d)

3

Figure 1: a) simple network with three subnets of two workstations, b) minimal spanning tree, c)
binary tree broadcast from nodea, d) binary broadcast from noded

from M.S.T. Binary

a 7 9
d 8 7

Table 1: Communication completion times for minimal spanning and binary tree broadcast algo-
rithms on the network shown in Figure 1.

use the minimal spanning tree, which assures the smallest total edge cost. This does not directly
correspond to the goal but is worth studying.

Consider the network shown in Figure 1a, consisting of six workstations, distributed with two
on each of three separate subnets. A minimal spanning tree for this network is shown in Figure 1b.
In Table 1, the communication completion time of a broadcast from nodea on this tree is compared
to times using a naively formed binary tree, as shown in Figure 1c. This tree was generated
by indexing the hosts alphabetically, from 1 to 6. Nodei’s children are nodes2i and 2i + 1.
Communication completion times assume that two nodes can send messages simultaneously. In
this case the MST-based pattern performs better than the binary tree. Note that it is possible to get
very good or very bad performance by using a simple tree; this example is intended to illustrate
typical results of mapping the tree naively.

However, the MST approach does not do well for all cases. Consider the same network with a
broadcast from noded. Now, the execution time for the MST-based pattern is inferior to that of the

6



binary tree shown in Figure 1d, which was constructed by ordering the hosts beginning with node
d and wrapping around. This illustrates the basic failing of the MST approach—that it makes no
allowance for parallelism in communication. Several messages can be exchanged in parallel using
different subnets, and multiple messages can even be exchanged “simultaneously” on the same
subnet because hosts cannot usually use all of a network’s bandwidth.

What is needed is an approach which focuses on reducing communication completion time.
We have found no standard graph algorithm which remedies these problems, but a few reasonable
assumptions have lead to a heuristic approach which works well on the combinations of machines
and networks available to us at Carnegie Mellon University (CMU) and the Pittsburgh Supercom-
puting Center (PSC).

When looking at the results of the MST approach in a successful case, such as the broadcast
from nodea on the MST in Figure 1b, several important characteristics appear.

• The overall depth of the tree is small.

• A significant portion of the communication is done in parallel.

• Most communications occur with hosts in the same physical network.

This motivates the following approach:

1. Divide the overall network into “subnets,” which consist of hosts which are in the same
physical network. A host is on the same subnet as hosts with which it has its lowest edge
costs. This process is discussed in Section 4.1.

2. Position the originator of the broadcast at the root of the tree.

3. Create a tree using the subnets as vertices rather than the individual processors. Edges on
the tree now represent inter-subnet communication.

4. Optimize the intra-subnet communication using patterns appropriate to that network type.

4.1 Partitioning the network into subnets

The algorithm used to partition hosts into subnets is given in Figure 2. The key criteria for nodes
to be neighbors is that the cost of the edge between them be within 20% of the cost of the least
expensive edge incident to each of them and within 20% of the least expensive edge within the
subnet. Although arbitrary, the 20% cutoff has proven excellent at accurately partitioning networks
of machines available at CMU and PSC.

Note than when a node is added to a subnet the algorithm does not check that the cost of all
edges from the new node to members of that subnet are within 20% of the new node’s minimum
cost edge. This has the advantage that a small number of inaccurate measurements can be made
in the network timings without causing incorrect partitioning. This fault tolerance allows for the
initial measurements to be taken quickly, since a single inaccurate measurement should have few
consequences.

The partitioning need only be done once per network. Characterization and partitioning need
only be redone by the user when the physical network changes. The results of the partitioning are
stored in a file which is loaded when an ECO program is run.

7



initialize subnets to empty

for all nodes
node.min_edge = minimum cost edge incident on node

sort edges by nondecreasing cost

for all edges(a,b)
if a and b are in the same subnet

continue
if edge.weight > 1.20 * node(a).min_edge or

edge.weight > 1.20 * node(b).min_edge
continue

if node(a) in a subnet
if (edge.weight > 1.20 * node(a).subnet_min_edge)

continue
if node(b) in a subnet

if (edge.weight > 1.20 * node(b).subnet_min_edge)
continue

merge node(a).subnet and node(b).subnet
set subnet_min_edge to min(edge, node(a).subnet_min_edge,

node(b).subnet_min_edge)

Figure 2: Algorithm used for partitioning the network into subnets

8



Operation Description

broadcast one process sends an identical message to all other processes
barrier all processes reach operation before any continue
scatter one process sends a different message to each other process
gather all processes send a message to one or all other processes
all-to-all all processes perform a scatter and gather
reduce all processes perform an associative operation on data, the

result is sent to one or all processes
scan each processor receives the results of a reduction on data of

processes with rank lower than its own, inclusive

Table 2: Collective operations supported by ECO

4.2 Communication within subnets

Choice of a communication pattern within a subnet should be influenced by several factors: switched
or bus-based network, the bandwidth of the network, the size of the message, and the ambient traf-
fic on the network. Once the network has been partitioned into subnets, it is possible to determine
experimentally the first two factors for each subnet. This should suggest a communication pat-
tern for use on the subnet. Typically parameters generated could be the degree of an appropriate
tree, or the maximum depth to which the tree should be expanded, in order to prevent the tree
from becoming too wide and generating too much parallel traffic. Ambient traffic is also a factor
here, because it may determine the amount of additional traffic which can safely be generated on a
subnet. Furthermore, the ambient traffic may vary over time.

Initial results with adapting communication patterns to individual subnets have been promising,
but it is not presently integrated into ECO. Currently, ECO uses a tree within all subnets, the degree
of which can be specified by the user.

4.3 Example

Figure 3 shows the application of ECO’s technique to a network of machines at CMU and PSC.
Figure 3b shows that ECO successfully distinguishes between networks with large differences in
performance, such as switched FDDI and ethernet, as well as between ethernet networks separated
by a bridge. The ring-topology generated by ECO is shown in Figure 3c. The broadcast tree
generated by ECO is shown in Figure 3d.

5 Collective Operations

Section 4 introduced the techniques that ECO uses with the simple example of a broadcast. As
mentioned in Section 1, ECO provides the same functionality as the MPI collective communication
standard [7]. Table 2 lists the operations supported by ECO.

The same communication pattern described in Section 4 is used for all operations, with appro-
priate modifications. For operations involving a single receiver, that receiver is always the root of

9



MPPWorkstation

(d)

Switched Ethernet

Ethernet

Switched FDDI

Mostly FDDI

(a) (b)

PSC

CMU

(c)

Figure 3: ECO’s effect on a heterogeneous network: a) physical network, b) ECO’s partitioning
into subnets, c) ECO derived ring topology, and d) ECO derived collective communication pattern

10



method mean(std.dev.) median minimum
ECO 0.119(.008) 0.0651 0.0614
tree(k = 2) 0.174(.007) 0.128 0.104
tree(k = 3) 0.162(.007) 0.122 0.104
star 0.141(.007) 0.109 0.104

Table 3: Time, in seconds, for a 16000 byte broadcast on eight DEC Alphas

the tree. Operations such as barrier and gather begin data movement in the leaves of the tree and
work toward the root, returning to the leaves in the case of barrier or gather to all. Other operations,
such as broadcast, begin at the root and proceed toward the leaves. This pattern is not theoretically
optimal, in terms of the number of steps, but experience has shown that on heterogeneous net-
works it performs better than theoretically optimal algorithms, such as that used by CHARMM
and shown in Section 6.2, because it makes better use of the available bandwidth.

In order to generate the communication patterns which will be used for the ECO operations, a
task must call an initialization procedure. This procedure reads the subnet data file and organizes
appropriate communication patterns for the hosts on which the program is running. Subsequent
calls to ECO operations need only use the appropriate communication pattern for the root of the
operation, therefore there is little overhead.

6 Benchmarks

Measuring the performance of a parallel program is difficult. We use two methods to analyze the
effectiveness of ECO’s approach. The first is to measure the time of individual operations and the
second is to measure the time of execution for an application using ECO.

Four communication patterns were used in these benchmarks: ECO’s custom patterns, as well
ask-ary trees (k = 2, 3), star patterns, and butterfly patterns.

6.1 Micro-benchmarks

Due to the inherent difficulty in timing a parallel operation, only operations which are started from
the root, e.g. broadcast, have been measured directly. This was done by determining the offsets
between system clocks among the machines used, recording the time before the operation began,
and determining the latest time at which the message was received. Clock drift or adjustments can
be a factor in such experiments, but drift was not a factor over the time period of the measurements,
and these machines do not adjust their clocks automatically.

Results are shown in Table 3 for the broadcast of a message of 16000 bytes on eight DEC
Alphas, distributed among three 10 Mb ethernet segments joined by a Cisco 7505 bridge. In this
case, the butterfly pattern would produce the same results as the binary tree. The measurement was
repeated 1000 times with relatively little ambient traffic.

11



pattern mean(std.dev) median minimum
ECO 2.1(.2) 2.17 1.79
tree(k = 2) 2.7(.1) 2.66 2.65
tree(k = 3) 2.3(.1) 2.30 2.12
star 2.7(.2) 2.59 2.47
CHARMM butterfly 3.0(.4) 2.95 2.69

Table 4: Communication time, in minutes, for CHARMM running on a network of eight DEC
Alphas

pattern mean
ECO 13.9
tree(k = 2) 18.7
tree(k = 3) 21.6
CHARMM butterfly 16.6

Table 5: Communication time, in minutes, for CHARMM running on a network of eight DEC
Alphas with high ambient traffic

6.2 Application Programs

ECO has been used to provide collective communication for CHARMM [4], a macromolecular
dynamics program used by many chemists. CHARMM’s implementation of collective commu-
nication uses a butterfly pattern, the performance of which has been optimized fairly heavily. It
uses PVM with in-place data packing and has almost no computational overhead in its collective
communication routines. The collective communication used by CHARMM in this benchmark
consists of a large number of gather-to-all and reduce-to-all operations, as well as broadcasts.

The same set of eight DEC Alphas used in Section 6.1 was used to run CHARMM. The mea-
surements were taken during periods of low ambient traffic and repeated five times. Table 4 shows
the results.

Measurements were also taken on an ethernet with high levels of ambient traffic. These are
shown in Table 5. In order to minimize intrusion upon other users in our environment, only two
runs were made. Therefore, additional statistical results are not presented.

In order to evaluate the overhead of ECO’s routines, CHARMM was also run on a set of eight
SGI INDYs connected with switched 10 Mb ethernet. This type of network should be ideal for the
butterfly patterns used by CHARMM’s native communication. ECO was run withk = 2 andk = 3
trees for the single subnet. (Note that since there is only one subnet, choice of the local pattern is
the only issue to be considered.) There was no other traffic on the network. The results in Table 6
indicate that there is a slight overhead inherent in using ECO, as indicated by the results fork = 2.
The results fork = 3 show the importance of matching the appropriate communication pattern to
each subnet. Using wider trees is important on bus-based networks, since it reduces the number
of communications which are attempted in parallel, but it degrades the performance on a switched
network which can handle the aggregate bandwidth.

12



pattern time
ECO(k = 2) 1.08
ECO(k = 3) 3.28
CHARMM butterfly 0.82

Table 6: Communication time, in minutes, for CHARMM on a switched ethernet network of eight
SGI INDYs

pattern mean
ECO 63.0
star 153.5
tree(k = 4) 148.1
ring 414.2

Table 7: Communication time, in seconds, for a Dome molecular dynamics application

ECO has also been used to implement the collective communication for Dome [1]. A molecular
dynamics program written in Dome has been run on a network of 20 machines, consisting of six
DEC Alphas attached to two ethernets, five IBM Power PCs attached to an ethernet, two DEC
Alphas attached to switched FDDI, and seven SGI INDYs attached to switched ethernet. These
tests were run using four communication patterns: ECO’s optimized pattern, star, tree (k = 4), and
ring. The times for communication required by this application are shown in Table 7. We have not
yet run CHARMM on a heterogeneous collection of machines.

Dome is also the only system which makes use of ECO’s topology function, using a ring topol-
ogy for its load-balancing communications. Use of this function prevents the user from having to
order the machines by hand to insure quick load-balancing and reduces the load-balancing com-
munication time by more than half compared to times for a randomly distributed arrangement of
nodes.

7 Future Work

ECO is being developed for eventual release as a collective communication library for PVM. Ad-
ditional features which will be added to ECO before release include:

• automatic characterization of each subnet to determine the appropriate communication pat-
tern for intra-subnet communication,

• support for MPPs using MPP native collective communication calls within the MPP and
ECO pattern for external communication,

• support for multiple groups within the same task, and

• additional topology support.

13



One weakness of using trees as the communication pattern is that it creates a bottleneck at the
root of the tree. This may cause scalability problems for moving large amounts of data, particularly
in the all-to-all algorithm wherep processors transmittingn bytes of data to each other process
results inO(p2n) bytes of data traveling through the the root node. Eliminating the single root
and having all subnets or a fraction of subnets perform the data exchange may help eliminate this
bottleneck. This issue requires careful study to provide an efficient technique which can be adapted
using only the characterization information available.

ECO currently bases its communication patterns on the static physical structure of a network.
However, some communication parameters, such as the root of the pattern for operations which re-
turn data to all processors, could be varied at run-time based on the current network traffic patterns.
Further research needs to be done on dynamically adapting to network conditions.

Other goals include using the physical networks’ native multicast techniques where possible.
This should prove particularly interesting on ATM networks.

8 Conclusions

ECO’s automatic characterization and network partitioning allow an end-user with little or no
knowledge of the physical network structure to write programs with efficient collective communi-
cation. The characterization is done offline, with almost no overhead at program run-time.

ECO has been tested with a variety of networks, ranging from several shared ethernet segments
connected with a bridge to a high-performance switched FDDI network. ECO can distinguish be-
tween these networks and derives communication patterns which exploit the underlying topology.
Applications such as CHARMM, a widely-used macromolecular dynamics program written with
message passing in Fortran, perform markedly better on heterogeneous networks when using ECO
than when using other optimized algorithms for collective communication. On a homogeneous
switched network, ECO exhibits only a slight loss in performance compared to a highly-tuned
implementation of collective communication for CHARMM.

9 Acknowledgments

We would like to express our thanks to Bill Young for providing us with the molecular dynamics
program which has been ported to Dome and for bringing CHARMM to us as a possible target
application.

This research is sponsored by the Advanced Research Projects Agency under contract number
DABT63-93-C-0054.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the U.S.
Government.

14



References

[1] José Nagib CotrimÁrabe, Adam Beguelin, Bruce Lowekamp, Erik Seligman, Michael
Starkey, and Peter Stephan. Dome: Parallel programming in a heterogeneous multi-user
environment. Technical Report CMU-CS-95-137, Carnegie Mellon University, April 1995.

[2] Vasanth Bala, Jehoshua Bruck, Robert Cypher, Pablo Elustondo, Alex Ho, Ching-Tien Ho,
Shlomo Kipnis, and Marc Snir. CCL: A portable and tunable collective communication li-
brary for scalable parallel computers. InProceedings of 8th International Parallel Processing
Symposium, pages 835–844. IEEE Comput. Soc. Press, 1994.

[3] Mike Barnett, Satya Gupta, David G. Payne, Lance Shuler, Robert van de Geijn, and Jerrell
Watts. Building a high-performance collective communication library. InProceedings of
IEEE Scalable High Performance Computing, pages 835–834. IEEE Comput. Soc. Press,
1994.

[4] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, and S. Swaminathan M. Karplus.
CHARMM: A program for macromolecular energy, minimization, and dynamics calcula-
tions. Journal of Computational Chemistry, 4:187–217, 1983.

[5] K. Efe. Heuristic models of task assignment scheduling in distributed systems.IEEE Com-
puter, 19(8):897–916, 1982.

[6] D.J. Evans and W.U.N. Butt. Load balancing with network partitioning using host groups.
Parallel Computing, 20:325–345, 1994.

[7] Message Passing Interface Forum. MPI: A message-passing interface stan-
dard. International Journal of Supercomputer Applications, 8(3/4), 1994.
http://www.mcs.anl.gov/mpi/index.html.

[8] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy Sun-
deram.PVM: Parallel Virtual Machine — A Users’ Guide and Tutorial for Networked Par-
allel Computing. MIT Press, 1994.

[9] W. Gropp, E. Lusk, and A. Skjellum.Using MPI. MIT Press, 1994.

[10] Ken Hardwick. HIPPI world—the switch is the network. InCOMPCON Spring 1992, pages
234–238. IEEE Comput. Soc. Press, February 1992.

[11] Chengchang Huang and Philip K. McKinley. Design and implementation of global reduction
operations across ATM networks. InProceedings of 3rd IEEE International Symposium on
High Performance Distributed Computing, pages 43–50. IEEE Comput. Soc. Press, 1994.

[12] Philip K. McKinley and Jane W. S. Liu. Multicast tree construction in bus-based networks.
Communications of the ACM, 33(1):29–41, January 1990.

[13] Philip K. McKinley, Yih-jia Tsai, and David F. Robinson. A survey of collective communica-
tion in wormhole-routed massively parallel computers. Technical Report MSU-CPS-94-35,
Michigan State University, June 1994.

15



[14] Prasenjit Mitra, David G. Payne, Lance Shuler, Robert van de Geijn, and Jerrell Watts. Fast
collective communication libraries, please. Technical Report TR-95-22, The University of
Texas, June 1995.

[15] R.A. Quinnell. Emerging 100-Mbit ethernet standards ease system bottlenecks.EDN (Euro-
pean edition), 39(1):35–36,40, January 1994.

[16] Andreas Stathopoulos, Anders Ynnerman, and Charlotte F. Fischer. A PVM im-
plementation of the MCHF atomic structure package. International Journal of
Supercomputer Applications and High Performance Computing, to appear, 1995.
http://www.vuse.vanderbilt.edu/ãndreas/publications/jsa.ps.

[17] Ronald J. Vetter. ATM concepts, architectures, and protocols.Communications of the ACM,
38(2):30–38, February 1995.

16


