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1 Introduction

Barcucci, Del Lungo, Pergola and Pinzani have developed an Enumerating Com-
binatorial Method (ECO) [6] for the enumeration and the recursive construction
of classes of combinatorial objects. The method is used for enumeration [4, 5, 6],
algebraic characterization such as operations on succession rules [9, 13, 14] or
production matrices [10], generating functions associated with an ECO operator
[2, 11], random and exhaustive generation [1, 3, 18]. The ECO method consists
in producing succession rules to describe certain combinatorial object classes.
A succession rule (Ω) is a system consisting of an axiom (b), b ∈ N

+, and a set
of productions:

{(k) (e1(k))(e2(k)) . . . (ek(k)), k ∈ N},

where ei : N
+ −→ N

+, which explains how to derive the successors (e1(k)),
(e2(k)),. . . , (ek(k)) of any given (k), k ∈ N

+. The positive integers (b), (k),
(ei(k)) are called labels of (Ω). The root can be represented by means of a
generating tree where (b) is the label of the root and each node labeled (k) has
k sons labeled (e1(k)), (e2(k)),. . . , (ek(k)). A succession rule (Ω) induces a
sequence of positive integers (an)n≥0 where an is the number of nodes at level
n in the generating tree.

The succession rules for traditional Fibonacci sequences are given by Ban-
derier et al. [2]. In this paper, we extend this result to p-generalized Fibonacci
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and Lucas sequences. Moreover, we are interested in families of pattern-avoiding
permutations which can be enumerated in terms of p-generalized Fibonacci or
Lucas sequences. In this regard, a number of papers concerning Fibonacci se-
quences have been published [7, 12, 17, 19, 20, 21] but none have been forthcom-
ing on Lucas. For instance, Mansour described general results (see Theorem 3
in [19]) such that these families are particular cases. However, in [8], an efficient
algorithm is given to generate generalized Lucas binary strings in Gray code
order.

This paper is organized as follows. In the next section, we provide the suc-
cession rules for p-generalized Fibonacci sequences and their connections with
pattern-avoiding permutations. Then we investigate p-generalized Lucas se-
quences by giving succession rules and two sets of pattern-avoiding permutations
which are counted by these sequences. In the last section, we produce constant
amortized time algorithms to generate these different classes of p-generalized
Fibonacci and Lucas permutations.

2 p-generalized Fibonacci sequences

In this part of the study we only consider the results obtained from p-generalized
Fibonacci sequences. Some of the results in this section have already been
presented in [7]. Recall that the p-generalized Fibonacci sequences verify fp,n =
∑p

i=1
fp,n−i anchored by fp,n = 0 if n ≤ 0, fp,1 = 1 and let us denote Fp,n

be the set of n-length binary strings without p consecutive ones. Obviously
|Fp,n| = fp,n+2.

2.1 Succession rules

In order to construct generating trees for the p-generalized Fibonacci sequences
we use the ECO method, providing the label of its root and a set of succession
rules which describe, for each node, the label set of its successors. There are
many ways to label fields of succession rules. Here, each node has at most
two successors. So we label each node by (2i) or (1) to encode information
concerning the number of successors (2 or 1); the index i (0 < i < p) allows us
to distinguish nodes having two successors.

For example, the succession rules for the well-known Fibonacci sequences
(p = 2), which appear in [2], can be written as:







(21)
(21) (21)(1)
(1) (21).

The following theorem extends this finding to p-generalized Fibonacci se-
quences.

Theorem 1 For p ≥ 2, a system of succession rules (Ωp) for p-generalized
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Fibonacci sequences is given by:

(Ωp)































(2p−1)
(2p−1) (2p−1)(2p−2)
(2p−2) (2p−1)(2p−3)
. . .
(21) (2p−1)(1)
(1) (2p−1).

Proof. By translating the concept of succession rules into matrix notation [10],
we obtain the production matrix of size p × p, as shown below:

Mp =



















1 1 0 . . . 0 0
1 0 1 . . . 0 0

. . . . . . . . .
. . . . . . . . .

1 0 0 . . . 1 0
1 0 0 . . . 0 1
1 0 0 . . . 0 0



















.

Here the i-th row (or column) of the production matrix corresponds to the label
(2p−i) for 1 ≤ i ≤ p − 1 and (1) for i = p. For example, the entry in the first
row and the second column is the number of labels (2p−2) produced from the
label (2p−1).

Let dp be the determinant of (x · I − Mp) where x is a variable and I the
unitary matrix of size p × p. It is easy to prove that dp verifies the recurrence
relation: dp = x·dp−1−1 anchored by d1 = x−1. So we obtain the characteristic
polynomial dp = xp − xp−1 − xp−2 − . . . − x − 1.

Using the Hamilton–Cayley theorem we replace x by M and:

Mp
p − Mp−1

p − Mp−2
p − . . . − Mp − I = 0.

Since Mp is invertible, it is equivalent to

Mn
p =

n−1
∑

i=n−p

M i
p, ∀n ≥ p.

The succession rules (Ωp) induce a sequence (an)n≥0 where an is the number of
nodes at level n (a0 = 1 since the tree has only one root). By [10], an = uT ·Mn

p ·e

where uT is the row vector (1 0 0 . . .) of length p and e is the column vector
(1 1 1 . . .)T of length p. So the previous equality implies:

an =

n−1
∑

i=n−p

ai, ∀n ≥ p.

Moreover each node on level 0 ≤ n ≤ p − 2 has exactly two successors. Thus
the number of nodes on level n ≤ p − 1 is obviously 2n.
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So

an =

{

2n if 0 ≤ n ≤ p − 1
∑n−1

i=n−p ai if p ≤ n,

which implies that an is equal to the well-known p-generalized Fibonacci number
fp,n+2. �

By means of simple calculations, we produce the formula of the well-known
generating function of p-generalized Fibonacci [12]:

fp(z) =
1 + z + z2 + . . . + zp−1

1 − z − z2 − . . . − zp
=

1

z
·

(

1

1 −
∑p

i=1
zi

− 1

)

.

Since fp(z) −→
p→∞

1

1−2z
, these succession rules produce a kind of discrete con-

tinuity between the p-generalized Fibonacci sequences (p ≥ 2) and the sequences
of binary strings.

The following proposition demonstrates how the p-generalized Fibonacci
strings can be attached to the generating tree of (Ωp).

Proposition 1 The generating tree of (Ωp) can be encoded by the p-generalized
Fibonacci binary strings. An n-length binary string is obtained from one of
length (n − 1) by inserting 0 or 1 into its last position (see Figure 1).
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Figure 1: The first five levels of the generating tree encoded by the 3-generalized
Fibonacci binary strings.

Proof. We will prove this by recurrence. Obviously, this is true for the root
which is encoded by the empty binary string λ (for convenience let the level of
the root be 0). Assume that this holds until the level k, i.e. each level i ≤ k
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is encoded by the elements of Fp,i. We will show that this is also true for the
level k + 1.

Let τ be the (k + 1)-length binary string of one node at the level k + 1 and
let δ be its predecessor on the level k.

Firstly, if τ is obtained from δ by inserting 0 on the right then τ also belongs
to Fp,k+1. Secondly, if τ is obtained by inserting 1 on the right of δ then δ has
two children, thus its label is (2i), (1 ≤ i ≤ p − 1).

We distinguish between two cases.

• δ is labeled (2p−1). Here we obtain δ = δ′0 and τ = δ′01 with δ′ ∈ Fp,k−1

via the recurrence hypothesis. Thus τ belongs to Fp,k+1.

• δ is labeled (2i), 1 ≤ i ≤ p − 2. Its predecessor δ1 is labeled (2i+1). We
repeat the process with δ1 until we find a label (2p−1) (notice that the
process always finishes). We have thus constructed a path δ1, . . . , δp−1−i

where δj is the successor of δj+1 for (1 ≤ j ≤ p − 2 − i) and δj is labeled
(2i+j). In particular δp−1−i is labeled (2p−1). So we deduce that δ is of the
form δ = δ′01p−i−1 and τ = δ′01p−i where δ′ ∈ Fp,k−p+i by the recurrence
hypothesis. Since the length p− 1− i of the path verifies p− 1− i ≤ p− 2,
we conclude that τ ∈ Fp,k+1.

Moreover, using Theorem 1, each level n of the tree contains exactly fp,n+2 =
|Fp,n| nodes, which shows that the tree is encoded by the p-generalized Fibonacci
binary strings. �

2.2 Generating trees using pattern avoiding permutations

Let Sn be the set of permutations on [n] = {1, 2, . . . , n}. We represent a per-
mutation π ∈ Sn in online notation: i.e. π = π(1)π(2) . . . π(n). A permuta-
tion π ∈ Sn contains the pattern τ ∈ Sk if and only if a sequence of indices
1 ≤ i1 < i2 < . . . < ik ≤ n exists such that π(i1)π(i2) . . . π(ik) is ordered as τ .
We denote by Sn(τ) the set of permutations of Sn avoiding the pattern τ .

In this subsection, we encode the generating tree of (Ωp) by permutations.
The root is encoded by the identity of length one. Let π be an n-length per-
mutation in the generating tree; each successor is obtained from π by inserting
n + 1 into certain positions also known as the active sites of π.

Theorem 2 The generating tree of (Ωp) can be encoded by the permutations π
in Sn(321, 312, 234 . . .(p + 1)1). The active sites of π are the two last positions
if the label of π is (2i); otherwise only the last position is active (see Figure 2).

Proof. We will prove this by recurrence. Obviously, this is true for the root
which is encoded by the permutation (1) (for convenience let the level of the
root take the value 1). Assume that this holds until the level k ≥ 1, i.e. each
level i ≤ k is encoded by the permutations in Si(321, 312, 234 . . . (p + 1)1). We
will show that this also holds for the level k + 1.

Let τ be the (k + 1)-length permutation of one node of the level k + 1 and
let δ be its predecessor on the level k.
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Figure 2: The first five levels of the generating tree of (Ω3) are encoded by
permutations in Sn(321, 312, 2341). The active sites are represented by under-
scores.

Firstly, if τ is obtained from δ by inserting k + 1 into the last position, then
τ does not contain any occurrence of the forbidden subsequences 321, 312 and
234 . . . (p + 1)1.

Secondly, if τ is obtained by inserting k + 1 into the site (k) of δ (i.e. the
site just before the last entry of δ) then τ does not contain any occurrence of
the forbidden subsequences 321, 312. We will now show that τ also belongs to
Sk+1(234 . . . (p + 1)1). Notice that in this case δ has two children, thus its label
is (2i), (1 ≤ i ≤ p − 1).

We can distinguish two cases.

• δ is labeled (2p−1). Here we obtain δ = δ′k and τ = δ′(k + 1)k with
δ′ ∈ Sk−1(321, 312, 234 . . .(p + 1)1) by the recurrence hypothesis. Thus τ
belongs to Sk+1(321, 312, 234 . . .(p + 1)1).

• δ is labeled (2i), 1 ≤ i ≤ p − 2. Its predecessor δ1 is labeled (2i+1).
We repeat the process with δ1 until we find a label (2p−1). Remark that
the process always finishes. So we have constructed a path δ1, . . . , δp−1−i

where δj is successor of δj+1 for (1 ≤ j ≤ p−2−i) and δj is labeled (2i+j).
In particular δp−1−i is labeled (2p−1). So we deduce that δ is of the form
δ = δ′(k−p+i+2) . . . (k−1)k(k−p+i+1) and τ = δ′(k−p+i+2) . . . (k−
1)k(k + 1)(k − p + i + 1) where δ′ ∈ Sk−p+i(321, 312, 234 . . .(p + 1)1) via
the recurrence hypothesis. Since the length p − 1 − i of the path verifies
p−1−i ≤ p−2, we conclude that τ does not contain any occurrence of the
forbidden subsequence 23 . . . (p+1)1. Hence τ ∈ Sk+1(321, 312, 234 . . .(p+
1)1).
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Moreover, Mansour (Theorem 3, [19]) found the cardinality of Sk+1(321, 312,
τ) for any τ ∈ Sp+1(321, 312). In particular, he obtains that the cardinality of
Sk+1(321, 312, 234...(p + 1)1) is equal to that Fp,k. �

By considering other active sites, we obtain an other set of pattern-avoiding
permutations which is associated with the same generating tree.

(2  ) 2(2  )2(2  )

(2  ) 2

(2  )

(2  )

(2  ) (2  ) (2  ) (2  )(2  )

(2  )

(2  ) (2  )

(2  )2 1

2 1 2 (1)

1

2 1 (1) (2  )2

2

1

1432_5_

(2  )(2  )2(2  )2 2 (1) 22

2(2  )(2  ) (1)2

(2  )1 (2  )

_1_

1

1_2_ _21_

12_3_ 1_32_ 21_3_ 321_

123_4_ 12_43_ 132_4_ 1432_ 213_4_ 21_43_ 321_4_

1234_5_ 123_54_ 1243_5_ 12543_ 1324_5_ 132_54_ 2134_5_ 213_54_ 2143_5_ 21543_ 3214_5_ 321_54_

Figure 3: The first five levels of the generating tree of 3-generalized Fibonacci
sequences encoded by permutations Sn(231, 312, 4321). The active sites are
represented by underscores.

Theorem 3 The generating tree of (Ωp) can be encoded by the permutations π
in Sn(231, 312, (p + 1)p . . . 321). A permutation π always has an active site in
the last position; moreover, in the case where the label is (2i), there is another
one just before the maximal entry of π (see Figure 3).

Proof. In fact, an insertion into the last active site or into active site just before
the site of the maximal entry does not produce any patterns of the form 231
and 312. The rest of the proof is similar to the demonstration of Theorem 2. �

3 p-generalized Lucas sequences

In this section, we consider p-generalized Lucas sequences. Recall that the p-
generalized Lucas sequences verify: ℓp,n =

∑p

i=1
ℓp,n−i anchored by ℓp,n = 2n−1

if 0 < n ≤ p, and let Lp,n be the set of n-length binary strings without p con-
secutive ones by considering the strings circularly. Notice that for convenience
we assume here that the string 1n (n < p) belongs to Lp,n. So |Lp,n| = ℓp,n + 1
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if n < p and |Lp,n| = ℓp,n otherwise. We thus exhibit succession rules for p-
generalized Lucas sequences and provide a generating tree for two new associated
classes of pattern-avoiding permutations.

3.1 Succession rules

In Section 2 each node was labeled (1) or (2i) where 1 ≤ i ≤ p − 1. In the
following we consider the label (1) or (1′) for the nodes having one successor
and the labels (2i) or (2′i) (1 ≤ i ≤ p − 1) for the nodes having two successors.

Theorem 4 For p ≥ 2, a system of succession rules (Φp) for p-generalized
Lucas sequences is expressed by:

(Φp)







































































(2′p−1)
(2′p−1) (2p−1)(2

′
p−2)

(2′p−2) (2p−2)(2
′
p−3)

. . .
(2′1) (21)(1

′)
(1′) (1)
(2p−1) (2p−1)(2p−2)
(2p−2) (2p−1)(2p−3)
. . .
(21) (2p−1)(1)
(1) (2p−1),

which means that (Φp) produces ℓp,n if n > p and ℓp,n + 1 = 2n otherwise.

Proof. By translating the concept of succession rules into matrix notation [10],
we obtain the following production matrix of size 2p × 2p. The i-th column
(or row) corresponds to the labels (2′i) for i ≤ p − 1, (1′) for i = p, (2i) for
p + 1 ≤ i ≤ 2p− 1 and (1) for i = 2p.

Mp =





Ap | Bp

−− − + −−−
Cp | Dp



 ,

Ap =















0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . .
. . . . . .

0 0 0 . . . 1
0 0 0 . . . 0















, Bp =











1 0 . . . 0
0 1 . . . 0

. . . . . .
. . . . . .

0 0 . . . 1











,

Cp =









0 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 0









, Dp =















1 1 0 . . . 0
1 0 1 . . . 0

. . . . . . . . .
. . . . . .

1 0 0 . . . 1
1 0 0 . . . 0















.
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It is easy to see that the number an of nodes on a level n ≤ p − 1 (the
root being at the zero level) verifies: uT · Mn

p · e = 2n (see Section 2.1 for the

definition of uT and e) and the number of nodes on the level p is uT · Mp
p · e =

2p − 1. Moreover by [10] the distribution on the level p + 1 of the labels (2′i) for
1 ≤ i ≤ p − 1, (1′), (2i) for 1 ≤ i ≤ p − 1 and (1) is the row vector

rp+1 = uT · Mp+1
p = (0, 0, . . . , 0, 2p − 1, 2p−1 − 1, . . . , 22 − 1, 1).

Thus
rp+1 = (0, 0, . . . , 0, ℓp,p, ℓp,p−1, . . . , ℓp,1)

and
uT · Mp+1

p · e = ℓp,p+1.

By recurrence on i ≥ 1,

rp+i+1 = uT · Mp+i
p · Mp

= (0, 0, . . . , 0, ℓp,p+i−1, ℓp,p+i−2, . . . , ℓp,i) · Mp

= (0, 0, . . . , 0,

p+i−1
∑

j=i

ℓp,j , ℓp,p+i−1, ℓp,p+i−2, . . . , ℓp,i+1)

= (0, 0, . . . , 0, ℓp,p+i, ℓp,p+i−1, ℓp,p+i−2, . . . , ℓp,i+1),

and
uT · Mp+i+1

p · e = ℓp,p+i+1, ∀i ≥ 1,

thus the sequence (an)n≥0 induced by (Φp) verifies:

an = uT · Mn
p · e =







0 if n < 0
ℓp,n + 1 if 0 ≤ n ≤ p − 1
ℓp,n if n ≥ p.

We deduce that an is equal to the well known p-generalized Lucas sequence ℓp,n

(except for n ≤ p − 1 where an = ℓp,n + 1). �

By means of simple calculations, we can deduce the generating function of
the sequences corresponding to (Φp) as follows:

ℓp(z) =

∑p−1

i=0
(zi − i · z2p−i)

1 − z − z2 − . . . − zp
.

As for the case of Fibonacci and since ℓp(z) −→
p→∞

1

1−2z
, these succession rules

produce a kind of discrete continuity between the p-generalized Lucas sequences
(p ≥ 2) and the sequences of binary strings.

Here the generating tree of (Φp) cannot be encoded by the set Lp,n. However,
it is encoded by another binary string set Kp,n defined as follows: Kp,n ⊆ Fp,n

and each binary string of Kp,n contains at least two 0s in theirs length p + 1
prefix. For example, the only binary string in F2,4 but not in K2,4 is 1010 and
F3,5\K3,5 = {10110, 11011, 11010}. In [16] the authors provide a constructive
bijection φ between Kp,n and Lp,n defined as follows: if x ∈ Kp,n, x can be
written x = 1i0y with 0 ≤ i < p and φ(x) = y01i ∈ Lp,n.
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Proposition 2 The generating tree of (Φp) is encoded by the strings of the
set Kp,n. An n-length binary string is obtained from one of length (n − 1) by
inserting 0 or 1 into its last position (see Figure 4).

Proof. Obviously, this is true for the root which is encoded by the empty binary
string λ (for convenience let the level of the root be 0). Notice that the prede-
cessor of each node on a level k ≤ p − 1 has two successors. This means that
each level k (k ≤ p− 1) is encoded by the set of all binary strings, therefore by
Kp,k. For the level k = p, the nodes are encoded by the binary strings different
from 1p which proves the results for the level p.

Now we will prove the result for k ≥ p + 1 by recurrence. Assume that this
holds until the level k ≥ p, i.e. each level i ≤ k is encoded by the elements of
Kp,i. We will show that this is also true for the level k + 1.

Let τ be the (k + 1)-length binary string of one node of the level k + 1 and
let δ be its predecessor on level k.

Firstly, if τ is obtained from δ by inserting 0 on the right, then τ also belongs
to Kp,k+1. Secondly, if τ is obtained by inserting 1 on the right of δ, then δ has
two children, hence its label is (2i), (1 ≤ i ≤ p − 1).

We distinguish between two cases.

• δ is labeled (2p−1). Here we obtain δ = δ′0 and τ = δ′01 with δ′ ∈ Kp,k−1

by the recurrence hypothesis. Remark that δ′ 6= 1k−1, i.e. it contains at
least one zero. Indeed, since k − 1 ≥ p − 1, if δ′ = 1k−1 then its label is
(1′) and the label of δ is (1) which is a contradiction. Thus τ belongs to
Kp,k+1.

• δ is labeled (2i), 1 ≤ i ≤ p − 2. Since k ≥ p, its predecessor δ1 is labeled
(2i+1). We repeat the process with δ1 until we find a label (2p−1). Note
that since k ≥ p the process always finishes. Indeed if the process does
not reach the label (2p−1), it inevitably meets (2′j) with j ≥ i. This

would mean that δ = 1p−1−j01j−i and δ would be on the level k = p − i
which contradicts k ≥ p. So we have constructed a path δ1, . . . , δp−1−i

where δj is successor of δj+1 for (1 ≤ j ≤ p − 2 − i). Moreover δj is
labeled (2i+j) and in particular δp−1−i by (2p−1). So we deduce that δ is
of the form δ = δ′01p−i−1 and τ = δ′01p−i where δ′ ∈ Kp,k−p+i using the
recurrence hypothesis. As δp−1−i is labeled (2p−1), δ′ = 1k−p+i implies
that δ′ is labeled (2′p−1). Thus δ′ = λ and τ = 01p−i which contradicts
k + 1 ≥ p + 1. So, τ has at least two zeros in its length (p + 1) prefix and
we conclude that τ ∈ Kp,k+1.

Via Theorem 4, each level n of the tree contains exactly ℓp,n nodes for n > p
and ℓp,n + 1 nodes for n ≥ p. which is the same cardinality as Kp,n (see [16]).
This shows that the tree is encoded by Kp,n, for n ≥ 1. �

3.2 Generating trees using pattern avoiding permutations

In this subsection, we consider generalized patterns. A barred pattern τ is a
permutation in Sk having a bar over one of its elements. Let τ be a permutation
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Figure 4: The first five levels of the generating tree of 3-generalized Lucas
sequences encoded by K3,n.

on [k] identical to τ but unbarred and τ̂ be the permutation on [k − 1] made
up of the (k − 1) unbarred elements of τ , rewritten to be a permutation on
[k − 1]. Then π ∈ Sn contains the pattern τ if π contains the pattern τ̂ that
cannot be expanded into a pattern τ in π. For example, if τ = 41̄32 then
π = 58132674 ∈ S8(41̄32).

Let us also define other patterns as permutations possibly with added colons
between entries (e.g. τ = 13 : 24). If two consecutive entries in τ are separated
by a colon, then the permutation π contains the pattern τ if the entries of π
corresponding to those elements are adjacent in π (and in the same order given
by τ). For example, 13524 fails to be 13 : 24 avoiding but is 1324 avoiding.
Notice that this is a particular case of the distanced patterns defined in [15].

In the following, we provide two new sets of pattern-avoiding permutations
which are also enumerated by the succession rules (Φp).

Theorem 5 Let us assume

Tp =















134 . . . (p + 1)2 : (p + 3)(p + 2)
134 . . . p2 : (p + 2)(p + 3)(p + 1)
. . .
132 :56 . . . (p + 3)4.

The succession rule (Φp) gives a generating tree encoded by the permutations
in Sn(321, 312, 234 . . .(p+1)1, Tp). The active sites are the two last positions if
the label is (2i) or (2′i); otherwise only the last position is active (see Figure 5).
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Figure 5: The first five levels of the generating tree of (Φ3)-generalized Lucas
sequences. Each node is encoded by a permutation in Sn(321, 312, 2341, 1342 :
65, 132 :564).

Proof. Obviously, this is true for the root which is encoded by the permutation
of length one (for convenience assume the level of the root is 1). Notice that the
predecessor of each node on a level k ≤ p has two successors. This means that
each level k (k ≤ p) is encoded by the set of permutations avoiding 321 and 312
which is also the sets Sk(321, 312, 234 . . .(p + 1)1, Tp) for k ≤ p. Note also that
each node of level p has two successors with one exception which is labeled (1′)
and encoded by 234 . . . p1. This means that the permutation 234 . . . (p + 1)1
cannot belong to the level p + 1. We therefore obtain the result for the level
p + 1 as well.

Now we will prove the result for k ≥ p + 1 by recurrence. Assume that this
holds up to the level k ≥ p + 1, i.e. each level i ≤ k is encoded by the elements
of Si(321, 312, 234 . . .(p + 1)1, Tp). We will show that this is also true for the
level k + 1.

Let τ be the (k + 1)-length permutation of one node of the level k + 1 and
let δ be its predecessor on the level k.

Firstly, if τ is obtained from δ by inserting k + 1 on the right, then τ also
belongs to Sk+1(321, 312, 234 . . . (p + 1)1, Tp). Secondly, if τ is obtained by
inserting k + 1 just before the last entry of δ then δ has two children, hence its
label is (2i), (1 ≤ i ≤ p − 1).

We distinguish between two cases.

• δ is labeled (2p−1). Here we obtain δ = δ′k and τ = δ′(k + 1)k with δ′ ∈
Sk−1(321, 312, 234 . . .(p + 1)1, Tp) via the recurrence hypothesis. Notice
that δ′ 6= 23 . . . (k − 2)(k − 1)1 since k − 1 ≥ p. Indeed if δ′ = 23 . . . (k −
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2)(k−1)1 then the node of δ′ is labeled (1′) and thus the label of δ would be
(1) which is a contradiction. Thus τ belongs to Sk+1(321, 312, 234 . . . (p +
1)1, Tp).

• δ is labeled (2i), 1 ≤ i ≤ p−2. Since k ≥ p+1, its predecessor δ1 is labeled
(2i+1). We repeat the process with δ1 until we find a label (2p−1). Note
that since k ≥ p + 1 the process always finishes. Indeed, if the process
does not reach the label (2p−1), it inevitably meets (2′j) where j ≥ i. This
would mean that δ = 23 . . . (p− 1− j)(p− j)1(p− j +2)(p− j +3) . . . (p−
i)(p + 1 − i)(p − j + 1) and δ would be on the level k = p + 1 − i which
contradicts k ≥ p+1. So we have constructed a path δ1, . . . , δp−1−i where
δj is the successor of δj+1 for (1 ≤ j ≤ p − 2 − i). Moreover δj is labeled
(2i+j) and in particular δp−1−i is labeled (2p−1). So we deduce that δ is
of the form δ = δ′(k − p + i + 2)(k − p + i + 3) . . . (k − 1)k(k − p + i + 1)
and τ = δ′(k − p + i + 2)(k − p + i + 3) . . . k(k + 1)(k − p + i + 1) where
δ′ ∈ Sk−p+i(321, 312, 234 . . .(p+1)1, Tp) by the recurrence hypothesis. As
δp−1−i is labeled (2p−1), δ′ = 23 . . . (k − p + i)1 implies that δ′ is labeled
(2′p−1). Thus δ′ = 1 and τ = 13 . . . (p− i+1)(p− i+2)2 which contradicts
k + 1 = p− i + 2 ≥ p + 2. So δ′ 6= 23 . . . (k − p + i)1 and we conclude that
τ ∈ Sk+1(321, 312, 234 . . .(p + 1)1, Tp).

According to [16] Sk+1(321, 312, 234 . . .(p + 1)1, Tp) and Kp,k+1 have the same
cardinality which shows that the tree is encoded by the permutations in Sn(321,
312, 234 . . . (p + 1)1, Tp) for n ≥ 1. �

(2  )

(2  )2(2  )1 (2  )2

2(2  )

 2

(2  )

(2  ) (2  )(2  )

(2  )

(2  ) (2  )

(2  )2 1

2 1

1

2 1 (1) (2  )

2

2

3214_5_

1 (2  )(2  )2(2  )2 2

(2  ) (1)2

1234_5_ 2134_5_

123_4_ 132_4_

12_3_ 21_3_

1_2_

_1_

1243_5_ 1324_5_

(2’  )

(2’  )

1 (1’)

(1 )
2143_
(1 )

2143_5_

213_4_

_21_

1_32_

12_43_

321_

1432_

123_54_ 12543_ 132_54_ 1432_5_ 213_54_

3214_

Figure 6: The first five levels of the generating tree of 3-generalized Lucas
sequences. Each node is encoded by a permutation in Sn(231, 312, 4321, 1432 :
65, 132 :654).

Now we will obtain similar results for another permutation set.
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Theorem 6 Let us assume

T ′
p =















1(p + 1)p . . . 32 : (p + 3)(p + 2)
1p(p − 1) . . . 32 : (p + 3)(p + 2)(p + 1)
. . .
132 : (p + 3)(p + 2) . . . 54.

The generating tree of (Φp) can be encoded by the permutations π in
Sn(231, 312, (p + 1)p . . . 321, T ′

p). A permutation π always has an active site
on the last position; moreover in the case where the label is (2i) or (2′i), it has
another one just before the maximal entry of π (see Figure 6).

Proof. We will prove this using the same method as we did in the proof of
Theorem 5. �

4 Algorithmic considerations

In this section, we provide efficient algorithms to generate the different per-
mutation sets obtained in Sections 1 and 2. More precisely, the complexity
of our algorithms is always in Constant Amortized Time (CAT). Recall that
an algorithm is CAT if the number of computations after a small amount of
preprocessing is proportional to the number of objects generated.

4.1 Generation for Fibonacci permutations

Consider now the generating tree of Sn(321, 312, 234 . . .(p + 1)1). We provide
below a simple recursive procedure for the generation of Sn(321, 312, 234 . . .(p+
1)1) using the succession rules (Ωp) defined in Section 1. The generation is
anchored by f1gen(1, p− 1) where σ is initialized by the identity permutation
12 . . . n.

In the procedure f1gen(i, k), i is the level of the recursive call (i.e. the level
in the tree) and the index k corresponds to the label (2k) for 1 ≤ k ≤ p− 1 and
(1) for k = 0. Between two recursive calls of f1gen, the current permutation σ
is updated by transposing its entry σ(i) with σ(i + 1), i.e. σ = σ · 〈i, i + 1〉.

f1gen(i, k)

if i = n then output σ;

else

if k 6= 0 then

f1gen(i + 1, p − 1);

σ = σ ·〈i, i+1〉; {transpose the entries σ(i) and σ(i+1)}

f1gen(i + 1, k − 1);

σ = σ · 〈i, i + 1〉;

else f1gen(i + 1, p − 1);
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end ;

By comparing (in the generating tree) the number of nodes having one suc-
cessor with the number of nodes with two successors and the number of objects
generated, we show that the generation of Fibonacci permutations sets is CAT.

Proposition 3 The procedure f1gen generates Sn(321, 312, 234 . . .(p+1)1) in
constant amortized time.

Proof. Let n,p ∈ N and T be the tree induced by the recursive calls of the pro-
cedure f1gen and m the number of leaves of T . T has the following properties:
(a) the root has 2 successors, (b) if a node x has a single successor, say y, then
y is a terminal node or it has two successors.

By using these properties, we deduce

• by merging in T each one successor node with its child, we obtain a com-
plete binary tree with (m − 1) internal nodes which is the number of two
successor nodes.

• the number of one successor nodes is less than the number of two successor
nodes.

So T has less than 2(m − 1) internal nodes.
We have:

#recursive calls

#generated objects
=

#internal nodes of T

m
≤

2(m − 1)

m
≤ 2.

Moreover, the number of operations in each f1gen(i, k) is negligible, thus
the average cost of f1gen is a constant. Therefore, this algorithm is CAT. �

For the generation of Sn(231, 312, (p + 1)p . . . 321), we give the procedure
f2gen(i, k, t) and we run f2gen(1, p− 1, 1) anchored by σ = 12 . . . n. The first
two parameters are the same as above, and t corresponds to the position of the
entry i in the permutation σ. Here, between two recursive calls, we must insert
i + 1 (which is on the (i + 1)-th position of σ) just before the entry i (which
is in the position t). So we apply to σ the product of successive transpositions
〈i, i + 1〉, 〈i − 1, i〉, . . ., 〈t, t + 1〉; i.e. σ = σ · 〈i, i + 1〉 · 〈i − 1, i〉 · . . . · 〈t, t + 1〉.

f2gen(i, k, t)

if i = n then output σ;

else

if k 6= 0 then

f2gen(i + 1, p− 1, i + 1);

for j = i downto t

σ = σ · 〈j, j + 1〉;

f2gen(i + 1, k − 1, t);
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for j = t to i

σ = σ · 〈j, j + 1〉;

else f2gen(i + 1, p − 1, i + 1);

end ;

Proposition 4 The procedure f2gen generates Sn(231, 312, (p+1)p . . .321) in
constant amortized time.

Proof. Clearly, according to the algorithm, the number of operations between
two recursive calls in f2gen(i, k) is O(p). Thus, similarly to the proof above,
we have the average cost of f2gen in O(p). So, this algorithm is also CAT. �

Remark 1 A simple adaptation of the procedure f1gen for the binary strings
gives the generation of the p-generalized Fibonacci strings in Fp,n in constant
amortized time.

4.2 Generation of Lucas permutations

As for p-generalized Fibonacci permutations, we also obtain CAT algorithms
for the generation of Lucas permutation sets in Section 3.2. More precisely,
the number of computations divided by the number of generated objects is
in O(1) (respectively O(p)) for Sn(321, 312, 234 . . .(p + 1)1, Tp) (respectively
Sn(231, 312, (p + 1)p . . . 321, T ′

p)). The procedures are constructed in the same
way as for f1gen and f2gen in the previous subsection, thus we just exhibit here
the procedure l1gen which generates the set Sn(321, 312, 234 . . .(p+1)1, Tp) and
the produce l2gen which generates the set Sn(231, 312, (p+1)p . . .321, T ′

p). No-
tice that these procedures use f1gen and f2gen and are anchored by l1gen(1, p−
1) and l2gen(1, p − 1, 1). Moreover the set Kp,n can be generated in constant
average cost O(1) by a simple adapted algorithm for binary strings. And by
means of an ad hoc data structure we obtain the generation of Lp,n in constant
average cost O(p).

l1gen(i, k)

if i = n then output σ;
else

if k 6= 0 then

f1gen(i + 1, k);
σ = σ · 〈i, i + 1〉;
l1gen(i + 1, k − 1);
σ = σ · 〈i, i + 1〉;

else f1gen(i + 1, 0);
end;

l2gen(i, k, t)

if i = n then output σ;
else

if k 6= 0 then

f2gen(i + 1, k, i + 1);
for j = i downto t

σ = σ · 〈j, j + 1〉;
l2gen(i + 1, k − 1, t);
for j = t to i

σ = σ · 〈j, j + 1〉;
else f2gen(i + 1, 0, i + 1);

end;
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An applet for the generation of theses permutation sets is available on the
web site http://www.u-bourgogne.fr/ jl.baril/applet.html.

5 Concluding remarks

In this paper, we use the ECO method to show several algorithms for the genera-
tion of different sets of binary strings or pattern-avoiding permutations enumer-
ated by the p-generalized Fibonacci or Lucas sequences. Each given algorithm
runs in constant amortized time. We summarize our results in Table 1 where,
for each studied set, we give the average complexity of our algorithm.

p-generalized Fibonacci and Lucas sets Average complexity

Fp,n O(1)

Sn(321, 312, 234 . . .(p + 1)1) O(1)

Sn(231, 312, (p + 1)p . . . 321) O(p)

Kp,n O(1)

Lp,n O(p)

Sn(321, 312, 234 . . .(p + 1)1, Tp) O(1)

Sn(231, 312, (p + 1)p . . . 321, T ′
p) O(p)

Table 1: Average complexity for each generating algorithm.

However, some problems are still left open. Indeed, can one generate these
permutation sets in Gray code order? Some results concerning Fibonacci permu-
tation sets are given in [16] but none are for Lucas permutations. Can one find
other pattern-avoiding permutation sets enumerated by p-generalized Fibonacci
and Lucas sequences? This will also be interesting to exhibit constructive bi-
jection between the permutation sets found in this paper.
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