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Abstract. The interaction between vegetation and hydro-

logic processes is particularly tight in water-limited environ-

ments where a positive-feedback links soil moisture and veg-

etation. The vegetation of these systems is commonly pat-

terned, that is, arranged in a two phase mosaic composed of

patches with high biomass cover interspersed within a low-

cover or bare soil component. These patterns are strongly

linked to the redistribution of runoff and resources from

source areas (bare patches) to sink areas (vegetation patches)

and play an important role in controlling erosion.

In this paper, the dynamics of these systems is investigated

using a new modeling framework that couples landform and

vegetation evolution, explicitly accounting for the dynamics

of runon-runoff areas. The objective of this study is to an-

alyze water-limited systems on hillslopes with mild slopes,

in which overland flow occurs predominantly in only one di-

rection and vegetation displays a banded pattern. Our sim-

ulations reproduce bands that can be either stationary or up-

stream migrating depending on the magnitude of the runoff-

induced seed dispersal. We also found that stationary banded

systems redistribute sediment so that a stepped microtopog-

raphy is developed. The modelling results are the first to

incorporate the effects of runoff redistribution and variable

infiltration rates on the development of both the vegetation

patterns and microtopography. The microtopography for sta-

tionary bands is characterized by bare soil on the lower gra-

dient areas and vegetation on steeper gradients areas. For

the case of migrating vegetation bands the model generates

hillslope profiles with planar topography. The success at gen-

erating not only the observed patterns of vegetation, but also

patterns of runoff and sediment redistribution suggests that

the hydrologic and erosion mechanisms represented in the
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model are correctly capturing some of the key processes driv-

ing these ecosystems.

1 Introduction

Arid and semi-arid areas constitute over 30% of the world’s

land surface. These areas function as tightly coupled

ecological-hydrological systems with strong feedbacks and

interactions occurring across fine to coarse scales (Noy-Meir,

1973, 1981; Wilcox et al., 2003; Ludwig et al., 2005). Gen-

erally, the vegetation of these regions consists of a mosaic or

pattern composed of patches with high biomass cover inter-

spersed within a low-cover or bare soil component. A key

condition for the development and maintenance of these pat-

terns seems to be the emergence of a spatially variable in-

filtration field with low infiltration rates in the bare areas

and high infiltration rates in the vegetated areas (Tongway

and Ludwig, 2001). This spatially variable infiltration has

been observed in many field studies and is responsible for

the development of a runoff–runon system. Several field

studies have reported much higher infiltration rates (up to 10

times) under perennial vegetation patches than in interpatch

areas (Bhark and Small, 2003; Dunkerley, 2002; Ludwig et

al., 2005). The enhanced infiltration rates under vegetated

patches are due to improved soil aggregation and macrop-

orosity related to biological activity (e.g., termites, ants, and

earthworms are very active in semi-arid areas) and vegeta-

tion roots (Tongway et al., 1989; Ludwig et al., 2005). The

amount of water received and infiltrated into the vegetation

patches, which includes runon from bare areas, can be up to

200% the direct precipitation (Valentin et al., 1999; Wilcox

et al, 2003; Dunkerley, 2002). The runoff-runon mechanism

triggers a positive feedback, that is, increases soil moisture in
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Fig. 1. Schematic diagram of the effect of banded vegetation pat-

terns on flow redistribution.

vegetated patches reinforcing the pattern (Puigdefábregas et

al., 1999; Valentin et al., 1999; Wilcox et al., 2003). The re-

distribution of water from bare patches (source areas) to veg-

etation patches (sink areas) is a fundamental process within

drylands that may be altered if the vegetation patch structure

is disturbed. This efficient redistribution of water is accom-

panied by sediments and nutrients and allows for higher net

primary productivity.

The objective of this study is to investigate the interactions

between dynamic vegetation patterns and geomorphology in

banded vegetation systems, using a new coupled dynamic

vegetation-landform evolution model. In particular, we are

interested in analyzing if the simplified dynamics included in

our model is able to reproduce not only the observed vegeta-

tion patterns but also the associated sediment redistribution

that leads to stepped microtopography. In Sect. 2 we discuss

the interactions between processes, patterns and function tak-

ing place in arid and semi-arid areas with sparse vegetation

cover. We also describe some of the models used in previous

studies. In Sect. 3 we describe the dynamic vegetation model

used in this study. Section 4 provides a brief description of

the SIBERIA landform evolution model (Willgoose et al.,

1991). Section 5 explains how the models are coupled and

the flow of information between the coupled models. Sec-

tion 6 describes the simulation results for banded vegetation

systems and final conclusions are summarized in Sect. 7.

2 Ecohydrology of arid and semi-arid areas

2.1 Processes, patterns and function

As discussed above, vegetation patterns play an impor-

tant role on determining the location of runoff and sedi-

ment source and sink areas (Cammeraat and Imeson, 1999;

Wilcox, 2003; Imeson and Prinsen, 2004). These patterns

are thus functionally related to hydrologic processes through

their effect on determining soil moisture patterns, runoff re-

distribution and evapotranspiration; and to geomorphologic

processes through their role on determining the spatial distri-

bution of erosion-deposition areas. In these systems the spa-

tial redistribution of flows and material is regulated by both

topography and vegetation (Tongway and Ludwig, 1997).

That is, the downslope routing of water, sediments, nutri-

ents, seeds, litter, etc, is strongly influenced by the inter-

action between vegetated and bare patches, which is de-

termined by their spatial connectivity (Imeson and Prinsen,

2004). As shown by several field studies, natural vegetation

patterns that take decades to hundreds of years to evolve pro-

vide stabilizing properties for ecosystems as they are efficient

in reducing overland flow and land degradation, and help

ecosystems to recover from disturbance and to resist stres-

sors (Cammeraat and Imeson, 1999). Therefore the state of

natural vegetation patterns constitutes an important indicator

of ecosystem health.

Changes in the vegetation pattern and state in semi-arid

regions are among the main indicators of the state of land

degradation leading to desertification. If the vegetation cover

is removed, the redistribution of water is altered inducing

higher runoff rates and causing soil erosion during intense

rainstorms. Disturbances, such as overgrazing, can alter the

structure of vegetation patches reducing their density and/or

size which leads to a “leaky” system. A leaky system is less

efficient at trapping runoff and sediments and loses valuable

water and nutrient resources (Ludwig et al., 2004) inducing

a positive-feedback loop that reinforces the degradation pro-

cess (Lavee et al., 1998). When semi-arid lands become de-

graded, their original biotic functions are damaged and the

subsequent restoration of those lands is costly and in some

cases impossible.

A common vegetation pattern found in arid and semi-arid

ecosystems, usually referred to as spotted or stippled, con-

sists of dense vegetation clusters that are irregular in shape

and surrounded by bare soil (Lavee et al., 1998; Aguiar and

Sala, 1999; Ludwig et al., 1999). Another common pattern is

banded vegetation, also known as “tiger bush” in Africa and

“mogotes” in Mexico, in which the dense biomass patches

form bands, stripes or arcs (Aguiar and Sala, 1999; Ludwig

et al., 1999; Valentin et al., 1999; d’Herbes et al., 2001).

Banded vegetation is usually aligned along contour lines and

is effective in limiting hillslope erosion (Bochet et al., 2000).

The bands favor soil conservation by acting as natural bench

structures in which a gently sloping runoff zone leads downs-

lope onto an interception zone (Valentin et al., 1999). Fig-

ure 1 displays a schematic diagram of a banded system show-

ing the redistribution of water from bare patches (source

areas) to vegetation patches (sink areas). Banded patterns

commonly act as closed hydrological systems (Valentin and

d’Herbes, 1999), with little net outflow and sediment com-

ing out of the system (e.g. at the bottom of the hillslope or

catchment outlet). The effect of spotted vegetation on ero-

sion is more complex and depends on the connectivity of the

bare soil areas. Wilcox et al. (2003) reported the results from

the interactions between runoff, erosion, and vegetation from

an experimental study in an area with sparse vegetation cover

(spotted vegetation) in New Mexico. They concluded that the
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redistribution of runoff and erosion occurs at the inter-patch

scale (from bare patches to high biomass patches), with lit-

tle or no effect at the hillslope scale. However, disturbances

that modify vegetation can produce an increase in erosion

rates leading to the creation of gullies and can result in irre-

versible degradation. That is, if vegetation establishes along

the new drainage gullies the overland flow pattern is lost and

it is unlikely that it will re-establish itself without human in-

tervention (Wakelin-King, 1999).

Tongway and Ludwig (2001; and references therein) dis-

cuss some of the theories for the formation of banded land-

scapes. Some suggest that band formation is recent and due

to the impact of humans in a previously uniform vegetation

cover. Others suggest that is due to climatic shifts during the

Holocene or to geomorphic processes that shaped the land-

scape. Water and wind are both considered band forming

agents. However, in most cases water is perceived as the

primary causal agent of band formation (Tongway and Lud-

wig, 2001). Although banded patterns have been found in

landscapes with a wide range of steepness, from gentle to

relatively steep slopes (Puigdefabregas and Sanchez, 1996;

Bergkamp et al., 1999), the key condition for their appear-

ance seems to be the ability of the landscape (soil and surface

conditions) to generate surface runoff as sheet-flow (Valentin

et al., 1999; Tongway and Ludwig, 2001). Landscapes with

incised rills and gullies, in which flow concentration pre-

cludes the generation of sheet flow, do not exhibit banded

vegetation. Moreover, studies in banded vegetation areas ex-

periencing erosion and degradation have reported the disap-

pearance of the banded system as soon as rills and channel

incision begins (Tongway and Ludwig, 2001). In this paper

we focus our analysis on banded systems driven by surface

runoff (see d’Herbes et al., 2001, and references therein for

a description of wind-driven banded systems). The coupled

model described in this paper has been also used for a simi-

lar analysis on systems with stippled and spotted patterns and

these results will be reported in a follow up paper (Saco and

Willgoose, 2006, 20071).

2.2 Previous models

There is a variety of models for the simulation of vegeta-

tion pattern formation (e.g., Thiery et al., 1995; Lefever and

Lejeune, 1997; Dunkerley, 1997; Klausmeier, 1999; Rietk-

erk et al., 2002; Gilad et al., 2004) and for the simulation of

coupled hydrology and vegetation dynamics in water-limited

ecosystems (e.g., Aguiar and Sala, 1999; Puigdefábregas et

al., 1999; Porporato et al., 2003; Ludwig at al., 1999; Boer

and Puigdefábregas, 2005). However, not all of them include

the interactions between water redistribution and dynamic

vegetation patterns. Recent models that capture the interac-

tion between spatial water redistribution and vegetation pat-

1Saco, P. M. and Willgoose, G. R.: Eco-geomorphology and

vegetation patterns in semi-arid regions: effect of slope and precip-

itation variability, in preparation, 2007.

terns can be divided in two main groups. The first group in-

cludes models developed to simulate water redistribution for

a fixed spatial vegetation pattern (Puigdefábregas et al., 1999;

Ludwig at al., 1999; Boer and Puigdefábregas, 2005). This

type of models are used to understand the effect of vegetation

patterns on erosion and/or water redistribution at short time

scales (e.g., from storm event to annual timescales), but do

not include feedback effects that occur at longer time scales.

Significant changes in vegetation patterns can occur at time

scales varying from several years to several decades (Gao and

Reynolds, 2003; Brown et al., 1997) and thus these mod-

els can not be directly used to asses the impact of climate

change or grazing pressure. The second group of models

simulates the development and evolution of vegetation pat-

terns as a function of water redistribution (Dunkerley, 1997;

Klausmeier, 1999). In these models the pattern emerges from

facilitation and competition feedbacks, such as increased in-

filtration under vegetation patches (HilleRisLambers et al.,

2001; Rietkerk et al., 2002) or competition for the limiting

water resource through the root system (Gilad et al., 2004).

These models have provided valuable insight into the mecha-

nisms responsible for the emergence and self-organization of

the observed vegetation patterns in arid and semi-arid areas.

However, they do not include the dynamic effect of erosion-

deposition processes and their feedback effects on flow rout-

ing, soil moisture and vegetation pattern dynamics. That is,

erosion-deposition mechanisms change topography affecting

surface water redistribution and soil moisture patterns, which

in turn affect the evolution of the vegetation pattern at longer

time scales. These non-linear self-reinforcing effects may

lead in some cases to the desertification of the system (Lavee

et al., 1998). These types of feedback effects can be stud-

ied using a coupled dynamic vegetation-landform evolution

model that incorporates evolving patterns of vegetation as the

one described in this paper.

Recent research has incorporated the effect of dynamic

vegetation on erosion and landform evolution for humid ar-

eas in which soil moisture does not limit vegetation growth

(Collins et al., 2004; Istanbulluoglu and Bras, 2005). The re-

sults provide important insight into the effects of vegetation

dynamics on geomorphic processes for humid areas. Unlike

these previous studies the results presented here are for wa-

ter limited environments, where plant growth depends on soil

moisture availability which is assumed to be the most impor-

tant limiting resource (i.e., plant growth is assumed not to be

limited by nutrient availability).

3 Dynamic vegetation model

In this section we describe a new model for the development

of vegetation patterns in water limited ecosystems. The dy-

namic vegetation model describes the dynamics of three state

variables: plant biomass density (P ; mass/area), soil mois-

ture (M; volume/area), and overland flow (Q; discharge).
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The model is based on the one proposed by HilleRisLam-

bers et al. (2001) and extended by Rietkerk et al. (2002). Un-

like these previous models, our model incorporates surface

water routing. The coupling of a surface water routing algo-

rithm allows us to account for the effect of seed dispersal by

overland flow (a possible mechanism for the emergence of

stationary vegetation bands) and sediment redistribution not

simulated by previous models.

3.1 Overland flow dynamics

The partial differential equations governing the redistribution

of overland flow (run-on and run-off) are the conservation

of mass and momentum. The full dynamic form of these

equations for the description of free surface flow is known

as the Saint Venant equations. A simplified version of the

Saint Venant equations is the kinematic wave approximation,

which includes a simplified momentum equation applicable

to most practical hydrologic conditions where backwater ef-

fects are considered negligible (Vieux, 1991). The conserva-

tion of water mass (continuity) can be written as:

∂h(x, y, t)

∂t
= −∇ · q(x, y, t) + R(x, y, t)−I (x, y, t) (1)

where h [m] is the flow depth, q [mm m/day] is the flow

discharge per unit width, R [mm/day] is the rainfall rate, I

[mm/day] is the infiltration rate, x and y [m] denote the po-

sition coordinates, t [day] is time, ∇· is the divergence oper-

ator, and the bold italic letters indicate vector quantities.

The conservation of momentum using the kinematic wave

assumption is described as (Henderson and Wooding, 1964;

Woolhiser and Liggett, 1967; Vieux, 1991; Mitas and Mi-

tasova, 1998):

So = Sf (2)

in which the friction slope (Sf ) is assumed to be the same as

the land surface slope (So). That is, kinematic wave theory

assumes that shallow water waves are long and flat (Vieux,

1991). Closure to the above equations is given using Man-

ning’s equation to compute overland flow velocities (Julien et

al., 1995; Eagleson, 1970; Mitas and Mitasova, 1998), so that

the overland flow discharge per unit width can be expressed

as:

q(x, y, t) =
cn

n
h(x, y, t)

5
3 So(x, y, t)

1
2 (3)

where n is Manning’s roughness coefficient and cn the con-

stant for unit conversion (m mm−2/3 day−1). We use a spa-

tially constant n for simplicity, but changes in n due to

changes in local biomass can be included in the model (Is-

tanbulluoglu and Bras, 2005).

A quasi steady approximation is adopted here and Eq. (1)

is solved for steady state conditions (∂h/∂t=0). This is justi-

fied since the time scale at which the rate of change of runoff

redistribution occurs (seconds to hours) is much faster than

that at which change of plant biomass occurs (days or longer

for grasses to months for shrubs). Therefore, a time step of

0.5 day is used to model vegetation change and the amounts

of q and h are represented by their equilibrium values which

occur at much smaller time scales. The steady state approxi-

mation is also considered to provide an adequate estimate of

overland flow for land management applications (Flanagan

and Nearing, 1995; Mitas and Mitasova, 1998).

The magnitude and direction of overland flow and the

slope (So) can change with time in response to erosion-

deposition processes. The direction of the flow discharge

vector q and the surface slope So are computed in the steepest

descent direction and estimated (and updated) by the land-

form evolution model (more details are given in Sect. 5). For

the cases analyzed in this paper the flow is one-dimensional,

that is the direction of the flow lines (or stream tubes as

defined by Vieux, 1991) coincide with the x-axis, and cor-

responds to the steepest descent direction without invoking

any approximation. The spatial and temporal coordinates

(x, y, t) are not included in any of the equations that follow

to simplify the notation.

Several analytical and experimental studies have related

the spatial variability of infiltration rates to differences in

both biomass density (Dunkerley, 2002; Bhark and Small,

2003; Ludwig et al., 2005) and flow depth along a hillslope

(Dunne et al., 1991; Fox et al., 1997, 1998). The obser-

vations by Dunkerley (2002) on the spatial patterns of soil

moisture and infiltration rates in a banded mulga woodland

in arid central Australia provide evidence for the dependence

of infiltration on biomass density for arid regions. He found

that infiltration rates are highest close to tree stems and de-

cline rapidly with increasing distance. In many studies in

arid areas, vegetation has been observed to be located in ele-

vated mounds of a few centimeters height (Dunkerley, 2000,

and references therein; Dunkerley, 1997; Bochet et al., 2000;

Eldridge and Rosentreter, 2004). Greater infiltration rates

in these elevated mounds (due to the presence of roots, soil

fauna, etc) would therefore induce an increase in the appar-

ent infiltration rates, as flow depth increases and inundates

these higher areas within the groves. A similar observation

is reported by Dunne et al. (1991) who relates differences in

soil macroporosity to differences in infiltration rates between

the low-lying and the elevated (vegetated) parts of the micro-

topography. Investigations of this type show that infiltration

rate is not solely determined by the soil matrix, but rather de-

pends on a range of other factors including the dynamics of

the flow crossing the surface and the extent to which the form

and amplitude of the microtopography allows or precludes

broad sheet flow or more concentrated thread flow. Experi-

ments on crusted surfaces (Fox et al., 1998) also suggest that

spatial variability in seal characteristics, which vary with mi-

crotopography, can also strongly influence infiltration rates

for varying ponding depths. That is, an increase in ponding

depth inundates areas of higher hydraulic conductivity pro-

ducing a significant increase in the infiltration rate.
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Following the evidence provided in these previous field

studies, we assume that the infiltration rate, I , depends on

biomass density P (Walker et al., 1981) and overland flow

depth h according to (HilleRisLambers et al., 2001; Rietkerk

et al., 2002):

I = αh
P + k2Wo

P + k2
(4)

where α (day−1) defines the maximum infiltration rate, k2

(g m−2) is the saturation constant of infiltration, and Wo

(dimensionless) is a process parameter that determines the

dependence of the infiltration rate I on biomass density P

(0≤Wo≤1). For Wo=1 there is no biomass dependence while

for Wo≪1 the infiltration rate increases significantly with in-

creased biomass density. For any given value of flow depth h,

the infiltration is lowest for bare soil conditions (αhWo) and

increases with increasing biomass density to asymptotically

approach the maximum value (αh).

3.2 Soil moisture dynamics

The soil moisture M (mm) is defined as the plant available

soil water (that is, the total soil moisture is Mt=M+Mmin,

where Mmin is the wilting point). Soil moisture changes are

modeled using a simple single bucket approach, in which

gains are due to infiltration and losses are due to plant wa-

ter uptake, evaporation and deep drainage:

∂M

∂t
= I − gmax

M

M + k1
P − rwM (5)

The second term represents soil water uptake by plants,

which is assumed to be a saturating function of soil mois-

ture availability (HilleRisLambers et al., 2001; Rietkerk et

al., 2002). gmax [mm g−1 m2 day−1] is the maximum spe-

cific water uptake (asymptotic value of water uptake per unit

of biomass density as M increases) and k1 (mm) is the half-

saturation constant of specific water uptake. When M=k1,

water uptake (and growth rate, see Eq. 6) is at half its max-

imum rate. Therefore, the half-saturation constant describes

the water uptake characteristics of different plant species,

with low k1 values indicating the ability of plants to thrive

under water stress (low soil moisture) conditions. The third

term represents soil moisture losses due to deep drainage.

Losses are assumed to increase linearly with soil moisture

availability, with rw [day−1] being the proportionality con-

stant. Lateral soil moisture fluxes are assumed to be negligi-

ble in Eq. (5). Simulations including lateral soil moisture re-

distribution, through a simple diffusion term added to Eq. (5)

(following Rietkerk et al., 2002), did not alter the patterns

of vegetation, sediment re-distribution and microtopography

shown in this paper.

3.3 Vegetation dynamics

The rate of change of plant biomass density P (g m−2) is

determined by plant growth, senescence, and spatial dissem-

ination of vegetation due to seed or vegetative propagation,

and can be expressed as:

∂P

∂t
= cgmax

M

M + k1
P − dP + Dp∇

2P − ∇ · qsd (6)

The first term represents plant growth, which is assumed to

be directly proportional to water uptake (transpiration) with

c (g mm−1 m−2) being the conversion parameter from water

uptake to plant growth. Water uptake by roots is assumed to

equal actual transpiration, without considering any variations

in the water storage of vegetation. The maximum asymptotic

plant growth is given by cgmax when soil moisture is not lim-

iting. The main control of plant production is assumed to be

water limitation, so when water supply through rain or runon

is insufficient plant transpiration becomes less than poten-

tial and linearly decreases plant growth. Nutrient availabil-

ity is assumed not to limit plant growth at this production

level. The second term represents biomass density loss and

d (day−1) is the specific loss coefficient of biomass density

due to mortality (disturbances such as vegetation removal by

grazing can be included in this term through a higher coeffi-

cient d).

The last two terms in Eq. (6) account for plant disper-

sal. Dp (m2 day−1) in the third term is the dispersal coef-

ficient for isotropic processes such as wind and animal ac-

tion (termites are important agents for seed dispersal in many

arid and semi-arid areas) and ∇2 is the Laplacian operator.

The fourth term accounts for plant propagation caused by

the transport of seed biomass by overland flow. The seed

biomass transport vector, qsd (g m−1 day−1), has the direc-

tion of the overland flow and a magnitude, qsd , given by:

qsd = c1qP for c1q < c2

qsd = c2P for c1q > c2

(7)

where c1 (mm−1) and c2 (m day−1) are process parameters.

This mechanism for transport of seed biomass depends on the

magnitude and direction of the overland flow discharge (i.e.,

transport limited conditions for seed redistribution), and its

maximum value (c2P) depends on the total amount of seed

biomass available for flow dispersal (i.e., production limited

conditions) which is assumed to be proportional to the total

biomass density P .

Previous models (HilleRisLambers et al., 2001; Rietkerk

et al., 2002; Gilad et al., 2004) incorporated plant dispersal

through seed or vegetative propagation by including a diffu-

sion term (third term in Eq. 6) but they did not account for

the transport of seeds by overland flow (fourth term). How-

ever, the redistribution of seeds by overland flow has been

identified in field experiments as one possible explanation

for the observed stationarity of vegetation bands (Dunkerley,

2002). As explained in more detail in Sect. 6.3, this model

reproduces both stationary bands (as observed in Australia)

and traveling vegetation bands (observed in Sudan and some

other locations).
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4 Landform evolution model

SIBERIA is a physically based model of the evolution of

landforms under the action of fluvial erosion, creep and mass

movement. The elevations within the catchment are simu-

lated by a mass-transport continuity equation applied over

geologic time scales. Mass-transport processes considered

include fluvial sediment transport, such as those modeled by

the Einstein–Brown equation, and a conceptualization of dif-

fusive mass movement mechanisms such as creep, rainsplash

and landslide. The model averages these processes in time so

that the elevations simulated are average elevations, indica-

tive of the average of the full range of erosion events. The

mathematical details of this model are discussed in Willgo-

ose et al. (1991). The evolution of the landform at a point

follows directly from the mass conservation of sediment:

∂z

∂t
= U −

(

∇ · qs

ρs(1 − np)
+ ∇ · qd

)

(8)

where U (m day−1) is the rate of tectonic uplift, ∇· is the

divergence operator, qs is the fluvial sediment transport per

unit width (T day−1 m−1), qd is the diffusive mass transport

per unit width (m3 day−1 m−1), ρs is the density of the sed-

iment, np is the porosity of the sediment and the bold italics

indicate vector quantities. Generically, Eq. (8) does not as-

sume any particular sediment transport processes since it is

simply a statement of sediment transport continuity. Rather

it is our adopted process representation for qs and qd that

determines the processes modeled.

Sediment transport by overland flow, under transport lim-

ited conditions, is modeled as:

qs = β1q
m1Sn1 (9)

where q is the surface runoff per unit width (estimated in the

vegetation model, see Sect. 3.1), S is the slope in the steepest

downslope direction, m1 and n1 are parameters in the flu-

vial transport model, and β1 is the rate of sediment transport,

function of sediment grain size and vegetation cover, analo-

gous to the K factor in other erosion models, e.g. CREAMS,

USLE. Note that a transport limited model is needed in or-

der to capture the effect of surface water redistribution on

erosion/deposition processes. That is, the existence of spa-

tially heterogeneous vegetation and spatially varying infiltra-

tion rates induces the appearance of areas of surface runoff

that trigger erosion and areas of run-on that induce sediment

deposition.

Biomass cover is one of the key factors influencing soil

erodibility. This is due to the positive effect of the vege-

tation on improving soil quality through organic matter and

litter contribution. Also, a more active fauna and flora, which

is generated due to the combined effect of enhanced weath-

ering, enhanced infiltration and a less contrasted microcli-

mate, produces stronger aggregates (Zhang, 1994; Cerdà,

1998). Under semiarid and arid conditions, soil erodibility

is highly dependent on the soil surface aggregation which is

strongly influenced by vegetation. Field studies in semiarid

areas show that the minimum soil aggregation is found in

bare areas and increases with vegetation cover (Cerdà, 1998).

Accordingly, we model the decrease in soil erodibility with

increasing biomass density through the parameter β1 that is

assumed to linearly decrease as biomass density increases

(similar to other linear formulations in the literature, e.g.,

Boer and Puigdefábregas, 2005) as:

β1=βb(1−βvP) for βvP < 1 −
βmin

βb

β1=βmin for βvP ≥ 1 −
βmin

βb

(10)

That is, the erodibility parameter is maximum for bare soil

(βb) and is assumed to decrease linearly with increasing

biomass density at a rate given by βv to a minimum value

given by βmin.

Diffusive transport processes (e.g. rainsplash, soil creep)

are modeled as:

qd = DS (11)

where D (m3 day−1 m−1) is the diffusion coefficient, as-

sumed here to be spatially constant. This diffusion model

is widely used to conceptualize mass movement (Ahnert,

1976). Other forms of mass wasting like landslides and de-

bris flows were not included in the analysis since they are not

important in the mild-slope areas that are the main focus of

this study. The direction of the vector qd is assumed to be

in the steepest downslope direction which is consistent with

the assumption for overland flow estimated using Eq. (3) and

involves no approximation for the cases presented in this pa-

per.

5 Coupled model

The strategy for integrating the vegetation model and the

landform evolution model has been to couple the mod-

els through the shared hydrologic (overland flow), ecologic

(biomass density), and geomorphic (elevations and slopes)

variables. The vegetation model and landform evolution

model (SIBERIA) share the same computational grid but

the processes simulated in each model operate over different

time scales, and are therefore executed at different time steps.

The time step in SIBERIA is based on the duration of erosive

time scales (days to years), whereas the vegetation model that

includes the computation of surface flow redistribution, soil

moisture and vegetation dynamics utilizes shorter time steps

(sub-daily). The models have not been tightly coupled to im-

prove computational speed and performance. Figure 2 shows

the flow of information between both models. The vegeta-

tion model computes the evolution and spatial distribution of

biomass density and overland flow. These variables are input

into the landform evolution model that computes sediment
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Fig. 2. Schematic diagram showing the flow of information between

the coupled models.

transport. Biomass information is used to update the erodi-

bility parameters which, together with overland flow distri-

bution, are used to compute spatially distributed erosion and

deposition volumes and to update elevations. The new topo-

graphic surface is then used to compute updated flow direc-

tions and slopes that are input to the next step of the vegeta-

tion model.

6 Results and discussion

6.1 Methodology

The simulations analyzed in this section correspond to a

two-dimensional hillslope with an area of 200 m×200 m and

a grid spacing of 2 m. No-flow boundary conditions were

set for the upstream and lateral borders, while free flow

boundary conditions were used in the downstream bound-

ary (drainage was allowed through the complete downhill

border of the domain). The initial hillslope profile corre-

sponds to a planar slope of 1.4% that is typical of areas

with banded vegetation in Australia (Dunkerley and Brown,

1999). The initial vegetation consisted of biomass peaks ran-

domly distributed in 1% of the grid elements. The rest of

the grid elements were set to bare soil conditions. The pre-

cipitation for the simulations shown in this paper was set to

320 mm/year (high values of precipitation lead to continuous

biomass cover as discussed in Rietkerk et al., 2002).

The parameters for vegetation dynamics used in this analy-

sis (shown in Table 1) were adopted following those reported

by Rietkerk et al. (2002) and HilleRisLambers et al. (2001)

for the analysis of vegetation patterns in grasslands. The

surface roughness coefficient (i.e., Manning’s coefficient)

corresponds to commonly accepted values in vegetated sur-

faces. These parameters give rise to low biomass vegetation

that evolves into equilibrium conditions rapidly (fast dynam-

ics). Different sets of parameters can be selected to simulate

growth and development of vegetation dynamics similar to

that of shrubs and grasses for semi-arid areas reported in pre-

vious studies (Sparrow et al., 1997; Gao and Reynolds, 2003;

Saco and Willgoose, 2006). Table 2 shows the parameters

for the erosion processes included in the landform evolution

model used in all simulations, chosen from the range of re-

Table 1. Parameters used in the vegetation model.

n – 0.05

α day−1 28

k2 g m2 18.0

Wo – 0.05

gmax mm g−1 m2 day−1 0.05

k1 mm 5.0

rw day−1 0.19

c g mm−1 m−2 10.0

d day−1 0.24

Dp m2 day−1 0.3

c1 mm−1 2.25

c2 m day−1 0.2

Table 2. Parameters used in the landform evolution model.

Grid size (m2) 2

U (m y−1) 0.0

D (m3 s−1 m−1) 0.0–0.05

m1 1.8

n1 1.1

βb 0.05

βv 0.05

βmin 0.0

commended values (Willgoose, 2004). As seen in Table 2,

the simulations shown in this paper correspond to the case of

declining equilibrium conditions (U=0).

6.2 Self organization into banded vegetation patterns

The initial distribution of biomass density is shown in

Fig. 3a. On a hillslope in which overland flow occurs pre-

dominantly in only one direction (as sheet flow with no flow

concentration) the coupled model generates regular vegeta-

tion bands perpendicular to the flow direction (tiger bush or

banded type of pattern). For the parameters shown in Ta-

bles 1 and 2, stationary vegetation bands have completely

developed for t>15 years. Figures 3b and c show two stages

in band development for t=2560 days and t=15 years respec-

tively.

The evolution of vegetation bands results from the system

functioning as a series of runoff-runon areas that arise due

to facilitation (of infiltration) and competition (for soil mois-

ture) by plants. Runoff is produced in the bare areas and

increases downslope towards the upper boundary of the veg-

etated patches (groves). Vegetation colonizes (by growth and

dispersion) areas with sufficient soil moisture, which receive

runoff water from upslope. Infiltration is high within the veg-

etation patches (areas with high biomass density), which act
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(a) 
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(c)  

Fig. 3. Self-organization of vegetation into a banded pattern for a

planar hillslope with sheet flow. The scale is 200 m×200 m on a

slope of 1.4%. (a) Initial conditions of random plant peaks in 1%

of the grid elements, (b) Vegetation pattern for t=2560 days, (c)

Stationary bands have completely developed for t=15 years.

as sinks for the water coming from upslope (runon areas) and

restrict the runon that is passed on to the vegetated areas sit-

uated further downslope. After a distance set by runon avail-

ability, soil moisture becomes inadequate for plant growth
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Fig. 4. Longitudinal profile of a banded vegetation pattern, the x

axis shows distance from the bottom of the hillslope, (a) simulated

distribution of biomass density (solid line) and runoff (dots), (b)

simulated elevations after 500 years. The vertical arrows show the

position of a grove (G) and an intergrove (I).

requirements, and biomass decreases giving way to an area

with very low biomass density (intergrove). The intergrove

has low infiltration rates allowing for a progressive increase

in runoff volume downslope from the grove boundary. When

sufficient runoff becomes available to satisfy soil moisture

requirements for biomass growth, another patch of vegeta-

tion emerges (grove).

The bands grow laterally (through seed dispersal) because

plants located at the same distance from the upstream vegeta-

tion boundary receive the same amount of water. Therefore,

the vegetated patches expand laterally allowing for the for-

mation of parallel bands typical of banded systems. Note that

this is the case because surface flow is in the form of sheet

flow, with no flow concentration, and flowlines are parallel

(perpendicular to the groves). For simplicity, lateral compe-

tition for water via the root system has not been included in

the model.

Figure 4a displays the distribution of biomass along the

longitudinal profile. The biomass cover is continuous, but

its spatial distribution displays high densities (groves) and

low densities (intergroves) in a periodic pattern. Figure 4a

also shows the overland flow for the stationary vegetation

bands, showing that the spatial variability of runoff and that

of biomass density are out of phase. That is, runoff is

higher in the areas with the minimum biomass density (low
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infiltration) and lower in the areas with higher biomass (high

infiltration).

6.3 Stationary and migrating bands

As mentioned in Sect. 3, the appearance of stationary bands

is due to the effect of anisotropic seed dispersal resulting

from the preferential redistribution of seeds by surface flow

downslope. This mechanism was not included in previous

models which only reproduced vegetation bands moving up-

hill (Klausmeier, 1999; HilleRisLambers et al., 2001; Rietk-

erk et al., 2002; Gilad et al., 2004). The migration of veg-

etation bands in the uphill direction remains a controversial

topic, with field studies reporting evidence that supports both

the existence of migrating bands and stationary bands in dif-

ferent landscapes (Valentin et al., 1999; Ludwig and Tong-

way, 2001). As discussed by Valentin et al. (1999), evidence

of upslope migration remains scarce. The direct observa-

tions of band movement over short time spans do not give

compelling information due to the slow velocity of the mi-

grating bands. In particular, several field studies in Australia

have reported the existence of stationary bands and one of the

possible reported mechanisms that might prevent the bands

from traveling upstream is seed redistribution by overland

flow. Observations by Dunkerley and Brown (2002) for a 6-

year period on a banded chenopod shrubland in Western New

South Wales in Australia show no evidence of systematic mi-

gration of grove-intergrove boundaries. They found that the

majority of the bands remained in place within the limits of

measurement accuracy (typically, 0.5 m). Similarly, Dunker-

ley (2002) found no evidence of systematic upslope pattern

migration over a 24-year study period on a banded pattern of

Mulga trees near Alice Springs in Australia. Accordingly,

Dunkerley and Brown (2002) and Dunkerley (2002) con-

cluded that these results provided field evidence in contradic-

tion with existing numerical models based on “runoff-runon”

mechanisms for pattern generation that predict upslope mi-

gration of patterns (for example, Klausmeier, 1999; Rietkerk

et al., 2002; among others). However, as shown here, our

model based on runoff-runon mechanisms reproduces both

stationary and migrating bands.

As explained in Sect. 3.3, the parameters c1 and c2 con-

trol the dynamics of seed transport by overland flow. Con-

sequently these parameters are the ones that control the ap-

pearance of either stationary or migrating banded vegetation

patterns. The amount of seeds transported by overland flow

depends on the transport capacity of the flow (i.e., transport

limited conditions for seed redistribution by overland flow)

but is constrained by the amount of seeds available for dis-

persal at any point of the landcape (i.e., production limited

conditions), which is assumed to be proportional to the total

biomass density (c2P). We analyzed the results from the

model for increasing values of the parameter c2 (we used

c1=2.25 mm−1 to ensure that seed dispersal does not occur

under transport limited conditions). When c2=0 m/day, there

is no redistribution of seeds by overland flow, and the sim-

ulations result in the appearance of migrating bands. When

c2 is small (c2<0.1 m/day), the amount of seed dispersal by

overland flow is lower than the seed dispersal by isotropic

mechanisms, there is a preferential colonization of the up-

stream boundary (due to higher soil moisture conditions in

these areas) and the bands migrate upstream. For higher val-

ues of c2 (0.1 m/day<c2<0.8 m/day), there is no preferen-

tial growth of the band in the uphill direction and the bands

become stationary. An example of a stationary banded pat-

tern is shown in Fig. 4, in which c2=0.2 m/day. Finally, we

found that for larger values of c2 (c2>0.8 m/day) the bands

disappear and the complete hillslope has bare soil conditions.

This occurs because the dispersal of seeds by overland flow

becomes dominant. That is, the bands of vegetation move

downhill due to enhanced preferential colonization of the

downslope portions of the grove and, as there is no source

of seeds in the most uphill portion of the landscape, the veg-

etation pattern slowly disappears from the hillslope. Though

this is an interesting result, it does not lead to the banded

landscapes that are the focus of this paper.

For the case of migrating bands, the dynamic patterns re-

produced in our simulations are slightly different from those

reported previously (e.g., in Rietkerk et al., 2002). This is

mainly due to the difference in boundary conditions used in

our analysis. As we are interested in the interactions between

vegetation pattern, flow redistribution and erosion-deposition

in hillslopes, we imposed a no-flow boundary condition in

the upstream boundary (instead of the periodic boundary

used in previous work). Therefore, for the case of migrat-

ing bands, the most upstream band decreases in size as it ap-

proaches the hilltop and finally dies out when the contribut-

ing area (and flow) becomes insufficient to maintain vegeta-

tion growth.

6.4 Geomorphology-ecohydrology interactions

Figure 4b shows the simulated hillslope profile (elevations)

for t=500 years. As seen in this figure, the initially planar

hillslope evolves into a profile with stepped microtopogra-

phy. This is a “declining relief” profile which undergoes

a continuing loss of elevation with time, and in which the

stepped microtopography becomes more pronounced with

time. This type of hillslope profile is in agreement with the

field data obtained by Dunkerley and Brown (1995, 1999)

in both banded mixed shrubland-grassland and chenopod

shrubland communities in Australia. Figure 5 shows the hill-

slope topography for one of their study sites. As observed

in this figure the hillslope surface profile is composed of a

series of concave-upward elements (Dunkerley and Brown,

1999). Figure 6a shows a schematic representation of the

stepped microtopography generated by the model. Figure 6b

shows the schematic representation of the stepped microto-

pography reported by Dunkerley and Brown (1999). These

figures show good agreement; the series of microtopographic
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Fig. 5. Topographic profile of a site with banded vegetation, “G”

indicates the groves or vegetated areas and “I” indicates the in-

tergroves or bare soil areas (from Dunkerley and Brown, 1999).

Reprinted from Catena, vol. 37, Dunkerley, D. L. and Brown, K. J.:

Banded vegetation near Broken Hill, Australia: significance of sur-

face roughness and soil physical properties, pages 75–88, 1999,

with permission from Elsevier.

elements represented in both figures have similar shape and

have the runon zone located upslope and the runoff zone be-

low. What is particularly interesting about the simulated hill-

slope profile shown in Fig. 4 and represented in Fig. 6a is

that most of the vegetated bands (groves) are located in the

regions of higher slope, and not on the flatter areas as could

have been expected from differences in erodibility between

bare and vegetated areas.

The concave-upward element in Figs. 6a and b, composed

of an upper grove and the lower intergrove, exhibits a smooth

decline in gradient and displays no break of slope. Figure 6b

includes a slight depositional ridge which is not reproduced

in our model (Fig. 6a) but that was only observed in some of

the field sites studied by Dunkerley and Brown (e.g., there

are no evident depositional ridges in the transect shown in

Fig. 5). Each concave-upward element functions as a source-

sink unit. In the intergrove areas, increasing amounts of sed-

iments are removed by runoff that increases with distance

from the upper grove boundary. At the boundary of the grove

where runoff is highest, the depth of flow is also highest in-

ducing high infiltration rates (see Eq. 4). Therefore, these ar-

eas become important sinks of water (runon) and sediments

with the highest simulated depositional rates. This result is

in agreement with observations reporting that both ponding

of water and sediment deposition are highest in the upslope

margin of the groves (Dunkerley and Brown, 1999). The

simulated runon decreases downslope from the grove upper

boundary, therefore the amount of sediments deposited also

decreases. The simulated erosion-depositional functioning

of the pattern successfully reproduces observations.

Elsewhere in Australia, similar microtopography has been

observed in banded vegetation areas. Topographic profiles

of patterned Mulga in central Australia (Berg and Dunkerley,

2004) display stepped microtopography with intergroves lo-

cated on lower gradients concave-upward areas and groves

found on steeper gradients and straighter (not concave-

upward) areas. This same type of microtopography has been

observed in another site of patterned Mulga in central Aus-

tralia (Slatyer, 1961) and in Western Australia (Mabbutt and

Fanning, 1987). However the stepped microtopography of

patterned Mulga lands in eastern Australia (south-western

Queensland and northwestern New South Wales) is different.

Mulga groves occur on nearly level “steps” in the landscape

and there is a gradual drop into the grove and a more distinct

“scarp” below the grove (Tongway and Ludwig, 1990).

Several researchers have observed and analyzed the ap-

pearance of the stepped microtopography on patterned

landscapes and have linked it to spatial differences in

soil erosion rates (Tongway and Ludwig, 1990; Sánchez

and Puigdefábregas, 1994; Puigdefábregas and Sánchez,

1996) and redistribution of soil in runon areas (Dunkerley,

2002). In particular, Sánchez and Puigdefábregas (1994) and

Puigdefábregas and Sánchez (1996) modeled the develop-

ment of tussock vegetation and the mounds that form due

to differential erosion rates induced by the vegetation. How-

ever, the modeling results presented here are the first to in-

clude the effect of runoff redistribution, through variable in-

filtration rates, on the development of both the vegetation

patterns and the stepped microtopography. An extended sen-

sitivity analysis of the erosion and runoff redistribution pa-

rameters is still needed to see if the differences in microto-

pography observed in different landscapes (described in the

previous paragraph) can be explained by differences in pro-

cess parameters.

It is important to note here that the stepped microtopogra-

phy arises in our model in response to the presence of ero-

sional and depositional areas prescribed by the location of

the vegetation bands that are stationary. In contrast, we found

that the profile does not evolve into stepped microtopography

when migrating bands are reproduced (for example for c2=0

in Eq. 7), because the erosion and depositional areas migrate

with the bands.

7 Summary and conclusions

A coupled dynamic vegetation-landform evolution model for

water limited ecosystems has been developed. This model

was used to explore the interactions between patterned veg-

etation and erosion by explicitly accounting for the effect

of dynamic water redistribution not considered in previous

models (Ludwig et al., 1999; Puigdefábregas et al., 1999).
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Fig. 6. (a) Schematic diagram of the microtopographic profile (continuous line), vegetation (dashed line) and surface water redistribution

(curved arrows) that arises (self-organizing) from our model. (b) Schematic diagram of the microtopographic framework reported by Dunker-

ley and Brown [1999] for the description of banded vegetation characteristics. Panel (b) reprinted from Catena, vol. 37, Dunkerley, D. L. and

Brown, K. J.: Banded vegetation near Broken Hill, Australia: significance of surface roughness and soil physical properties, pages 75–88,

1999, with permission from Elsevier.

That is, previous models did not account for the dynamic

effect of erosion-deposition processes and their feedback ef-

fects on flow routing, soil moisture and vegetation pattern dy-

namics. The erosion-deposition mechanisms change topog-

raphy affecting surface water redistribution and soil moisture

patterns.

The analysis in this paper focussed on hillslopes with mild

slopes. Under such conditions overland flow occurs predom-

inantly in only one direction (as sheet flow with no flow con-

centration) and vegetation self organizes into a banded pat-

tern. We used the coupled model to investigate and under-

stand the dynamics of these systems. Some key results are

summarized in what follows:

– We simulated and analysed the dynamics of both sta-

tionary and migrating vegetation bands (depending on

the choice of model parameters). In both cases the

bands self organize perpendicular to the flow direction

(tiger bush or banded type of pattern) and their appear-

ance is associated with the emergence of a runon-runoff

pattern. We found that the effect of anisotropic seed

dispersal due to the preferential redistribution of seeds

by surface flow downslope can be responsible for the

appearance of stationary bands. That is, seeds carried

downstream by overland flow compensate for the ten-

dency of bands to colonize upstream soil moisture rich

areas, which would occur as a result of isotropic seed

dispersal mechanisms. In this way, our model repro-

duces stationary bands when the parameters are set to

represent conditions of significant transport of seeds by

overland flow, or migrating bands when this transport

mechanism is negligible. Previous models did not in-

clude this effect and, unlike the model presented here,

only captured the dynamics of migrating bands (Klaus-

meier, 1999; HilleRisLambers et al., 2001; Rietkerk et

al., 2002; Gilad et al., 2004).

– We studied and characterized the dynamics of sediment

redistribution that gives rise to hillslope profiles with

a stepped microtopography for the case of stationary

vegetation bands. The modelling results are the first

to incorporate the effects of runoff redistribution and

variable infiltration rates on the development of both

the vegetation patterns and the associated microtopog-

raphy. We found that the intergroves tend to be located

on lower gradient areas that are concave-upward, and

the groves are situated on steeper gradient (not concave-

upward) areas. Sediments are removed from the up-

per intergrove areas by the effect of increasing runoff

and deposited in the grove areas due to a decrease in

runoff as a result of higher infiltration rates (Fig. 4).

The simulated erosion-depositional functioning of the

pattern successfully reproduces observations (Dunker-

ley and Brown 1995, 1999).

– For the case of migrating vegetation bands, we found

that the erosion and depositional areas continuously

move with the bands. In this case, the model generates

hillslope profiles with planar topography.

The success at generating not only the observed patterns of

vegetation, but also patterns of runoff and sediment redis-

tribution (which originates the observed microtopography)

suggests that the hydrologic and erosion mechanisms repre-

sented in the model are correctly capturing some of the key

processes driving these ecosystems. Understanding the non-

linear interactions between vegetation patterns, runoff pro-

cesses and erosion in arid and semi-arid areas becomes of

crucial importance due to current accelerated changes in land
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use and climate. This simple model can be used to study

feedback effects between geomorphology and vegetation un-

der land use or climate change. Further research is needed to

study the sensitivity of model to additional non-linear effects

not included here. One example is the possible hysteresis ef-

fects arising from vegetation impacts on soil properties. For

certain vegetation-soil systems, the positive effect of vegeta-

tion on infiltration and other soil properties may remain for

considerable time after the vegetation cover has declined. In-

cluding this hysteresis effect could have important implica-

tions for the resulting pattern of vegetation, erosion rates and

consequently could help us explain differences in observed

microtopography/vegetation for different regions.

The analysis presented in this paper focuses on the inter-

action between vegetation patterns, flow dynamics and sed-

iment redistribution for areas with mild slopes where sheet

flow occurs and banded vegetation patterns emerge. The ex-

tent of the appearance of this type of pattern is widespread

throughout the mild-slope arid and semi-arid areas of the

world (see Fig. 3 in Valentin et al., 1999, for a map show-

ing the global distribution of banded patterns). When flow

concentration occurs, for example by incorporating an ini-

tially irregular slope (or some noise to the initial surface)

the model generates different vegetation patterns (spots and

stripes aligned to the direction of flow) and the redistribution

of flow and sediments is remarkably different from the re-

sults reported here for banded vegetation. These results will

be reported elsewhere (Saco and Willgoose, 2006, 20071).
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