
Daniel L. Schmoldt

Eco-Logic: Logic-Based Approaches to Ecological Modelling

D. Robertson, A. Bundy, R. Muetzelfeldt, M. Haggith, and M. Uschold, 1991
MIT Press, Cambridge, Massachusetts
243 pages, $35.00
ISBN 0262181436

In the preface to the this book, the authors point
out that simulation models can be useful tools for
investigating real phenomena in an idealized way.
However, the complexity of simulation models can
often deter their use by ecologists. Also, complexity
and implementation details of a simulation may
obscure assumptions underlying the model. These
observations provide partial justification for research
carried out during 1984-1989 at the University of
Edinburgh. This book contains a summary of that
research. Two primary objectives for that work are
1) to provide tools for manipulating simulation
models (i.e., implementation tools) and 2) to provide
advice on conceptualizing real-world phenomena
into an idealized representation for simulation (i.e.,
model design).

Chapter 1 discusses modeling in very general
terms. The authors specify three standards that they
feel all simulation models should satisfy. These
standards are based on the idea that a simulation
model is essentially an argument proposed by the
modeler about how some real-world system operates.
They then show why conventional simulation models
cannot meet those standards (i.e., those models are
unable to explicitly characterize such an argument),
especially in poorly understood subject areas. By
“conventional,” the authors mean the direct imple-
mentation of a model in one of the imperative
programming languages, such as FORTRAN, Pascal,
or C. Alternatively, because a simulation model

consists of assumptions (axioms) and rational argu-
ments (inference methods), the authors reason that
logic and logic programming can provide an excellent
mechanism for representing and reasoning about
simulation models.

The primary focus of this book is on a logic-based
approach to simulation modeling. Ecology was
chosen as the experimental arena in which to apply
these modeling ideas. In Chapter 2, the authors
briefly introduce ecology and discuss some of the
attributes that make it a complex and poorly under-
stood science. They also present uses of ecological
models, types of ecological models, and major
modeling paradigms. Any new formalism for eco-
logical modeling will have to take into account the
diversity of these three areas.

Prolog is introduced in Chapter 3 as one of the
possible logic programming languages for the pur-
poses of simulation modeling. The authors maintain
that model comprehension is improved by logic
because of its explicit structure, modularity, and
flexibility of use. Three simple simulation models
are constructed in Prolog to illustrate these points: 1)
a system dynamics model, 2) a structural growth
model, and 3) a state transition model. Also, the
authors translate a conventional simulation model
into Prolog. Without some prior experience with
Prolog, it will be difficult for the reader to follow and
understand these examples. The authors acknowledge
this, and refer the reader to several introductory texts

Al Applications 46 Vol. 5, No. 4, 1991

on Prolog for the necessary background.
The authors note two problems that surface with

the use of native Prolog as a simulation modeling
language. First, because Prolog is a relational lan-
guage, it will find all solutions for a particular goal
unless it is explicitly “told” otherwise (the “cut”
operator performs this function). This means that
non-declarative information, in the form of cuts,
must be included in clauses, and, consequently, the
logical, argument-based interpretation of the simu-
lation model specification becomes obscured. Sec-
ond, when Prolog instantiates variables, it has un-
restricted use of all terms in the Prolog database.
Unless a programmer exercises caution by carefully
ordering clauses and inserting judicious cuts, vari-
ables can be instantiated to objects (terms) that may
make no sense for a particular clause. The remainder
of Chapter 4 presents an order-sorted logic for
eliminating these two problems and providing a
clean and declarative model representation language.

In essence, a sort is a subset of the universe of
discourse. In Prolog, the universe of discourse for
each variable instantiation is the set of all terms.
Prolog and first-order predicate logic are therefore
both one-sorted logics. In many-sorted logics,
predicates and functions are defined to apply only to
particular sorts, or subsets of the terms available.
When some ordering of the sorts is provided, it is
referred to as an order-sorted logic.

The authors define a sort hierarchy of objects for
simulation models. Their order-sorted logic also
contains function and predicate declarations and
sorted-logic axioms. Using this presentation, any
simulation model can now be expressed as a sort
hierarchy along with a set of axioms describing the
relationships between objects in that hierarchy. A
sorted-logic interpreter is provided by the authors in
pseudo-code form. A sorted-logic-to-Prolog trans-
lator is also described in pseudo code. By including
constraints in each axiom, the order of model state-
ments is no longer important (therefore procedural
code can be eliminated). Also, functions are now

applied only to objects for which they have meaning.
Chapter 5 represents a diversion from the main

topics of the book. It delves into considerations of
execution efficiency for their order-sorted logic
implementation. In their initial implementation,
values of time-dependent variables can only be
calculated in terms of the variables’ values at previous
time points. This forces long recursive evaluations
and greatly slows down execution speed, because
previously calculated values are not retained. Two
solutions are explored here: 1) a meta-interpreter for
Prolog that stores the results of function evaluation
and 2) translation of the sorted logic program into a
procedural programming language. The authors
highlight several difficulties concerning translation
of a declarative language into a procedural one, so
they prefer the former solution for their particular
sorted logic.

Chapters 6 and 7 address the second objective for
this book, namely, to provide a mechanism for non-
programmers to transform conceptual models into
simulation models. This is a much more difficult
problem than the first objective tackled in Chapters
3 and 4. Here, the authors must tread a fine line
between a simulation design/generator that is too
general to be of use to a non-programmer and one
that is too specific to be of use in more than a very
restricted subject area.

The sorted logic axioms introduced in Chapter 4
are used in Chapter 6 as feature descriptors for a
problem description of any ecological system. This
problem description level constitutes a high-level
representation that falls somewhere between the
implementation level of a simulation and the
ecologist’s abstract mental model of the real-world
system. Deduction, abduction, and consistence y
checking algorithms help to automate the problem
description process.

Chapter 7 presents the Eco-Logic (EL) system as
an intelligent front end to the model tools developed
in the previous chapters. EL consists of two sub-
systems: a problem description system that helps an

Vol. 5, No. 4, 1991 47 Al Applications

EL user construct ecological simulation models in a
high-level description language, and a program gen-
eration system that produces Prolog code from that
description. EL begins with an initial sort hierarchy,
ecological and modeling rules, and some input
templates. A user may include additional sorts and
objects, and can easily edit input templates to create
sorted logic axioms. EL completes the user’s prob-
lem description by applying modeling rules and
consistency checks. EL then uses Prolog-program
schemata to construct a program from the problem
description. An extensive example is presented to
illustrate how this process works. Without it, the
reader would be completely lost. The program
construction system creates three files, one of which
can be run by a standard Prolog interpreter. An
ancillary reconstruction system can reproduce an
entire EL session from the output in the other two
files. The authors briefly describe two other systems,
HIPPIE and NIPPIE, as enhancements to the EL system.

Recognizing that the process consisting of
problem description and program generation does
not guarantee that a final program will be executable,
the authors decide to modify their system to use a
dynamic set of axioms rather than the static set
created in the problem description. Then, if the
simulation goal contained in the model cannot be
satisfied when these axioms are executed by the
sorted logic interpreter, the user can insert additional
axioms until the goal is solved. At this point the
model is necessarily complete.

This alternative modeling process seems very
analogous to an interpreted programming language
versus a compiled one. So, instead of constructing a
model and executing it to see if it works properly,
construction and execution are performed in an
interactive fashion. Chapter 8 describes SL, an
implementation of this alternative, model-develop-
ment environment. As in the previous chapter, an
extensive example illustrates the technique and its
workings. Chapter 9 contains a summary of some
major ideas presented throughout the book, and

future directions and conclusions of this research
round out the text.

A plethora of pseudo-code algorithms fill the
bulk of this text. Alone, that is not bad. However, the
authors could have better prepared the reader for
these algorithmic excursions by using a few more
graphic illustrations to show how the different sys-
tem components and algorithms interact. Chapter 7
includes just such a figure; I found myself referring
to it repeatedly to understand the EL system. The
authors interjected many helpful examples, often the
same example repeatedly, to illustrate their methods.
These examples help to combat the paucity of ex-
planatory figures.

My other criticism of the book relates to Chapters
6 and 7. The simulation modeling environment, EL,
presented in these two chapters seems like a confusing
digression from the thread that runs through the
other chapters. The axiomatic approach of Chapter 4
appears again in Chapter 8. Its use in this later
chapter seems like a natural transition from its in-
troduction in Chapter 4. The interjection of the
problem description and program-code schemata
topics of Chapters 6 and 7 proved to be a disconcerting
departure for me as a reader. I suspect that the
organization of topics in the book closely follows
their research efforts over this time, and therefore
Chapters 6 and 7 represent an avenue of research that
was later abandoned in favor of an extension to the
approach in Chapter 4. Although these two chapters
are not without their merit, they produced a logical
segue that transitioned poorly between their chapters
on an order–sorted logic axiomatic system.

The main contribution of this book is to introduce
the concept of logic-based programming to the de-
sign and implementation of simulation models. The
authors do a good job of describing and illustrating
the advantages of this approach, which are modu-
larity, explicit model structure, and model flexibil-
ity. Many of the ideas that they propose for the
activity of modeling in general are well conceived
and are strongly supported.

Al Applications 48 Vol. 5, No. 4, 1991

