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Abstract 

The life cycle of a solar park made with organic photovoltaic (OPV) technology is assessed here. The 
modules have been fabricated in a pilot scale plant and they have been installed together with other 
components to evaluate the balance of system, in a solar park located in Denmark. Three possible waste 
management practices have been contemplated for the end of life of the solar park: recycling, incineration or 
the average local mix. The assessment of the environmental impacts of such a system reveals that silver used 
in the electrodes is overall the largest source of impacts, such as chemical pollution and metal depletion. The 
establishment of resource recovery systems for the end-of-life management of the OPV modules is then 
crucial to reduce overall environmental impacts. Liability on the manufacturers or on the operators should be 
implemented. The electricity produced from OPV solar parks yields similar footprint to other traditional 
energy technologies; e.g. coal and natural gas. However, when the efficiency of the OPV modules is 
increased from 1% to to 5% they are comparable to other mature PV technologies already on the market. The 
effects of outsourcing or exporting the production of the OPV modules from Denmark to China have 
additionally been studied to determine the most advantageous choice. The stakeholders should aim at 
anchoring the manufacturing of solar parks in countries with stringent emission standards or high technology 
efficiencies, and at deploying them in countries with high irradiation to maximise the environmental benefits 
of the PV technology. 

1. Introduction 

Organic Photovoltaics (OPV) in the form that could represent future technology at the time was reported in 
1995 and since then it has gradually developed and today it is an emerging energy technology. From the first 
devices that were fabricated on the scale of square millimetres, intense research efforts during the past 
decade have brought OPV closer to contend with well stablished photovoltaic (PV) technologies. They 
possess unique properties; low weight, the potential to be manufactured cheaply and everywhere without 
special equipment, and with low energy budget. In terms of the environmental aspects they already surpass 
other energy technologies and they hold the potential of progressing much beyond inorganic based PV 
modules. There are however open questions and limitations of the technology rooted in their relatively poor 
area efficiency and shorter lifetime when compared to traditional PV cells. This can be viewed as drawbacks 
but can be an advantage in the case where a technology is rapidly improving and the replacement of expired 
solar cells can be carried out with limited effort with better efficiency cells.  
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The fast growth of global energy consumption is one of the largest challenges facing mankind today that can 
only be addressed with the introduction of new sustainable and renewable energy technologies. These 
systems should be designed with a completely new approach taking into account that everything comes from 
nature and everything matters. How we extract material, how we convert and use the material, how we 
dispose of it all influence the overall environmental impact. Designing new technology with a view all the 
way to the stage of disassembly, looking for light-weighting and for eco-materials, can lead to reduce the net 
environmental impacts and make the so called circular economy for the energy field come true. In this way 
we anticipate the impacts before they occur in the early stages of development of a new technology such as 
the polymer solar cells. 

Environmental life cycle assessment (LCA) is a scientific approach behind modern environmental policies 
and business decision support related to sustainable production and consumption. It should be carried out in 
four phases, according to ISO norms 14040 and 14044, which are normally interdependent and iterative: goal 
and scope definition, life cycle inventory analysis, life cycle impact assessment and interpretation. After 
defining the goal of the study and the system scope (step 1), and based on a collected Life cycle inventory 
(step 2), where all emissions released into the environment and resources extracted from nature along the 
whole life cycle of a product are listed in a table or life cycle inventory (LCI). The subsequent Life Cycle 
Impact Assessment (LCIA) (step 3) classifies the inventoried substances according to their contribution to 
environmental impact categories (e.g., Global Warming Potential) and characterizes them by their 
significance in relation to the reference unit (e.g., kg CO2-equivalent). The Interpretation of the results (step 
4) is carried out depending on the main questions that should be answered within the study; the results can be 
used for strategic planning of product improvements (as support for environmental management systems), 
for benchmarking or for the compliance to environmental directives.  

Until now previous reports where the LCA tool has been applied to OPV have been published with different 
purposes.1–10 The most ambitious and true to the art of using LCA and LCIA is to achieve improvements 
where real manufacturing data are used as input and the output from the analyses being used to improve and 
progress processing routes for a given technology. This iterative approach enables steep improvements in 
technology and its potential impacts. The least ambitious approach has been to review already published 
LCA studies with minor re-interpretations or use of published data as a basis for an out-of-context analysis.11 
While this can be justified for preliminary estimations when real data is lacking it is highly inaccurate. Most 
of the uncertainties in LCAs are greatly reduced when goals and boundaries are consistent, when an explicit 
methodology is used,14 and when real data (and not cherry picked laboratory data) are used. The majority of 
reports reviewed here are limited to examining greenhouse gas emissions and/or energy.3,5–7 Preliminary 
investigations of the environmental profile of OPV at the manufacturing stage have identified the electrical 
power consumption of the production processes to cause the main contributions to primary energy demand 
and climate change potential.3,12,8 Another aspect is that little attention has been paid into LCA studies (also 
for other PV technologies) to other components of a PV installation or the so called balance of system 
(BOS).13 Therefore, inventory data for BOS components are scarce. Due to the narrow scope of the majority 
of the previous reports we will with this report progress to a “whole life cycle perspective”, addressing a 
large range of impact categories during all life stages of a solar park including the disposal stage - which is 
frequently forgotten or omitted. Therefore, to realize this task we have built a life cycle inventory (LCI) of 
the complete solar park using real data. To raise ambition further we encompass eco-design with 
environmental impact reduction (optimisation) for the first time in the OPV technology addressing the 
following issues: 
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1. Releasing LCI data for a solar park in Denmark at the current technology level. Actual process data 
were collected and we aim to provide full disclosure of the data and associated life cycle inventories 
pertaining to the modelling of a Danish solar park. 

2. Identifying environmental hotspots, i.e. where the largest environmental impacts are located in the 
system. Recommendations on their reductions are provided. 

3. Addressing the uncertainties concerning the disposal of the system has been achieved by the 
inclusion of different scenarios for the end of life scenarios for a solar park based on organic solar 
modules.  

4. Investigating the influence of location of the solar park between diverse countries such as China and 
Denmark, and also investigating the environmental benefits/impacts of outsourcing or exporting the 
solar park from a Danish perspective. 

2. Methods 

2.1.Overview of the solar park 

The study focuses on a solar park installed at the Technical University of Denmark (DTU) in Roskilde, 
Denmark. It is a ground-mounted system installed in spring 2013 with a capacity of up to 6 kWp of OPV 
modules – with the scaled efficiency at the time15. The process to manufacture the OPV modules takes place 
at the same location as the solar park; it has been previously described and analysed.12,16,17 OPV modules are 
typically composed of 6 layers that can be deposited by coating or printing techniques, generally following a 
drying process in an oven. Two electrodes, three intermediate layers and the active layer are printed on long 
rolls in a continuous process, and all individual cells are connected endlessly in series, thus giving the 
process and the technology the name “infinity”.15 Final packaging of the solar cells is achieved using the 
same roll-to-roll methodologies. Consumptions of materials, electricity and heat for the manufacture of the 
modules have therefore been measured accurately from the real processes on the real printing machinery in 
operation at DTU. This includes the installation, operation and decommissioning of the solar cell foil. 

Any solar cell technology needs a group of additional components in order to be deployed as a solar park: 
this is known as balance of system (BOS). OPV modules do not need a frame but only require to be attached 
when they are rolled out onto a structure, e.g. wooden structure (as considered herein). The modules are 
mounted on a wood structure, and to insulate the wood from the solar cells, it is necessary to place an 
insulator that has fire retardant properties and provides rear ventilation to the plastic substrate. The currently 
used insulator is a PET grid, although a number of other plastics could act as insulators. The power is 
converted from direct current (DC) to alternating current (AC) in the inverter and the necessary connections 
include wiring, fuses and electric monitoring systems. Major components are visible in Fig. 1 and have been 
modelled to represent the already operating solar park. Detailed descriptions can be found in Tables SM5 and 
SM7 in the supporting information (ESI-Methods†). The area related parameters have been adapted based on 
actual average module efficiencies. 
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Fig. 1. Solar park at DTU in Denmark, with OPV modules based in Infinity concept (reprinted with 
permission from Wiley15).  

2.2.Boundaries and scope of the study 

The International Reference Life Cycle Data System (ILCD) Handbook, which provides detailed technical 
guidance on how to conduct LCA studies, was followed to perform the current study.18 The entire life cycle 
of the solar park system is encompassed, i.e. from the supply of the raw materials used in the production, 
along the manufacturing and assembly of the parts and the subsequent operations of the solar park, to its final 
end-of-life. An overview of the system is shown in Fig. 2 – see also detailed view in the supporting 
information (Fig. SM1 in ESI-Methods†). 

 

Fig. 2. Life cycle of the solar park including the analysed system boundaries. Materials and energy 
recoveries from the end-of-life stage are included in the system boundaries. Details on the system boundaries 
are provided in ESI-Methods† and Section 2.3. 

The functional unit (FU), which quantifies the primary function of the solar park and allows for comparative 
assessments, is defined as the supply of on average one kWh of electricity (at high voltage) produced from 
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the OPV solar park to the grid in Denmark (for the scenarios related to installation in Denmark) or in China 
(for the scenarios where the solar park is deployed in China). This supply of electricity requires 0,016 m2 and 
0,010 m2 in Denmark and China, respectively. Default total area module efficiency of 1% and a total system 
performance ratio of 80% for ground-mounted installations are considered (see also Section 2.5 for 
sensitivity scenarios).19 

According to the ILCD Handbook, the current assessment can be identified as a situation A- or B-type 
depending on the extent of the consequences from the deployment of the solar park on the market. Given the 
primary goals of the study, an A-type situation context is more likely (eco-design study). An attributional 
modelling framework is therefore considered with use of system expansion to model the interactions with 
other external systems.18 This allows for crediting the system when materials and energy are recovered, e.g. 
in recycling or incineration processes, and thus substitute their generation from conventional production 
pathways.20 The ecoinvent 3.1 database (consequential)21,22, which was used as backbone for life cycle 
inventory data (see Section 2.3), allows such modelling framework but the crediting is designed to account 
for the processes, which are most likely to respond to a change in demand (marginal processes), and not the 
average market situation, as required by the ILCD Handbook.18,22 These discrepancies are however not 
deemed to influence the results of the study with regard to the goals. 

The analysed scenarios (see Section 2.5) address manufacturing and deployment of the solar park in 
Denmark and/or China. The primary data used for modelling were differentiated between the two countries 
with regard to the solar park performances, e.g. OPV module outputs adapted to different solar irradiation 
profiles for China (Section 2.3.2), and with respect to generic processes, e.g. electricity mixes and generation 
technologies adapted to actual situations in each of the two countries (see also Section 2.3). Details about this 
spatial differentiation of the processes and the associated data used in the modelling are highlighted in 
Section 2.3 and are fully described in the supporting section (ESI-Methods†).  

2.3. Life cycle inventory  

Primary data were collected from the manufacturing site at DTU (see Section 2.3.1). Background data, such 
as energy production processes or waste management processes, were collected from the consequential 
ecoinvent database v. 3.1, 2014 which is one of the most comprehensive databases for life cycle inventories. 
Adaptations of life cycle inventories were however required for several processes to ensure 
representativeness of the modelled scenarios.  

The model was built in LCA software SimaPro v. 8.04.26.23 The building of the system model, including the 
data collection, data treatments and assumptions, are fully documented in the supporting section (ESI-
Methods)† while the key aspects within each life cycle stage are addressed in the subsequent sections. The 
LCI is provided in electronic format, Table S15, ESI-2†. 

2.3.1. Manufacturing stage of the solar park 

Data were obtained from an experimental solar park in Denmark (DTU), with the OPV modules fabricated 
on a pilot-scale, thus leading to highly representative data. Background life cycle inventories from the 
ecoinvent database were combined with the known materials and energy requirements for the manufacture of 
the OPV modules. The ecoinvent 3.1 database, which includes spatial differentiation of the processes (e.g. 
energy mixes, technology efficiency differences, etc.), mirrors market mechanisms allowing for modelling 
supply of materials and energy in a representative way.24 Production volumes for 2008 were used to design 
the market fluxes,24 with the exception of the electricity and heat supply mixes for Denmark, which were 
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built to represent 2013 (latest year of available data).25 Production of the solar cells in Denmark and China is 
therefore modelled with processes representative of these two countries (e.g. energy processes). 
Transportation distances were also adjusted accordingly. In the current study, the BOS additionally includes 
insulating sheets, inverters, mounting structures, wiring and connectors. Large-scale ground-mounted PV 
installations would require additional equipment and facilities, such as grid connections, offices and 
concrete; those were excluded from the assessment because of their expected negligible impact on the 
results. Table 1 summarises the BOS and its overall modelling in the study. 

Table 1. Modelling of the modules and balance of system (BOS) for the OPV solar park.a The data source 
relative to BOS is site specific measurements.b 

BOS 
components Life cycle inventory treatment 

Solar cells Background raw materials production 
from ecoinvent 3.1 database  

Structure Background raw materials production 
from ecoinvent 3.1 database  

Inverter Adjusted to LCI for inverters available 
in ecoinvent 3.1 

Wiring Adjusted to LCI for cabling available 
in ecoinvent 3.1  

Aluminium 
Wagon 

Adjusted to LCI for aluminium frame 
production available in ecoinvent 3.1  

Insulating 
sheet 

Polyethylene terephthalate (default 
scenario) production available in 
ecoinvent 3.1 

a Further details can be found in ESI-Methods.† 
b ‘site-specific’ refers to data measured or estimated from the pilot plant operating at DTU Energy installations.15 

2.3.2. Use stage 

During the operation of the solar park (i.e. use stage), the system generates electricity. According to the goal 
and scope definitions (Section 2.2), the system is therefore passive. No maintenance is considered (in line 
with actual pilot plant operations) and a commonly employed performance ratio of 80% for utility ground-
mounted PV installations has been assumed to account for the losses during operation.19 

The generation of electricity per unit of OPV area over the lifetime of the modules (default value of 1.5 
years) was calculated based on the irradiation levels in both Denmark and China, i.e. 1100 and 1700 
kWh/m2.yr, respectively,26,27 and with the considered module efficiency (i.e. 1% taken as default value). 
Variations in the lifetime and efficiency of the OPV modules in Denmark were included in the sensitivity 
analysis to assess their influences on the overall environmental impacts (Section 2.5). The lifetime of the 
other components were also considered to scale with the required functional unit –see ESI-Methods for 
further details.† 

2.3.3. Disposal stage  

The disposal of the OPV solar park is however difficult to foresee as only few of the historically deployed 
PV installations have reached this stage and no reports about their disposal are to our knowledge publicly 
available. To encompass these uncertainties, different scenarios were outlined and included in the assessment 
for modelling the disposal of the OPV modules in both Denmark (3 scenarios) and China (6 scenarios). 
Table 2 describes these nine scenarios and their respective modelling assumptions (see ESI-Methods† for 

 
6 

 



Espinosa N., Laurent A., Krebs F.C., 2015. Ecodesign of organic photovoltaic modules from Danish and Chinese 
perspectives. Energy and Environmental Science 8, 2537–2550. DOI: 10.1039/C5EE01763G. 

 

full documentation). The OPV modules contain valuable materials that can easily be recovered, in particular 
the silver, which can be regarded as a scarce resource, and the PET from the encapsulation, which has a high 
degree of purity. The remaining parts are primarily composed of mixed plastics, which are considered to be 
burned due to the difficulty of separating them. Electricity and heat can thus be recovered if the incinerator is 
coupled with a combined heat and power (CHP) plant, as is the case in Denmark (also assumed for China). 
This recycling configuration for the OPV modules fits situations, where the responsibility of the disposal 
falls onto the producer or the operator of the solar park; the OPV modules could then be handled as industrial 
or hazardous waste by a specialised company. This recycling scenario (i.e. DK-1) is therefore considered the 
most likely scenario, and is taken as the default scenario in the assessment (see Section 2.5). The results of 
the comparative analysis of scenarios will therefore determine, given the hazardous nature of some materials, 
the environmental impacts when the OPV modules are not recycled (i.e. DK-2, DK-3).  

The recycling procedure for the OPV modules includes 3 major steps: (i) delamination to recover the PET 
encapsulation, (ii) acid treatment to recover silver, (iii) incineration of the remaining parts with energy 
recovery (see full documentation in ESI-Methods†). When entering the market, the recovered materials and 
energy substitute production efforts that would have occurred otherwise, hence their modelling includes the 
saved impacts from the non-utilisation of virgin materials and conventional energy production. 100% of the 
PET encapsulation is assumed to be recuperated from the delamination process. The wet process used to 
recuperate silver is modelled with a recovery yield of 95%.9 Plastics, e.g. PET, and silver are assumed to be 
recovered after separation in Denmark with rates of 88% and 76%, respectively.28 Because of the large PET 
content in the OPV modules, i.e. ca. 85 wt%, the incineration of the remaining parts are modelled as 
incineration of PET, with adaptations of the electricity and heat recovered to match country-specific 
efficiencies.28 

Other components than the OPV modules in the solar park were modelled with the assumption of one single 
disposal route. The inclusion of single disposal routes for these components of the solar park is motivated by 
the negligible or minor contribution of these parts to the overall environmental burden of the system (see 
results in Section 3.1). The most likely disposal routes were selected for each component. Inverters, batteries 
and cabling thus undergo waste management processes as waste electrical and electronic equipment 
(WEEE); these treatments are already embedded in their life cycle inventories in the ecoinvent 3.1 database. 
The aluminium wagon is assumed to be entirely recycled. The insulator and wood structure are also assumed 
to be recycled by default. However this last assumption is tested through one scenario in which both 
materials are considered to be incinerated (see Section 2.5). 

Table 2. Disposal scenarios considered in Denmark and China.a 

Name Description and modelling assumptions REC a 
(%) 

INC a 
(%) 

L/ OD a 
(%) 

DK-1 

OPV modules are assumed to have their valuable materials extracted (PET and 
silver) before the remaining parts are sent to incineration for energy recovery 
(electricity and heat). Situations where the responsibility of the disposal falls 
onto the manufacturer or the operator is thus assumed. The detailed recycling 
procedure is outlined in Section 2.3.3. For incineration, LCI for PET 
incineration was used with updated incinerator efficiencies. 

100 0 0 

DK-2 

OPV modules are assumed to be collected and directly sent to incineration with 
energy recovery (electricity and heat). Because of the large PET content in the 
OPV modules (85 wt%), LCI for incineration of PET was used with 
adjustments of silver emissions and updated incinerator efficiencies. 

0 100 0 
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DK-3 

An average mix representative of municipal solid waste (MSW) is considered 
and assumed to represent a large and diffuse deployment of OPV in Denmark. 
Recycling and incineration are modelled as in DK1 and DK-2, respectively. 
Landfilling of PET is assumed for the landfilling of OPV modules, with 
adjustments for Ag emissions. 

29 69 2 

CN-1 

OPV modules are assumed to be recycled via existing informal recycling sector 
and willingness of the manufacturer or operator to recover valuable materials 
and energy. Same procedure as for DK-1 is assumed with adaptations to 
Chinese conditions, wherever possible (e.g. energy mixes for China). Informal 
sector could not be captured, thus leading to expected health impact 
underestimation.b 

100 0 0 

CN-2 

Incineration of OPV modules is assumed following the general increase of 
incineration in China.29–31 Same incineration technology as in Europe 
considered although this assumption is not valid. Airborne emissions of dioxins 
were adjusted to reported emissions from Chinese incinerators.c 

0 100 0 

CN-3 An average mix representative of municipal solid waste (MSW) is considered 
and assumed to represent a large and diffuse deployment of OPV in China. In 
the absence of publicly available data, a literature review was conducted to 
develop four average mixes that includes uncertainties in the incineration and 
informal recycling rates (combining low and high ranges for each rate). 
Recycling and incineration are modelled as in CN-1 and CN-2, respectively. 
Landfilling of PET is assumed for the landfilling of OPV modules, with two 
different adjustments to distinguish (1) landfill with treatment of leachate and 
(2) landfills with no leachate treatment and open dumps.d 

17 22 21/40a 

CN-4 38 22 21/19a 

CN-5 17 30 17/36a 

CN-6 38 30 17/15 
a More details about the modelling of the scenarios can be found in ESI-Methods†. ‘REC’: recycling, ‘INC’: 
incineration, ‘L’: landfill (with leachate treatment), ‘OD’: open dumps (and landfill without leachate treatment).  

b The informal sector and in general the recycling centres in China should be adapted with respect to emission factors 
and specific exposure situations (e.g. worker exposure). Different health impacts would thus be expected, but present 
knowledge in LCI and LCIA do not allow such differentiated modelling, hence it is modelled as normal situation 
(similar to European conditions, but with significantly lower plant efficiencies for incinerators compared to Denmark). 
Underestimation of impacts is therefore expected. 

c Stoker and fluidised bed technologies are used for incinerators in China whereas grate incinerators are in use in 
Europe. The ecoinvent database only covers the latter technology; hence it was selected as a proxy. Efficiencies, slag 
contents and air pollution control (APC) are thus expected to be different. Only dioxin emissions were adapted using 
reported values from Themelis et al.32 

d In landfills with treatment of leachate, the amount of silver is corrected to match the content of silver of the solar cells, 
and a distinction between short-term and long-term emissions is performed with the allocation of 1% and 99% of 
emissions, respectively.22,23 In landfill with no leachate treatment or open dumps, the amount of silver is corrected to 
match the silver content in the OPV modules and no long-term emissions are assumed (all emissions of heavy metals 
are considered as normal emissions). 

2.4. Life cycle impact assessment 

The assessment was performed using the ILCD life cycle impact assessment (LCIA) methodology v.1.5.18,33 
It allows characterisation of all relevant impact categories, including climate change, stratospheric ozone 
depletion, photochemical ozone formation, acidification, terrestrial eutrophication, freshwater eutrophication, 
marine eutrophication, chemical pollution impacting freshwater ecosystems (termed ‘freshwater ecotoxicity’ 
in the following), chemical pollution impacting human health via carcinogenic effects (termed ‘human 
toxicity, cancer effects’) and non-carcinogenic effects (i.e. ‘human toxicity, non-cancer effects’), respiratory 
inorganics caused by particulate matters (i.e. ‘particulate matters’), ionizing radiation, land use, water 
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resource depletion, resource depletion (metals and fossils). For a sensitivity check, a different LCIA 
methodology was additionally used, i.e. Recipe 2008 midpoint, hierarchist.34 Normalisation was also 
performed wherever relevant. Normalisation allows quantifying the magnitude of each impact relative to a 
common reference situation and enables further comparison across impact categories when including 
weighting of the impacts (either with equal weights if no weighting factors are applied or using specific 
weighting factors per impact category).35 

2.5. Analysed scenarios 

To address the goals of the study, a total of nine parameters were made to vary in the current study –see 
Table 3. This led to the definition of 28 scenarios (see complete list in Table SM20 in ESI-Methods).  

The baseline scenario has been set to represent the OPV solar park in Denmark, with the materials 
composition as currently in place and with the default disposal scenario for Denmark (i.e. recycling of the 
OPV modules; see Section 2.3.3). That baseline scenario serves as basis to provide the LCI for a solar park. 
The parameters behind the other 27 scenarios can be categorised in 4 groups: (1) uncertainty-related 
parameters relating to modelling uncertainties, primarily the disposal scenarios of the OPV modules in 
Denmark and China; (2) eco-design-related parameters that include scenarios varying the type of insulator 
materials and explorative scenarios with inclusion of lifetime improvements and efficiency increases; (3) 
location-based parameters that focus on assessing the performances of the solar park as a function of the 
location of the manufacturing and installation sites in Denmark and China (direct comparisons DK-DK and 
CN-CN, and effects of exporting or outsourcing from a Danish perspective). 

Table 3. Parameters and corresponding model settings included in the assessment (total of 28 scenarios, 
including baseline).a  

 # Scenario Sensitivity 
parameter 

Manufacturing
/Installation 

country 

Disposal 
route 

Insulator Insulator 
disposal 

Wood 
disposal 

PCE / 
lifetime 

1 Baseline DK/DK DK-1 PET RE RE 1% / 
1.5 yrs 

2-3 Disposal of OPV 
modules 
(Denmark) 

DK/DK DK-2/3 PET RE RE 1% / 
1.5 yrs 

4 Disposal of 
insulators and 
wood structure 

DK/DK DK-1 PET IN IN 1% / 
1.5 yrs 

5-12 Type of insulator 
material a 

DK/DK DK-1 PE, PVC, PP, PS, 
PUR, PC, PMMA, 
GLASS FIBER 

RE RE 1% / 
1.5 yrs 

13-16 Lifetime of OPV 
modules 

DK/DK DK-1 PET RE RE 1% / 
1.5 to 5 
years 

17-20 Efficiencies of the 
OPV modules 

DK/DK DK-1 PET RE RE 1% to 5%/ 
1.5 yrs 

21,22 Exporting/outsour
cing of solar park 

DK/CN 
CN/DK 

CN-1 / DK-
1 

PET RE RE 1% / 
1.5 yrs 

23 Location of the 
solar park 

CN/CN CN-1 PET RE RE 1% / 
1.5 yrs 

24-28 Disposal of OPV 
modules (China) 

CN/CN CN-2 –CN-
6 

PET RE RE 1% / 
1.5 yrs 

a RE refers to recycling, IN to incineration, DK is Denmark and CN is the label for China. 
b The selection of the plastics as insulating materials was made using specifications of a surface resistivity greater than 
1012 Ω/sq (ohms per square). Eight alternatives to PET (polyethylene terephthalate, currently used) are thus included, 
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for which life cycle inventories are available in ecoinvent: PE (polyethylene), PVC (polyvinyl chloride), PP 
(polypropylene), PS (polystyrene), PUR (polyurethane), PC (polycarbonate), PMMA (polymethyl methacrylate). 

 

3. Results and discussion 

3.1.  Life cycle inventory of a 6 kW solar park 

The complete details of the life cycle inventory modelling of the solar park are documented in ESI-Methods 
and Tables SM2- SM15 in ESI-1. These include all inputs and outputs from each process along the life cycle 
of the solar park. Transparency was sought as much as possible to allow LCA practitioners to use these data 
in future studies. In addition, an aggregated life cycle inventory, i.e. gathering all resource consumptions and 
pollutant emissions over the entire life cycle of the solar park, was derived for the baseline scenario and is 
presented in ESI-2. The format of this data set, scaled to the supply of 1 kWh of electricity to Danish grid 
(baseline scenario), allows direct import into LCA software SimaPro. In addition to the special features of 
this data set (baseline scenario, see Section 2.5), the practitioners should be aware that the data associated 
with the manufacturing of the solar park originate from a pilot-scale plant. Possible upscaling effects may 
thus occur when considering a full deployment on the market, thus affecting the materials and energy 
requirements as well as the emission intensities for the better. It is assumed that the data presented here is the 
worst case scenario when compared to a further upscaled scenario. 

3.2. Environmental performances of a Danish 6 kW OPV solar park 

3.2.1. Environmental profile 

Table S3 in ESI-1 shows the characterised impact scores for each impact category for the baseline scenario. 
The interpretation of the indicator units is difficult to make as such with the exception of climate change. It 
can thus be observed that the Danish solar park in the baseline scenario embeds 0.69 kg-CO2eq/kWh-
produced. This result falls more in the range of fossil-based technologies (e.g. 0.99 kg-CO2eq/kWh from coal 
and 0.53 kg-CO2eq/kWh from natural gas in Denmark24 than renewable technologies (0.016 kg-CO2eq/kWh 
from off-shore wind in Denmark, 0.11 kg-CO2eq/kWh from a 570kW open ground power plant in 
Germany24). This high score is primarily expected to stem from the pilot scale employed in this study (see 
Section 3.1). What is significant is that the values are comparable to established technologies at a much 
larger scale. 

To compare across impact categories and identify large impacts, normalisation and weighting can be 
performed.35 Assuming an equal weight across impact categories, Table S4 in ESI-1 shows that the 
environmental profile is largely dominated by resource depletion followed by toxicity impacts on human 
health and ecosystems. This finding is insensitive to the inclusion or exclusion of long-term emissions, which 
are controversial in the scientific community and have important consequences on the absolute scores for 
toxicity impacts36 and to the change of the LCIA methodology, which may also alter the conclusions of LCA 
studies37 –see Table S4 in ESI-1. In the latter sensitivity check, the impact indicator scores obtained using 
ReCiPe show that toxic impacts largely dominate, and to a lesser extent, metal depletion and freshwater 
eutrophication. The largely dominating normalised scores for toxic impacts are typical in LCA studies and 
partially stem from an incomplete coverage of the thousands of chemicals, which may potentially be released 
to the environment, in life cycle inventories and LCIA methodologies.38 Therefore, assuming equal 
weighting across impact categories, the overall environmental profile of the solar park suggests that metal 
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depletion is a critical environmental problem along with the toxicity impacts exerted by chemical releases 
and freshwater eutrophication. 

3.2.2. OPV modules as the largest contributions to the total impact 

Hotspots in the life cycle of the solar park (baseline scenario) can be investigated by conducting process and 
substance contribution analyses, i.e. identifying which processes and substances are large contributors to the 
different impact categories. Fig. 3 shows the distribution of impacts by life cycle stages and by components. 
The environmental benefits from the disposal stage can be observed, counterbalancing the impacts from the 
production stage with contributions of 40-75% across impact categories. The avoided materials and energy 
production from the recovery processes are responsible for those benefits.  

From all components of the system, only three present a significant contribution. The aluminium mounting 
wagon, the cabling and the inverter are associated with negligible impacts when considering the whole 
environmental burden of the solar park. In contrast, the OPV modules and, to a lesser extent, the wood 
structure and the insulator, account for all impacts although variations in their distributions exist depending 
on the impact category (see Fig. 3). All three components are thus included in the eco-design exercise 
undertaken in Section 3.3. 
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Fig. 3. Contribution of the elements of the solar park to the selected ILCD impact categories. Wood structure 
gives negative results for ozone due to the selected disposal that avoids the production of virgin wood. 
Further details found in Supplementary Information. 

The OPV module impact contributions range from 25% (for human toxicity, cancer effects) to nearly 100% 
(resource depletion, freshwater eutrophication). For nearly all impact categories, the production of silver is 
responsible for these impacts. Despite the recycling of silver (ca. 72 wt% overall recovery), the required 
quantities of this scarce metal for the electrode manufacture are a critical aspect explaining the high score for 
the resource depletion impact indicator (see Section 3.2.1). The mining of the silver is also responsible for a 
number of other impacts, such as the sulfidic tailing, the sulfidic wastes and acid mine waters from the 
extraction of silver, that cause more than 90% of the freshwater eutrophication of the system life cycle. 
Therefore, other types of electrode materials should be sought or highly efficient recycling schemes for silver 
should be developed. Replacing silver by a non-metal electrode should lead to carbon footprints comparable 
to that of silicon modules mounted on an open-ground plant (e.g. 0.11 kg CO2 eq/kWh24). Research works 
are currently on-going to undertake that recommendation.39 For example, shifting from a silver-based 
electrode to a carbon-based one would induce a 2-fold reduction in the carbon footprint of the entire solar 
park (from 1.1 to 0.51 kg-CO2eq/kWh39). Such large decreases would be visible for all other impact 
categories, with decreasing factors ranging between 8 and 81.39 Other alternative non-metal-based materials 
should therefore also be investigated. In parallel to these initiatives, reductions in the large contributions 
from the OPV modules can be achieved through the increase of their lifetime and efficiencies; potential 
effects on the environmental performances of the system are tested through a number of scenarios (see 
Section 3.3). 

3.2.3. Benefits of recycling the solar park  

Fig. 4 illustrates the environmental performances of the Danish solar park under the different waste 
management scenarios, indexed on the baseline scenario (scaled to 100% for each impact category). It is 
observed that the incineration pathway (despite providing 30% back of the cumulative energy demand 
needed for the manufacturing of the solar park, in the form of electricity and heat) leads to larger impacts 
than the recycling route. The increases in factors range from 46% to 820% depending on the impact category 
and they are explained by the absence of the environmental benefits brought along by recovering PET and 
silver materials, which are not compensated by the additional gain of recovering slightly more energy when 
incinerating the entire OPV modules without a recycling treatment. The average scenario is primarily 
governed by incineration (ca. 70%) that hence also leads to larger impacts than the baseline scenario. 
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Fig. 4.Comparisons of the three disposal scenarios on the environmental performances for the Danish solar 
park (indexed on baseline scenario, DK-1 taken as 100%). See Table S3 in ESI-1 for detailed impact scores. 

The same pattern is observed for China, where the recycling-based scenario (i.e. CN-1) provides the best 
environmental profiles compared to the five other scenarios –see Table S11 in ESI-1. Ratios comprised 
between 1.3 and 3.5 are observed between the recycling-based (CN-1) and incineration-based scenarios (CN-
2) depending on the impact category. Average scenarios CN-4 and CN-6, which include the highest 
recycling rates (see Table 2 in Section 2.3.3), thus rank just behind the baseline for China (DK-1), with 
factors of 1.1-2.4 across impact categories. 

Therefore, assuming equally-distributed uncertainties between the compared disposal scenarios, these 
findings support the recommendation to promote the setting of an efficient recycling system for solar parks. 
Several mechanisms can facilitate such a setting, including putting the responsibility on the manufacturer, 
retailer or the operator. In the lifetime of a solar park, OPV modules have to be replaced every few years (ca. 
1.5 years with current technology level). Because of their special manufacturing properties (roll-to-roll), they 
can easily be dismantled9 and replaced on-site by the manufacturer, retailer or operator. If there is a lack of 
economic motivation for manufacturers to voluntarily take responsibility for the recycling of the solar 
modules, appropriated incentives should be regulated.40 Liability on one of those actors, who can also have 
financial incentives for implementing such a take-back system, should thus be easily implementable.  
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3.3. Ecodesign of the Danish OPV solar park 

Taking the baseline scenario for Denmark described in Section 3.1 and 3.2 (with disposal scenario DK-1), 
four parameters are made to vary for ecodesign purposes: the type of insulator materials, the disposal of 
insulators and wood structure, the lifetime and efficiencies of the OPV modules –see Section 2.5. Each is 
described in the subsequent sections. 

3.3.1. Looking for low-impact insulator material 

As described in Section 3.2.2, the production of the insulator has a relatively major contribution to some 
impacts. In particular, Fig. 5 illustrates that, considering the manufacture of the solar park, insulators account 
for ca. 35% of the water use impacts and for ca. 20% of the impacts on climate change and freshwater 
ecotoxicity (and human toxicity – cancer effects to a lesser extent). For eco-design purposes, these impact 
categories should therefore be targeted to allow for meaningful reduction of the environmental impact of the 
solar park over its life cycle. 
Table 4 shows the impact scores for the eight alternatives scaled to the results for the baseline scenario (use 
of PET). A color-coding is used to indicate the ranking of the alternatives for each individual impact 
category (red: least environmentally-preferable; green: most environmentally-preferable). A first observation 
of the scores reveals that most alternatives range close to each other. The uncertainties inherent to the impact 
assessment methods and the analysed systems therefore do not allow for claiming definite superiority of one 
alternative over another. It should be stressed that all materials are considered to be recycled with the same 
recovery grade. A differentiation in the recycling of the different plastics or the consideration of other types 
of waste management could therefore significantly alter the ranking presented in Table 4, e.g. incineration of 
PVC is known to lead to emissions of dioxins, thus impacting ecosystems and human health.41,42 
Regardless of such possible alterations, the ranking suggests that PVC may perform environmentally better 
than the other alternatives in nearly all impact categories but water use (and freshwater ecotoxicity). For 
freshwater ecotoxicity, all alternatives rank similar to PET. A trade-off thus emerges as contrasting trends are 
observed for the PVC system between climate change (performing best), freshwater ecotoxicity (performing 
equally) and water use (performing worst). If climate change was prioritised over water use, PVC could then 
be selected as a preferable alternative. If a trade-off cannot be solved by the weighting of these three impact 
categories, a compromise could be reached by selecting polystyrene or polyurethane as they are consistently 
associated with lower impacts than PET. The investigation of other insulator materials such as biodegradable 
plastics could also bring further benefits, e.g. reductions of the carbon footprint are expected to be ca. 30% 
when substituting PET by a commercial starch derivative.43 

Table 4. Normalized impact scores for the Danish solar park life cycle with different insulator materials 
(indexed on baseline scenario with PET). 

 PET PVC PE PC GRF PMMA PP PS PUR 

Climate change 
1 0.72 0.96 1.05 1.07 0.93 0.97 0.91 0.92 

Ozone depletion 
1 0.96 0.87 0.87 1.56 0.87 0.86 0.86 0.85 

Human toxicity, cancer 
effects 1 0.92 0.98 1.02 1.06 0.99 0.99 0.98 0.98 

Human toxicity, non-cancer 
effects 1 0.62 0.96 1.02 1.05 1.03 0.98 0.95 0.96 

Respiratory inorganics 1 0.89 0.98 1.01 1.03 0.97 0.99 0.98 0.98 
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Ionizing radiation  1 0.98 0.99 1.00 1.01 1.00 0.99 0.99 0.99 
Photochemical ozone 
formation 1 0.88 0.97 1.01 1.04 0.94 0.98 0.96 0.98 

Acidification 1 0.93 0.99 0.99 1.01 0.98 0.99 0.98 0.98 

Terrestrial eutrophication 1 0.47 0.98 1.01 1.02 0.97 0.99 0.98 0.98 

Freshwater eutrophication 1 0.97 1.00 1.00 1.01 0.99 1.00 0.99 0.99 

Marine eutrophication 1 0.64 0.99 1.03 1.01 1.00 0.99 0.99 0.99 

Freshwater ecotoxicity 1 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 

Land use 1 0.99 0.99 0.99 1.01 0.99 0.99 0.99 0.99 

Water resource depletion 1 1.67 0.89 0.94 1.01 0.90 0.91 0.91 0.91 

Resource depletion 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
a Impact targeted by eco-design incentives are highlighted in bold. Color-coding is used to indicate the ranking of the 
alternatives to PET (polyethylene terephthalate, currently used) are thus included, for which life cycle inventories are 
available in ecoinvent: PVC (polyvinyl chloride), PE (polyethylene), PC (polycarbonate), GRF (glass reinforced fibre), 
PMMA (polymethyl methacrylate), PP (polypropylene), PS (polystyrene), PUR (polyurethane). 

 

3.3.2. What disposal routefor the wood structure and plastic insulator? 

To further investigate the role of the wood structure and the insulator in the environmental burden (see 
Section 3.2.2), an alternative disposal scenario – incineration – to the assumed default recycling was 
considered (See Table 2 in Section 2.5). Fig.5 shows the comparisons of the environmental profiles between 
these two disposal systems. The incineration scenario is associated with larger impacts in nearly all 
categories but respiratory impacts caused by inorganics (respiratory inorganics) and ionising radiation, both 
not being the focus of the ecodesigning of the wood structure and insulator. As a consequence, the recycling 
of these wood and plastics materials is strongly advocated. These findings are also in line with previous 
studies showing benefits of recycling over incineration for those waste fractions, e.g. Laurent et al. and 
Michaud et al.44,45  
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Fig. 5. Normalised impact scores for the Danish solar park life cycle with recycling and incineration 
scenarios for wood structure and insulator (indexed on recycling scenario). 

3.3.3. Increasing lifetime and efficiency can bringsignificant impact reductions  

Fig.6 shows the impact score results obtained for the Danish solar park when gradually increasing the 
lifetime of the OPV modules from 1.5 years to 5 years. An exponential trend is observed with each impact 
score tending towards an asymptote. The levels of these asymptotes are dictated by the respective 
contribution of the OPV modules to the environmental burden of the Danish solar park, and are thus specific 
to each impact category. Because the lifetime of the OPV modules only has consequences on the 
environmental performances of the OPV modules, its increase can only affect the share of total impacts 
caused by the OPV modules (see distributions in Fig. 3 in Section 3.2.2). This explains why reductions are 
relatively minor for respiratory inorganics, where OPV modules are only responsible for 18% of the total 
impact. In contrast, large reductions are observed for resource depletion because OPV modules account for 
97% of the total impact of the solar park. Table S2 in ESI-1 provides the exact shares of impacts caused by 
the OPV modules, i.e. the values of the asymptotes for the trends observed in Fig. 6. With a lifetime of 5 
years, which is the maximum lifetime undertaken in the study, the environmental impacts associated with the 
OPV modules are thus estimated to be approximately halved for all impact categories, with decreasing ratios 
of ca. 3 times. 
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Fig. 6. Normalised impact results for the Danish solar park life cycle with different lifetime of OPV modules 

(indexed on impacts for lifetime of 1.5 years). 

When increasing the efficiencies of the modules (PCE), the required area of solar cells is decreased to fulfil 
the same functional unit as defined in Section 2.2. The inputs and outputs of the whole system are thus 
downscaled in an inversely proportional manner to the module efficiencies. As a consequence, the 
environmental burden of the solar park reacts linearly to a gain in efficiency. An increase of the efficiency 
from 1% to 5% thus leads to a decrease in the overall impact of the solar park by a factor of 5. On-going 
works currently focus on increasing the efficiencies of OPV modules, which may therefore dramatically 
reduce the environmental burden and bring it to the level of other renewables. A reduction of a factor of 5 
when the efficiency is 5%, can bring the climate change impacts down to 0.14 kg-CO2eq/kWh. This is 
comparable to other photovoltaic technologies on the market. 

3.4. Effect of location: Are there benefits from outsourcing and exporting? 

The effect of location was investigated by taking China as an alternative country for the manufacturing and 
installation of the solar park. This choice was motivated by the different solar irradiation and by the different 
technology and energy landscapes, as opposed to Denmark. Four situations can therefore be compared 
whether manufacturing and installation of the solar parks take place in Denmark or China (see Table 5). The 
manufacturing sites dictate the draw on specific background processes such as transportation and electricity 
supply, which are adapted to either China or Denmark in the study. The installation sites determine the area 
of solar cells required to meet the functional unit (dependent on the irradiation; see Section 2.2 and 2.3). The 
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benefits of integrating the geographical factor into a more global approach to PV policy and market 
regulations, offer the possibility to find the optimum combination to avoid impacts and in particular CO2 
emissions.46 Additionally the type of waste management systems to be considered for the disposal of the 
solar park components must be included. For simplicity, the recycling-based scenarios are considered for 
both China (CN-1) and Denmark (DK-1) in the following discussion. As indicated in Section 3.2.3, these 
disposal scenarios lead to the least environmental impacts for the solar park. 

Table 5. Four comparative scenarios for Denmark and China depending on location of manufacturing and 
installation sites. 

 Installation 

Manufacturing  Denmark China 

Denmark DK-DK 
(baseline scenario 
for Denmark; see 
Section 3.1) 

DK-CN 
(exporting from 
Denmark) 

China CN-DK 
(outsourcing of 
production from 
Denmark) 

CN-CN 
(baseline scenario 
for China) 

 

Impact scores obtained for the four scenarios are shown in Fig. 7. The comparisons between the DK-DK and 
CN-CN systems show that the solar park brings more environmental benefits per unit of electricity output in 
China than in Denmark (with domestic production and installation). With the exception of acidification, 
which is driven by the acid process from the recycling stage, all impacts are lower for China than for 
Denmark. For example, the climate change impacts are lowered from 0.68 kg-CO2-eq/kWh in Denmark to 
0.48 kg-CO2eq/kWh in China. These differences are explained by the irradiation level, which is ca. 55% 
higher in China than in Denmark, thus inducing a lower requirement of solar park (i.e. lower solar cell area) 
for the same electricity output. This influence is also visible when the solar park is manufactured in Denmark 
and installed in China as this configuration brings similar results as when the solar park is manufactured in 
Denmark, thus indicating that the location of the manufacturing site is less important than that of the 
installation site. However, Fig. 7 also shows that the manufacturing of the solar park in Denmark is 
environmentally-preferable compared to a manufacturing in China (comparisons between CN-DK and DK-
DK, and DK-CN and CN-CN). As indicated in past studies on different technology fields,47 outsourcing the 
production of a Danish solar park in China is therefore not suitable from a strictly environmental point of 
view. Exporting the technology can however bring potentially large environmental benefits as the significant 
gains due to the irradiation could make the solar park more competitive with other renewable sources, e.g. 
wind technology. These findings also extend beyond the limited scope of China and Denmark as they can be 
generalised to other types of settings. To optimise the environmental performances of the solar park in its life 
cycle, the manufacture of the modules should be performed in a country with stringent emission standards 
and low-impact energy mixes (e.g. large share of renewables), while the deployment should take place in 
countries with higher irradiation. An effective system for recycling the OPV modules should also be 
established to minimise the impacts stemming from the end-of-life of the solar park (see Section 3.2.3).  
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Fig. 7. Normalised impact scores for a solar park life cycle with locations of manufacturing and installation 
sites over Denmark (DK) and China (CN). Scores are normalised against those for Baseline (DK-DK) 
(scaled to 100%). Baseline (DK-DK): solar park manufactured and installed in Denmark; CN-DK: solar park 
manufactured in China and installed in Denmark; DK-CN: solar park manufactured in Denmark and installed 
in China; CN-CN: solar park manufactured and installed in China. See Tables S10- S14 for further details.  

4. Conclusions and recommendations 

A complete aggregated life cycle inventory that gathers all resource consumptions and pollutant emissions 
over the entire life cycle of a 6 kW Danish solar park has been developed and made available. It is the first 
time that the entire life cycle of a solar park, veering all aspects from the manufacturing, installation, 
operation and decommission, are considered in a huge effort to improve the eco-design of the 
technology.LCA practitioners in the PV community are now able to use these data in future studies. Based 
on the extensive analysis of this system, we also propose a number of recommendations to (i) stakeholders in 
the PV field, including decision- and policy-makers, (ii) PV researchers or technology developers, and (iii) 
LCA practitioners in their assessment of environmental impacts from OPV technology.. Some of these 
recommendations have a global reach. In particulars findings from the CN-DK study suggest that 
configurations associated withthe most environmentally-attractive settings for manufacturing and deploying 
OPV-based solar parks can be determined globally. This can be used as a tool to map the locations of 
manufacturing, deployment and disposal that make OPV technologies the most competitive with regard to 
other electricity generation technologies. Table 6 summarises those and more recommendations derived from 
the study.  
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Table 6. Overall recommendations for moving towards low-impacts photovoltaic systems. 

Target audience Recommendation 

PV policy- and 
stakeholders 

• Regulate the management of the end-of-life of the OPV modules,  
establishing/ensuring take-back systems to increase material recoveries,thus 
reducing environmental impacts. Liability on the manufacturers or on the 
operators should be implemented without providing a competitive advantage to 
other forms of electricity production. 

• Aim at anchoring the manufacturing of the solar park in countries with low 
environmental impacts (e.g. with stringent emission standards, high technology 
efficiencies, etc.) and at deploying it in countries with high irradiation to 
maximise the environmental benefits of the PV technology. 

PV researchers, 
industry and 
technology 
developers 

• Explore other electrode materials to avoid using scarce materials like silver, 
which induces large environmental impacts and is responsible for most of the 
environmental burden associated with the OPV solar park. 

• Investigate other insulator/substrate plastic materials, which could bring further 
benefits – e.g. biodegradable plastics to replace PET. 

• Include the entire life cycle perspective when designing PV technology; in 
particular considering potential disposal routes of the materials in the location of 
the solar park.  

• Provide LCA practitioners with real data from PV installations to improve the 
quality of results and to reduce uncertainties of the studies. 

• Build open-access databases of high quality, based on real data. This action could 
be shared with PEV stakeholders. On-going efforts are currently taken in OPV 
field under EU COST Action StableNextSol.48 

LCA practitioners      
(in PV field) 

• Apply the LCI provided in this study - with consideration of the uncertainties 
associated with it, e.g. partial reliance on lab-scale/pilot-scale data. 

• Perform foresight assessments to investigate the long-term environmental 
benefits that OPV technologies could potentially bring (explore different settings 
and locations). 

• Build upon the recent methodological developments in the field of LCI and LCIA 
to allow more accurate LCA studies of PV technologies, e.g. inclusion of spatial 
differentiation in the impact assessment phase (LCIA), increased model 
robustness and substance coverage at both LCI and LCIA levels, inclusion of 
occupational exposure modules in the assessment of damages to human health, 
inclusion of rare earth metals in resource depletion impact category (e.g. relevant 
when comparing OPV and conventional PV technologies), etc.   
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