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a b s t r a c t 

In this paper we analyse a predator–prey model where the prey population shows group defense and 

the prey individuals are affected by a transmissible disease. The resulting model is of the Rosenzweig–

MacArthur predator–prey type with an SI (susceptible-infected) disease in the prey. Modeling prey group 

defense leads to a square root dependence in the Holling type II functional for the predator–prey inter- 

action term. The system dynamics is investigated using simulations, classical existence and asymptotic 

stability analysis and numerical bifurcation analysis. A number of bifurcations, such as transcritical and 

Hopf bifurcations which occur commonly in predator–prey systems will be found. Because of the square 

root interaction term there is non-uniqueness of the solution and a singularity where the prey population 

goes extinct in a finite time. This results in a collapse initiated by extinction of the healthy or susceptible 

prey and thereafter the other population(s). When also a positive attractor exists this leads to bistability 

similar to what is found in predator–prey models with a strong Allee effect. For the two-dimensional 

disease-free (i.e. the purely demographic) system the region in the parameter space where bistability oc- 

curs is marked by a global bifurcation. At this bifurcation a heteroclinic connection exists between saddle 

prey-only equilibrium points where a stable limit cycle together with its basin of attraction, are destruc- 

ted. In a companion paper (Gimmelli et al., 2015) the same model was formulated and analysed in which 

the disease was not in the prey but in the predator. There we also observed this phenomenon. Here we 

extend its analysis using a phase portrait analysis. For the three-dimensional ecoepidemic predator–prey 

system where the prey is affected by the disease, also tangent bifurcations including a cusp bifurcation 

and a torus bifurcation of limit cycles occur. This leads to new complex dynamics. Continuation by vary- 

ing one parameter of the emerging quasi-periodic dynamics from a torus bifurcation can lead to its de- 

struction by a collision with a saddle-cycle. Under other conditions the quasi-periodic dynamics changes 

gradually in a trajectory that lands on a boundary point where the prey go extinct in finite time after 

which a total collapse of the three-dimensional system occurs. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Recently the role of social behavior in the context of inter- 

acting populations has been introduced in predator–prey models. 

In the classical Rosenzweig–MacArthur model [19,20] both prey 

and predators have an homogeneous spatial distribution. The prey 

grows logistically in the absence of the predator and the natural 

predator mortality rate. The predator–prey interaction is described 

by a Holling type II functional response (the predation rate per 

predator which is a monotonic increasing prey-dependent hyper- 
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(E. Venturino). 

bolic relationship) where a handling time of the prey introduces 

feeding saturation. In [7] the predators are assumed to have a 

heterogeneous spatial distribution (for instance when they form a 

colony or school). Then the functional response depends on both 

predator and prey densities in a manner that reflects feeding in- 

terference between predators. This leads to a ratio-dependent or 

Beddington–DeAngelis type of functional response (see also [6] ). In 

[10,21] on the other hand, the prey spatial distribution is hetero- 

geneous giving group defense and the Holling type IV or Monod–

Haldane functional response is used. This expression is also only 

prey-dependent but the function is now not monotonically increas- 

ing. The predation rate per predator decreases for larger prey den- 

sities. Bate and Hilker [4] note that Holling type IV functional 

responses usually result in an upper threshold of prey density, be- 

yond which the predator cannot survive. Further, in recent work 

http://dx.doi.org/10.1016/j.mbs.2016.02.003 
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[11] the predators functional response is derived starting from first 

principles. 

Here we study a different formulation with heterogeneous prey 

spatial distribution on the ground. The prey gather together in 

herds where only prey individuals that live close to the herds 

boundary on the ground are subject to hunting by predators. In 

[1,5,23,25] this feature has been taken into account in ecoepidemi- 

ological systems. These, besides ecological situations dealing with 

demographically interacting populations, consider also a transmis- 

sible disease in the system, see [16,24] for an introductory account. 

In a parallel paper [8] an ecoepidemiological model in which 

the epidemics spread among the predators was proposed. Here 

we investigate a model where the prey are affected by a disease 

that propagates by contact. With respect to earlier formulations, 

these models exhibit the feature of feeding satiation, modeled via 

a Holling type II response function such as in the Rosenzweig–

MacArthur model [20] . However, here the prey-dependent hyper- 

bolic relationship is expressed as a function of the “square root” of 

the prey size instead of the prey size itself. It differs from the herd 

behavior model presented in [1] , because it takes into account the 

feeding satiation phenomenon also explored in [8] . In the recent 

paper [4] a similar problem was studied but the predator group- 

defending prey functional response was the Holling type IV instead 

of the “square root” functional response. 

The paper is organized as follows. In Section 2 we present 

the ecoepidemic model and the outline the methodology of the 

study. The two-dimensional models, the epidemic one, with in- 

fected prey population, and the purely demographic, i.e. disease- 

free, predator–prey model, are analysed respectively in Sections 3 

and 4 . Here we extend the analysis of [8] by a phase portrait anal- 

ysis to study the total collapse of the system caused by a hetero- 

clinic connection between the two prey-only saddle equilibria. 

In Section 5 we move to the analysis of the full model where 

the prey is affected by the infectious disease, assuming that dis- 

eased individuals are left behind by the herd. We start with a clas- 

sical existence and stability analysis of all equilibria in Sections 5.1 

and 5.2 . In Section 5.3 , the numerical bifurcation analysis is carried 

out, completed for the special instance of codimension-two bifur- 

cations. In addition to the bifurcations of the classical predator–

prey models, i.e. transcritical, tangent (saddle node) and Hopf bi- 

furcations, here also the torus (Neimark–Sacker) bifurcation occurs. 

A new phenomenon is represented by the abrupt destruction of 

the quasi-periodic dynamics on a torus similar to what was found 

in [3,6] . 

In Section 6 the results of all particular cases will be compared 

with the results of the ecoepidemic model with the infected preda- 

tor population, instead of the prey, analysed in [8] and a final dis- 

cussion concludes the paper. Assuming that the carrying capacity 

is sufficiently high to support coexistence of prey and predator, due 

to the weakening of the prey population by infection, the preda- 

tor feeding on the prey population can persist for higher predators 

natural mortality rates. 

2. Modeling and analysis approach 

2.1. The model 

We consider the model presented in [23] , which we briefly il- 

lustrate again here for the convenience of the reader, to better 

emphasize the changes in that main model. The basic ecological 

model is an adapted Rosenzweig–MacArthur model first discussed 

in [19] where both prey and predators have an homogeneous spa- 

tial distribution. Mathematically, the consumption rate of the prey 

by the predator is expressed via a hyperbolic relationship. 

In our case the spatial distribution of the prey population, form- 

ing a herd and occupying a certain portion of the ground, is het- 

erogeneous. The prey individuals most subject to hunting are those 

close to the herd boundaries. The area occupied by the herd is pro- 

portional to the prey population and therefore to the size of the 

herd itself. The prey density on the herd perimeter is therefore 

proportional to the square root of the size of the herd and thus 

in the hyperbolic relationship of the standard Holling type II term, 

the prey size is here replaced by a square root of the prey size. The 

prey population grows logistically in the absence of the predator. 

In the absence of the prey, the predators die exponentially fast. 

In order to model the spread of the disease, the prey population 

is divided into two classes consisting of healthy and diseased indi- 

viduals. The latter are assumed to be too weak to reproduce and to 

compete for resources. Therefore the basic two-population demo- 

graphic predator–prey model is extended into a three-dimensional 

predator—susceptible prey—infected prey model. As in the classi- 

cal two compartmental SI-model the law of mass action is used to 

formulate the infection rate of the susceptible by infected prey, as- 

suming possible contacts among all the individuals of the herd. The 

infected prey are assumed to be too weak both to reproduce and 

to compete for resources, i.e. they do not appear in the logistic re- 

production function for the healthy prey. The infected prey are fur- 

ther assumed to drift away from the herd when become infected; 

this for instance occurs for elephants. But in the process, they are 

still able to infect other individuals in the herd. Once alone, they 

can easily be hunted by the predators. In view of the ease of these 

captures, we assume that the predators never get tired of hunting 

sick isolated prey individuals, this implying that in this case the 

hunting term is bilinear, i.e. a mass action term, as in the classical 

Lotka–Volterra model. On the other hand, as stated above, we as- 

sume that they can become satiated by hunting the healthy prey 

in the herd, observing that this hunt requires more effort than that 

one on the infected prey. Thus, mathematically, this is better mod- 

eled by a Holling type II response function. The predators’ differ- 

ent attitudes in the prey capture therefore determine the different 

choices for the functional responses among healthy and infected 

prey. 

The model where the state variables and parameters are over- 

lined in order to be able to introduce re-scaled versions later, reads 

d R 

dτ
= r R 

(
1 −

R 

K 

)
− λ R I −

a 
√ 

R F 

1 + T a 
√ 

R 
, (1a) 

d I 

dτ
= I 

(
λ R − b F − µ

)
, (1b) 

d F 

dτ
= F 

( 

e a 
√ 

R 

1 + T a 
√ 

R 
+ e b I − m 

) 

. (1c) 

The system consists of the equation for healthy prey R (τ ) , re- 

producing logistically and being subject to the negative effects of 

hunting as well as to the infection process. The infected prey I (τ ) 

do not reproduce so that they are absent in the logistic growth 

term in the first equation, nor do they contribute to the popula- 

tion pressure on the susceptible prey, because we assume them 

to be too weak for that. The spread of the infection is modeled 

via a bilinear term with rate parameter λ. The disease is unre- 
coverable, i.e. once entered into this class, an infected individual 

only exits it by dying at rate µ, incorporating natural plus disease- 

related effects or possibly by predation modeled with the Holling 

type I functional response with rate parameter b . Note that here 

we disregard the possible healthy prey population pressure on the 

infected prey, i.e. we do not introduce a term of the type c R I into 

the second equation, assuming that the mortality is already rep- 

resented by the linear term. Note also that the infected prey are 

assumed to be left behind by the herd, so that they are hunted on 

a one-to-one basis by the predators. Hence, they are also an “easy”
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prey, not too difficult to capture because they are weakened by 

the disease, we assume that predators never get fed up with them 

and this explains the Holling type I functional response model for- 

mulation. Besides the infected prey, the predators gain from hunt- 

ing healthy prey. This is expressed by a saturating Holling type II 

model containing the square root term for herd behavior. We thus 

distinguish hunting rates on healthy prey, indicated by a and on 

infected prey, expressed by the parameter b . The conversion fac- 

tor of both healthy and infected prey into new predators is the 

same e . 

As in the companion paper [8] we avoid the possible singular- 

ity appearing in the Jacobian matrix by letting P = 

√ 

R . The non- 

dimensionalized model is obtained using the following substitu- 

tions 

P (t) = αP (τ ) , F (t) = βF (τ ) , I(t) = γ I (τ ) , t = δτ . 

The system becomes 

dP 

dt 
= 

1 

2 δ

[
rP 

(
1 −

P 2 

α2 K 

)
−

λ

γ
P I −

α2 

β

a 

α + T a P 
F 

]
, 

dI 

dt 
= 

I 

δ

(
λ

α2 
P 2 −

b 

β
F − µ

)
, 

dF 

dt 
= 

F 

δ

(
e a 

α + T a P 
P + 

e b 

γ
I − m 

)
. 

Let us define the following auxiliary parameters 

α = T a , δ = 
1 

2 
r , β = 

λ

r 
, γ = λ . 

where we now make the following choices: 

r = 2 r, K = K, λ = λ, µ = 2 rµ, a = a, T = T , 

e = e, m = m, b = λb, 

The final form of the system equations reads 

dP 

dt 
= P 

(
1 −

P 2 

a 2 KT 2 

)
−

1 

λ

a 2 T 

1 + P 
F −

1 

2 r 
P I, (2a) 

dI 

dt 
= 2 I 

(
λ

2 a 2 rT 2 
P 2 − bF − µ

)
, (2b) 

dF 

dt 
= 

F 

r 

(
1 

T 

e 

1 + P 
P + ebI − m 

)
. (2c) 

Our aim is to study the dynamics of the system depending on 

the prey carrying capacity K and the predator mortality rate m . 

2.2. Methodology 

The main mathematical analysis tool used is bifurcation theory 

whereby the dependency of the long-term dynamics on parameter 

variations is studied. We do this by calculation of the equilibria, 

limit cycles, quasi periodic solutions and chaos. To facilitate the 

numerical bifurcation analysis we have to choose parameter val- 

ues. Unless stated otherwise, all the default parameter values used 

in our analysis are given in Table 1 . We used the computer pro- 

gram auto [9] to perform the numerical bifurcation analysis of the 

equilibria and limit cycles. 

During a process called continuation the dynamics is followed 

and changes in the long-term dynamics, for instance from stable 

to unstable equilibrium, are spotted. These points are called bifur- 

cation points. Table 3 gives a list of the bifurcation points. Also the 

different line types of the bifurcations used in the diagrams are 

given. Further information about the basics of bifurcation analysis 

can be found in e.g. Guckenheimer and Holmes [12] , Wiggins [26] , 

Kuznetsov [15] , and examples of ecological applications of bifurca- 

tion analysis in for instance [2] and [14,22] for the discussion of 

similar bifurcations as we will find here. 

Table 1 

List of symbols for variables and parameters and default parameter values 

used in the text. As the model does not concern a concrete ecosystem, the 

chosen parameter values are hypothetical. For those that have the same 

meaning as the model with the disease in the predators, we generally use 

the same values as in [8] . Note that the variable P is the square root of the 

prey population size. 

Symbol Value Description 

P Variable Healthy or susceptible prey 

I Variable Diseased or infected prey 

F Variable Predator 

a 0.5 Hunting rate of predator on healthy prey 

e 0.5 Conversion factor of prey into predators 

K Variable Carrying capacity 

m Variable Natural mortality rate of predators 

r 0.7 Intrinsic growth rate of healthy prey 

T 0.8 Average time to capture a healthy prey 

t Variable Time 

λ 0.7 Contact or infection rate for the prey disease 

b 0.7 Contact rate of predator and diseased prey 

µ 0.65 Natural+disease-related mortality of infected-prey 

Table 2 

List of the equilibrium points. In the figures, stable points are indicated 

by fill dots · and unstable points as empty dots ◦. In one-parameter 

diagrams the stable equilibria and the maximum and minimum peak 

values of the limit cycles are solid curves and unstable versions are 

shown as dashed curves. 

Attractor Description 

E 0 Zero-solution equilibrium 

E 1 Disease-free prey-only equilibrium 

E 12 Predator-free predator–prey equilibrium 

E 13 Disease-free predator–prey equilibrium 

L 13 Disease-free predator–prey limit cycle 

E 123 Endemic predator–prey equilibrium 

L 123 Endemic predator–prey limit cycle 

T 123 Endemic predator–prey quasi-periodic torus dynamics 

Table 3 

List of the bifurcations points and curves. Also the different line types in the dia- 

grams are given. 

Bifurcation Description 

TC 1 Transcritical bifurcation (dashed curve) 

predator invasion into healthy prey P equilibrium E 1 
TC 2 Transcritical bifurcation (dashed curve) 

infected prey invasion into prey equilibrium E 1 
TC 3 Transcritical bifurcation (dashed curve) 

predator invasion into both prey PI equilibrium E 12 
TC 4 Transcritical bifurcation (dashed curve) 

infected prey invasion into predator–prey PF equilibrium E 13 
T Tangent or saddle-node bifurcation (solid curve) 

collision of two equilibria or limit cycles 

H 2 Hopf bifurcation for disease-free predator–prey system (dotted 

curve) 

origin of limit cycle 

H ±3 Hopf bifurcation for disease-free predator–prey system (dotted 

curve) 

origin of stable H − or unstable H + limit cycle 

TR Torus bifurcation (long-dashed curve) 

destruction of limit cycle 

B Bautin bifurcation point 

change Hopf bifurcation for disease-free predator–prey system 

origin of tangent bifurcation of limit cycle 

N Codimension-two bifurcation point 

Intersection of codimension-one curves 

G � = Global bifurcation for disease-free predator–prey system (solid 

curve) 

Heteroclinic connection where destruction of limit cycle occurs 

Collapse of system and convergence to equilibrium E 0 
S Destruction of quasi-periodic solution on torus 

convergence to stable interior equilibrium E 123 
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The results are presented in bifurcation diagrams where bifur- 

cation points or curves in the parameter space mark qualitative 

changes in the long-term dynamics (equilibria, limit cycles and 

quasi-periodic solutions). In bifurcation diagrams where the state 

variables are plotted as functions of time or of a parameter, solid 

(dashed) curves denote stable (unstable) equilibrium values. For 

limit cycle solutions they denote local maximum and minimum 

values. We used the computer program Maple [17] to do a sym- 

bolic analysis of equilibria. The classical ode45 ode -solver of Mat- 

lab [18] was used to perform simulations by integration in time for 

specific parameter values and initial conditions. 

Before we analyse the three-population system (2) , called the 

PIF-model, we start with the analysis of the two two-dimensional 

subsystems: the SI-model for the prey population, called the PI- 

model where F = 0 in (2) , and then the demographic predator–

prey model, called the PF-model where I = 0 in (2) , with only 

healthy prey individuals. 

3. The epidemic prey population model 

Let us begin by studying the non-dimensionalized prey (healthy 

and diseased) only system PI where no predator is present. Strictly 

speaking the conversion from R to P = 
√ 
R is not necessary since 

the term with the square root in the predation term in (1a) and 

(2a) is missing. However, to be able to easily interpret the results 

obtained with those for the full PIF-model we adhere to model (2) 

with F = 0 . 

The dimensionless model where P represents healthy or sus- 

ceptible prey and I is the diseased or infected prey population size 

reads 

dP 

dt 
= P 

(
1 −

P 2 

a 2 KT 2 

)
−

1 

2 r 
P I, (3a) 

dI 

dt 
= 2 I 

(
λ

2 a 2 rT 2 
P 2 − µ

)
. (3b) 

In the next two sections we will study feasibility and stability 

of the equilibria of this PI -system (3) . 

3.1. Equilibria: PI -system 

In the PI phase space, the equilibria ˜ E k = ( ̃  P k , ̃
 I k ) of the sys- 

tem (3) are found as follows. We have the origin ˜ E 0 = (0 , 0) , the 

disease-free ˜ E 1 = (aT 
√ 
K , 0) , and possibly the endemic prey popu- 

lation equilibrium ˜ E 12 = ( ̃  P 2 , ̃  I 2 ) , with 

˜ P 2 = aT 
√ 

2 µr , ˜ I 2 = 
2 r (λK − 2 µr ) 

λK 
, (4) 

with feasibility condition 

λ ≥
2 µr 

K 
. (5) 

Observe that the carrying capacity K is involved in such a way that 

when the system is enriched (by increasing its carrying capacity K ) 

the prey population becomes more vulnerable to the disease. 

In Fig. 1 the vector field for K = 20 in combination with m = 

0 . 6 is shown. The equilibrium E 12 is the intersection of the two 

null-clines, the vertical curve is the I -null-cline where the time- 

derivative of I vanishes, i.e. the curve P = aT 
√ 
2 µr . 

3.2. Stability: PI -system 

The PI system (3) has the following Jacobian matrix 

˜ J = 

⎛ 

⎜ ⎝ 

1 −
3 P 2 

KT 2 a 2 
−

I 

2 r 
−

P 

2 r 
2 λIP 

ra 2 T 2 
λP 2 

ra 2 T 2 
− 2 µ

⎞ 

⎟ ⎠ . (6) 

Fig. 1. Phase plane analysis of the PI-system (3) for the two state variables P and 

I , where K = 20 together with m = 0 . 6 . There is a stable equilibrium E 12 and the 

zero equilibrium E 0 is unstable. The interior equilibrium E 12 is the intersection of 

the two null-clines (dashed lines). 

At the origin the eigenvalues of the Jacobian matrix are ˜ ω 01 = 1 , 
˜ ω 02 = −2 µ, showing that ˜ E 0 is always an unstable equilibrium. 

Their respective eigenvectors are (1, 0) T (unstable manifold) and 

(0, 1) T (stable manifold). This will be an important fact when we 

study the full three-dimensional model below. 

At equilibrium ˜ E 1 where P = aT 
√ 
K > 0 , I = 0 we find the fol- 

lowing Jacobian matrix ̃  J 1 = ̃  J ( ̃  E 1 ) 

˜ J 1 = 

⎛ 

⎜ ⎝ 

−2 −
aT 

√ 
K 

2 r 

0 
λK 

r 
− 2 µ

⎞ 

⎟ ⎠ . (7) 

The eigenvalues of the Jacobian matrix at ˜ E 1 = (aT 
√ 
K , 0) read 

˜ ω 11 = −2 and ̃  ω 12 = (λK − 2 r µ) /r . Thus equilibrium ̃  E 1 is stable for 

K < 
2 rµ

λ
def = ˜ K † (8) 

and unstable conversely. The parameter value K † = 1 . 3 for the 

default parameter values, marks a so called transcritical bifurca- 

tion parameter TC 12 in general identified by the criterion det J 1 = 

J ( ̃  E 1 ) = 0 . Invasion of the disease is possible when the boundary, 

disease-free equilibrium ̃  E 1 becomes unstable. To which kind of in- 

terior long-term dynamics (whether be it an equilibrium, a limit 

cycle or chaotic attractor) this invasion leads to is, however, not 

predicted. On the other hand we know that there is an interior 

equilibrium given in (4) when the feasibility condition (5) is ful- 

filled. 

The eigenvalues of the Jacobian matrix evaluated at the en- 

demic equilibrium ˜ E 12 are explicitly evaluated as 

˜ ω 21 = 2 
−rµ + 

√ 

r 2 µ2 − (λK − 2 rµ) µλK 

λK 
, 

˜ ω 22 = 2 
−rµ −

√ 

r 2 µ2 − (λK − 2 rµ) µλK 

λK 
. 

The expression in the square root term is always smaller than 

r 2 µ2 , in view of the feasibility condition (5) . Hence, when the dis- 

criminant is positive both eigenvalues are real and negative and 

the equilibrium is a stable node. On the other hand when the dis- 

criminant is negative the real part of the conjugate eigenvalues is 

negative and the equilibrium is a stable focus. Hence, stability of 

the equilibrium ˜ E 12 given by (4) of the endemic prey system is en- 

sured when condition (5) is satisfied. 
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There is no Hopf bifurcation since the real part of the conjugate 

eigenvalues differs from zero. In general the Hopf bifurcation of a 

two-dimensional system occurs when tr J 12 = 0 , that is the trace 

of the Jacobian matrix is zero. Here we have J 12 = ̃  ω 21 + ̃  ω 22 = 

−4 rµ/ (λK) � = 0 . 

4. The demographic predator–prey model 

We begin by recalling and extending some interesting results 

already obtained in [5,8] for the disease-free or purely demo- 

graphic model PF . Here we give the extended model formulation, 

assess its the equilibria and their stability. But furthermore and 

most importantly for the following analysis of this paper, we per- 

form the full bifurcation analysis and state its results. 

In non-dimensionalized form, the model derived in [8] , reads as 

follows, where P denotes prey population size and F again denotes 

the predator size: 

dP 

dt 
= P 

(
1 −

P 2 

a 2 T 2 K 

)
−

1 

λ

a 2 T 

1 + P 
F , (9a) 

dF 

dt 
= 

F 

r 

(
1 

T 

e 

1 + P 
P − m 

)
. (9b) 

This model is obtained by taking I = 0 in (2) . 

In the next sections we perform an existence and stability anal- 

ysis of the equilibria of this PF -system (9) completed by a bifurca- 

tion analysis where we also study the existence and stability anal- 

ysis of limit cycles. 

4.1. Equilibria: PF -system 

In the PF phase space the equilibria ̂ E k = ( ̂  P k , ̂
 F k ) of the sys- 

tem (9) are: the origin ̂ E 0 = (0 , 0) , the predator-free point ̂ E 1 = 

(aT 
√ 
K , 0) , and possibly coexistence ̂ E 13 = ( ̂  P 3 , ̂  F 3 ) , with 

̂ P 3 = 
mT 

e − mT 
, ̂ F 3 = mλe 

a 2 K(e − mT ) 2 − m 2 

a 4 K(e − mT ) 4 
. (10) 

It is feasible for 0 ≤ ̂ P 3 ≤ aT 
√ 
K , i.e. explicitly for 

e ≥ mT , m ≤
ae 

√ 
K 

1 + aT 
√ 
K 

def = ̂ m 
† . (11) 

4.2. Stability: PF -system 

The PF system (9) has the following Jacobian matrix 

̂ J = 

⎛ 

⎜ ⎝ 

1 −
3 P 2 

KT 2 a 2 
+ 

a 2 T F 

λ(1 + P 2 ) 
−

a 2 T 

λ(1 + P ) 

eF 

rT (1 + P ) 
−

eF P 

rT (1 + P ) 2 
eP 

rT (1 + P ) 
−

m 

r 

⎞ 

⎟ ⎠ . (12) 

The eigenvalues of the Jacobian matrix of (9) evaluated at the ori- 

gin are ̂ ω 01 = 1 , ̂ ω 02 = −m/r; their respective eigenvectors are (1, 

0) T and (1 , λ(r + m )(ra 2 T ) −1 ) T . Thus ̂ E 0 is an unstable saddle. 

At equilibrium ̂ E 1 the eigenvalues of ̂  J 1 read 

̂ ω 11 = −2 , ̂ ω 12 = −
1 

r 

(
ea 

√ 
K 

1 + aT 
√ 
K 

− m 

)
. 

Thus equilibrium ̂ E 1 is stable for ̂ m † > m and unstable conversely, 

(see (11) ). The parameter value m † marks a so called transcrit- 

ical bifurcation parameter TC 1 . Invasion of the prey is possible 

when the boundary equilibrium ̂ E 1 becomes unstable. To which 

kind of interior long-term dynamics (equilibrium, limit cycle or 

chaotic attractor) this invasion leads to is not predictable from this 

information. 

There is an interior equilibrium ̂  E 13 , see (10) , when the feasibil- 

ity condition (11) is fulfilled. 

The matrix ̂  J of the PF -system given in (12) is now evaluated for 

P = ̂  P 3 and F = ̂  F 3 given in (10) . The eigenvalues are 

ω 21 , 22 = 
1 

2 
( tr ( ̂  J ) ±

√ 

tr ( ̂  J ) 
2 

− 4 det ( ̂  J ) ) . 

with 

tr ( ̂  J ) = r 

(
1 −

3 ̂  P 2 3 
a 2 K 

)
+ 

a 2 K 

T 

1 

(1 + ̂  P 3 ) 2 
̂ F 3 , (13) 

det ( ̂  J ) = 
2 e 

T 2 
a 2 K 

(1 + ̂  P 3 ) 3 
̂ F 3 . (14) 

The interior equilibrium ̂ E 13 is stable when tr ( ̂  J ) < 0 . 

The region in the parameter space ( K , m ) where the interior 

equilibrium ̂ E 13 is stable is bounded by the codimension-one tran- 

scritical TC 1 and Hopf H 2 bifurcation curves. The codimension-one 

transcritical bifurcation curve TC 1 specified by det ̂
 J 13 = 0 is de- 

scribed by 

K T C 1 = 

(
m 

a (e − mT ) 

)2 

. (15) 

It has a horizontal asymptote for m = e/T = 0 . 625 for the default 

parameter values given in Table 1 . The Hopf bifurcation curve for 

this two-dimensional system is given by the trace tr J 13 = 0 

K H 2 = 
m 2 (mT + 3 e ) 

a 2 (m 3 T 3 − em 2 T 2 − me 2 T + e 3 ) 
. (16) 

In the next subsection these bifurcation curves are calculated 

using the program auto [9] for the specific parameter set given in 

Table 1 . 

4.3. Bifurcation analysis: PF -system 

In order to study equilibrium E 13 and the limit cycle L 13 orig- 

inating at the Hopf bifurcation, we use a numerical bifurcation 

analysis where K and m are taken as the variable parameters while 

all other ones are fixed at the default values given in Table 1 . 

Fig. 2. One-parameter bifurcation diagram for K = 20 and free parameter m , for the 

demographic PF system (9) for the healthy prey population, P and the predator pop- 

ulation, F . The solid curve between the transcritical bifurcation point TC 1 and the 

Hopf bifurcation point H 2 denotes stable equilibrium E 13 values. Below H 2 the equi- 

librium E 13 is unstable and shown as a dashed curve. Between H 2 and the global 

bifurcation point G � = the maximum and minimum peak values of the stable limit 

cycle L 13 are shown as solid curves. Table 2 gives a list of the asymptotic dynamics 

and Table 3 gives a list of the bifurcations. 
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Fig. 3. Phase plane analysis of the demographic system (9) for the two state vari- 

ables P ≥ 0 and F predator population, where K = 10 . (a) Where m = 0 . 3 and start- 

ing from initial point labeled by a ‘ ♦’ with trajectory (solid curve) converging to the 

stable equilibrium E 13 that is the intersection of the two null-clines (dashed lines). 

(b) Where m = 0 . 278745 with convergence to the stable limit cycle L 13 (solid curve). 

The straight curve (long-dashed curve) is the linear tangent manifold T s 0 which is 

tangent to and is a local approximation of stable manifold W s 0 (dotted curve). 

The one-parameter bifurcation diagram is shown in Fig. 2 

where m is the bifurcation parameter and K = 20 . With large mor- 

tality rates (say m = 0 . 7 ) only the prey population persists. De- 

creasing the parameter m the predator population invades at the 

transcritical bifurcation TC 1 leading to the existence of the inte- 

rior solution of the predator–prey PF system (9) . Decreasing the 

mortality m further the predator population size increases and at 

the Hopf bifurcation, H 2 , a limit cycle L 13 occurs. Lowering m the 

amplitude of these limit cycles grows fast. It is broken by a hete- 

roclinic connection between two saddle equilibrium points where 

F = 0 at the global bifurcation point G � = at m = 0 . 335475 , (see also 

[8,22] ). Related to this phenomenon is the fact that equilibrium E 0 
is reached in a finite time as it will be shown below. 

The pictures in Fig. 3 show the vector field for K = 10 in com- 

bination with m = 0 . 3 and 0 . 278745 respectively. The trajectories 

shown terminate asymptotically in the stable equilibrium E 13 and 

stable limit cycle L 13 , respectively. From the origin three curves 

originate. The dotted line is a numerical approximation of the 

stable manifold W s 0 passing through E 0 calculated by time back- 

backward simulations. The long-dashed curve is the linear tangent 

manifold T s 0 passing through E 0 which is a local approximation of 

Fig. 4. Solution of the demographic system (9) for the two state variables, the prey 

P ≥ 0 (solid curve), and the predator population F (long-dashed curve), as function 

of time t , where K = 1 and m = 0 . 05 . In the corresponding phase plane plot of Fig. 5 

this trajectory is shown as the solid line starting from the point labeled by a ‘ ♦’. The 

unstable interior equilibrium E 13 is the intersection of the two null-clines (dashed 

lines). 

the tangent to the stable manifold W s 0 corresponding to the nega- 

tive eigenvalue −m/r with eigenvector (1 , (r + m ) λ(a 2 T r) −1 ) T . 

The vector fields in Fig. 3 reveal that for points starting above 

the curve W s 0 leads to crossing the vertical axis where P = 0 . In 

order to explain this fact, we revisit the dynamics analysis. The Ja- 

cobian matrix evaluated at the origin E 0 yields the eigenvalues 1 

and −m/r and the eigenvectors (1, 0) T and (1 , (r + m ) λ(a 2 T r) −1 ) T . 

This means that for the dynamics restricted to the line P = 0 the 

single eigenvalue is negative −m/r and that equilibrium E 0 is sta- 

ble once P ( t ) vanishes in finite time. There can be bistability when 

there is an interior limit set, for instance the stable equilibrium E 13 
or the stable limit cycle L 13 . In order to substantiate this statement 

we simulated backward in time the system starting from points 

where P (0) = 0 and F (0) > 0 but close to zero. These calculated 

trajectories are the dotted lines in Fig. 3 . They form approximately 

the stable manifolds W s 0 passing through E 0 which act as separatrix 

between E 0 and E 13 or L 13 . In each figure the linear tangent mani- 

fold T s 0 is the straight long-dashed curve passing through E 0 which 

is tangent to and is a local approximation of stable manifold W s 0 
corresponding to the negative eigenvalue −m/r with eigenvector 

(1 , (r + m ) λ(a 2 T r) −1 ) T . 

In Fig. 4 the population solutions for the parameter combina- 

tions K = 1 and m = 0 . 05 are shown where the zero equilibrium 

is globally attracting, that is there is no stable equilibrium E 13 nor 

stable limit cycle L 13 . These results show that the prey population 

P goes extinct in finite time. The time of extinction depends on the 

initial conditions. Thereafter the predator population F goes extinct 

asymptotically, despite the fact that the origin equilibrium E 0 was 

unstable. This is a result of the non-uniqueness of the solution due 

to the square root singularity of the ode that describes the dynam- 

ics of the prey population P . 

The vector field close to the origin is shown in Fig. 5 . The 

dashed curves are the null-clines, the vertical curve is the F -null- 

cline where the time-derivative of F vanishes, i.e. the curve P = 

mT (e − mT ) −1 . This curve goes through the unstable internal equi- 

librium E 13 where it intersects the P -null-cline where the time- 

derivative of P vanishes. The P -null-cline intersects the horizontal 

curve at the origin ̂ E 0 and at ̂ E 1 where P = aT 
√ 
K = 0 . 4 and F = 0 . 

Note that the arrows cross the vertical axis, the line P = 0 , with 

rate d P/d t = −(a 2 T /λ) F and it is negative for F > 0. The solid line 
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Fig. 5. Phase plane analysis of the demographic system (9) for the two state vari- 

ables P ≥ 0 and F predator population, where K = 1 and m = 0 . 05 . The solid line 

is the trajectory for the same initial values, labeled by a ‘ ♦’, as in Fig. 4 . The solid 

and dotted lines are the solutions backward in time from the two initial points la- 

beled by a ‘ �’ on the P = 0 vertical axis. The unstable interior equilibrium E 13 is 

the intersection of the two null-clines (dashed lines). 

is the trajectory for the same initial values, labeled by a ‘ ♦’, as in 

Fig. 4 . These plots show that for all initial values the solution con- 

verges to the origin, whereby first the prey goes extinct in finite 

time (terminating on the vertical axis) and then the predator dis- 

appears asymptotically. 

In order to substantiate this statement we simulated the system 

backward in time starting from points where P (0) = 0 and F (0) 

> 0. Two of these trajectories are shown in Fig. 5 starting from 

points labeled by the ‘ �’ symbol. Both terminate at the interior 

equilibrium point E 13 . The curve with F (0) = 0 . 2925 is special in 

the sense that starting below this point where P (0) = 0 again, the 

trajectory goes directly toward the equilibrium without intersect- 

ing the P -null-cline above the equilibrium. On the other hand start- 

ing above this point the intersection occurs, as for the upper curve 

with F (0) = 0 . 9358 where the time-backward curve intersects the 

‘ ♦’ point before it lands on the interior equilibrium point E 13 . There 

is also an initial condition where the trajectory lands on equilib- 

rium E 1 (not shown). Starting above this point leads to unbounded 

solutions for t → −∞ . 

For m = 0 . 278745 the stable manifold W s 0 is the separatrix be- 

tween two attractors namely the interior limit cycle L 13 and the 

equilibrium E 0 . The separatrix is the common boundary of the 

basins of attraction of the two attractors E 0 and L 13 . The stable 

manifold is also invariant and therefore no trajectory can cross 

this manifold. For m = 0 . 05 , however, equilibrium E 0 is globally at- 

tracting. Therefore, there is a switching point when m is continued 

from m = 0 . 278745 to 0 . 05 where the separatrix disappears. This 

happens at the global bifurcation where the limit cycle is broken 

into two non-smooth connected parts: from E 0 to E 1 and from E 1 
to E 0 . The part on the boundary is the straight line between E 0 
and E 1 where F = 0 and the interior part where F > 0 is the hete- 

roclinic connection where the trajectory starting from E 1 lands ex- 

actly in the origin E 0 . In that situation the stable manifold W s 0 is 

precisely also the null-cline connecting E 1 with E 0 where the sta- 

ble manifold terminates. At that critical parameter value the basin 

of attraction of the limit cycle finishes and the separatrix between 

the attractor E 0 and the interior limit cycle L 13 disappears. 

In Fig. 6 the two-parameter diagram is shown for the predator–

prey system PF , where both m and K are varied simultaneously. 

Fig. 6. Two-parameter diagram for the parameters carrying capacity, K , and the 

natural mortality, m , of demographic PF system (9) . All parameter values are given 

in Table 1 . Table 3 gives a list of the bifurcations and see also Fig. 2 where the 

asymptotic states for P and F are shown varying m where K = 20 . 

The transcritical bifurcation TC 1 separates regions where we have 

E 1 ⇒ E 13 , the Hopf bifurcation H 2 where E 13 ⇒ L 13 , and the global 

bifurcation G � = where L 13 ⇒ E 0 . In Figs. 3 and 5 the phase plane 

plot are given for three points in this two-parameter diagram. In 

Fig. 3 a the parameter combination K = 10 , m = 0 . 3 is a point in 

Fig. 6 between the curves TC 1 and H 2 where equilibrium E 13 is sta- 

ble. In Fig. 3 b the parameter combination K = 10 , m = 0 . 278745 is 

a point between the curves H 2 and G � = where limit cycle L 13 is sta- 

ble. In Fig. 4 where K = 1 , m = 0 . 05 is a point in Fig. 6 that lies 

below the curve G � = where E 0 is globally stable. 

In summary: for low mortality rates the system collapses al- 

ways completely. For intermediate mortality rates there is bistabil- 

ity between the equilibrium E 0 and equilibrium E 13 , limit cycle L 13 , 

and for higher mortality rates equilibrium E 1 . This is indicated in 

the phase plane plots of Figs. 3 and 5 . The boundaries of the basins 

of attractions (separatrix points) form the switching points in the 

phase space ( P , F > 0) to which attractor the system will converge: 

interior attractor or a total collapse. Note that for F = 0 there is no 

positive P where such a switch occurs like in models with an Allee 

effect. 

In the next section we use these results for comparison with 

the results of the model where the prey is also suffering from the 

disease. 

5. The predator–prey model with abandoned diseased prey 

We study the main three-dimensional system formulated in (2) 

which is recalled here for the convenience of the reader. 

dP 

dt 
= P 

(
1 −

P 2 

a 2 KT 2 

)
−

1 

λ

a 2 T 

1 + P 
F −

1 

2 r 
P I, (17a) 

dI 

dt 
= 2 I 

(
λ

2 a 2 rT 2 
P 2 − bF − µ

)
, (17b) 

dF 

dt 
= 

F 

r 

(
1 

T 

e 

1 + P 
P + ebI − m 

)
. (17c) 

We recall that when F = 0 we have system PI (3) and when 

I = 0 system PF (9) . 

In the next subsections we discuss the equilibria and their sta- 

bility. Table 4 summarizes the equilibria and Table 5 their stability 

for the subsystems and the full system. 
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Table 4 

Equilibria for the subsystems and the full system. 

Cases Equilibria System 

(0, 0, 0) E 0 = (0 , 0 , 0) 

(+ , 0 , 0) E 1 = (aT 
√ 
K , 0 , 0) P 

E 12 = 

(
˜ P 2 = aT 

√ 
2 µr , ̃  I 2 = 2 r (λK−2 µr ) 

λK 

)

(+ , + , 0) Eq. (4) PI 

feasible for: λ > 2 rµK 

E 13 = 

(
̂ P 3 = mT 

e −mT , ̂
 F 3 = mλe a 

2 K(e −mT ) 2 −m 2 
a 4 ̃K(e −mT ) 4 

)

(+ , 0 , +) Eq. (10) PF 

feasible for: e ≥ mT and m ≤ ae 
√ 
K 

1+ aT 
√ 
K 

E 123 = 

(
P 4 , I 4 = mT (1+ P 4 ) −eP 4 

ebT (1+ P 4 ) 
, F 4 = 

λP 2 4 −2 rµa 2 T 2 
2 rba 2 T 2 

)

(+ , + , +) Eq. (22) PIF 

P 4 solution of 

1 
a 2 KT 2 

(
P 4 4 + P 3 4 

)
+ 

(
m 

2 reb − 1 
)(
P 2 4 + P 4 

)
− a 2 Tµ

λb = 0 

5.1. Equilibria: PIF -system 

The equilibria E k = (P k , I k , F k ) are found as follows. We have: 

the origin E 0 = (0 , 0 , 0) , E 1 = (aT 
√ 
K , 0 , 0) the healthy-prey-only 

equilibrium, the disease-free predator–prey case equilibrium E 13 = 

(P 2 , 0 , F 2 ) , the endemic predator-free equilibrium E 12 = (P 3 , I 3 , 0) 

and possibly the endemic predator–prey case E 123 = (P 4 , I 4 , F 4 ) . The 

endemic predator-free prey and the disease-free equilibrium of the 

two-dimensional subsystems were already discussed in the previ- 

ous section. The introduction of the extra state variable to obtain 

the three-dimensional system does not change the previous equi- 

librium results: only, the extra state variable is zero. 

For the predators-free endemic prey equilibrium E 12 we have, 

see (4) 

P 2 = aT 
√ 

2 µr , I 2 = 
2 r (λK − 2 µr ) 

λK 
, F 2 = 0 , (18) 

with feasibility condition (see (5) ) 

λ ≥
2 µr 

K 
. (19) 

For the disease-free predator–prey system we have equilibrium E 13 , 

see (10) 

P 3 = 
mT 

e − mT 
, I 3 = 0 , F 3 = mλe 

a 2 K(e − mT ) 2 − m 2 

a 4 K(e − mT ) 4 
, (20) 

with feasibility condition (see (11) ) 

e ≥ mT , m ≤
ae 

√ 
K 

1 + aT 
√ 
K 

= m 
† . (21) 

For coexistence, solving the second and third equilibrium equa- 

tion of the system (17) , we have 

F 4 = 
λP 2 4 − 2 rµa 2 T 2 

2 rba 2 T 2 
, I 4 = 

mT (1 + P 4 ) − eP 4 
ebT (1 + P 4 ) 

, (22) 

and for determining P 4 we have the fourth degree polynomial 

equation 

1 

a 2 KT 2 
(P 4 4 + P 3 4 ) + 

(
m 

2 reb 
− 1 

)
(P 2 4 + P 4 ) −

a 2 T µ

λb 
= 0 . 

Substitution of this expression into (22) gives the expression for I 4 
and F 4 just in terms of the parameters. 

Descartes’ rule of signs tells us the number of roots with posi- 

tive and negative real parts. For m > 2 reb , m = 2 reb and m < 2 reb 

Table 5 

Stability, tr ( ̂ J ) and det ̂  J are given in (30) and the equilibria for the PI system P 2 , I 2 in (18) and for the PF system P 3 , F 3 
in (20) . 

Equilibria Eigenvalues Stability conditions 

˜ E 0 

{˜ ω 01 = 1 

˜ ω 02 = −2 µ
Always unstable 

˜ E 1 

{˜ ω 11 = −2 

˜ ω 12 = (λK − 2 rµ) /r 
Stable K < 2 rµ

λ

˜ E 12 

⎧ 
⎨ 

⎩ 

˜ ω 21 = 2 
−r µ+ 

√ 
r 2 µ2 −(λK−2 r µ) µλK 

λK 

˜ ω 22 = 2 
−r µ−

√ 
r 2 µ2 −(λK−2 r µ) µλK 

λK 

Stable K > 2 rµ
λ

̂ E 0 

{̂ ω 01 = 1 

̂ ω 02 = −m/r 
Unstable saddle 

̂ E 1 

{ ̂ ω 11 = −2 

̂ ω 12 = − 1 
r 

(
ea 

√ 
K 

1+ aT 
√ 
K − m 

) Stable m < ae 
√ 
K 

1+ aT 
√ 
K 

̂ E 13 Bifurcation analysis: PF -system Section 4.3 

E 0 

⎧ 
⎪ ⎨ 

⎪ ⎩ 

ω 01 = 1 

ω 02 = −2 µ

ω 03 = −m/r 

Unstable saddle 

E 1 

⎧ 
⎪ ⎨ 

⎪ ⎩ 

ω 11 = −2 

ω 12 = λK/r − 2 µ

ω 13 = eaK −m 
√ 
K −aTK m 

r( 
√ 
K + aTK) 

Stable 

{ 
m > ae 

√ 
K 

1+ aT 
√ 
K 

λ < 2 rµK 

E 12 

{ 
ω 21 = eP 2 

rT (1+ P 2 ) 
+ ebI 2 r − m 

r 

ω 22 , 23 = 2 
−r µ±

√ 
r 2 µ2 −(λK−2 r µ) µλK 

λK 

Stable 
{
m > eP 2 

T (1+ P 2 ) 
+ ebI 2 

E 13 

⎧ 
⎨ 

⎩ 

ω 31 = 
λP 2 3 
ra 2 T 2 − 2 bF 3 − 2 µ

ω 32 , 33 = 1 2 ( tr ( ̂
 J ) ±

√ 

tr ( ̂ J ) 
2 

− 4 det ( ̂ J ) ) 

Stable 

{ 
λ

2 ra 2 T 2 P 
2 
3 < bF 3 + µ

a 2 K 
T 

F 3 
(1+ P 3 ) 2 

+ r < 
3 rP 2 3 
a 2 K 

E 123 Bifurcation analysis: PIF -system Section 5.3 
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there is only one sign change + + + + −, + + − and + + − − − re- 

spectively: hence, there is just one positive solution and therefore 

it must be real and it gives the value of P 4 . 

With Maple [17] (or other computer programs for symbolic 

computations) it is possible to derive symbolic expressions for the 

solutions of the equilibria. However, these expressions are very 

long and therefore are omitted here. 

5.2. Stability: PIF -system 

In contrast to the equilibria values of E 0 , E 12 and E 13 their sta- 

bility for the three-dimensional full PIF -system has to be deter- 

mined now anew since the results can be different from those of 

the two-dimensional PI and PF -systems derived above. 

System PIF (17) has the following Jacobian matrix 

J = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 −
3 P 2 

a 2 T 2 K 
+ 

a 2 T F 

λ(1 + P) 2 
−

I 

2 r 
−

P 

2 r 
−

a 2 T 

λ(1 + P) 

2 λIP 

ra 2 T 2 
λP 2 

ra 2 T 2 
− 2 bF − 2 µ −2 bI 

eF 

rT (1 + P) 
−

eF P 

rT (1 + P) 2 
beF 

r 

eP 

rT (1 + P) 
+ 

ebI 

r 
−

m 

r 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

(23) 

The origin, equilibrium E 0 of the PIF -system (17) , is again unsta- 

ble as it was for the subsystems PI and PF . The eigenvalues of the 

Jacobian matrix (23) evaluated at the origin E 0 

J 0 = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

1 0 −
a 2 T 

λ

0 −2 µ 0 

0 0 −
m 

r 

⎞ 

⎟ ⎟ ⎟ ⎠ 
, (24) 

are ω 01 = 1 , ω 02 = −2 µ and ω 03 = −m/r, showing that E 0 is al- 

ways an unstable equilibrium. Their respective eigenvectors v 0i , 

i = 1 , 2 , 3 are 

v 01 = 

( 
1 
0 
0 

) 

, v 02 = 

( 
0 
1 
0 

) 

, v 03 = 

⎛ 

⎜ ⎝ 

1 
0 

λ(m + r) 

ra 2 T 

⎞ 

⎟ ⎠ . (25) 

Observe that when starting close to the plane P = 0 in R 3 + , the 

trajectory converges finally to this equilibrium E 0 . The situation is 

now more complex that in the demographic predator–prey system 

discussed in Section 4 . The stable manifold of E 0 between E 0 and 

the interior attractors E 123 , L 123 , T 123 is now two dimensional in- 

stead of one dimensional. In the sequel we will not calculate this 

separatrix explicitly. 

At equilibrium E 1 we find the following eigenvalues of the Jaco- 

bian matrix ω 11 = −2 , ω 12 = λK/r − 2 µ, and ω 13 = (eaK − m 
√ 
K −

aT Km )[ r( 
√ 
K + aT K)] −1 . Thus it is stable for 

m > 
ae 

√ 
K 

1 + aT 
√ 
K 

= m 
† , λ < 

2 rµ

K 
. (26) 

At equilibrium E 12 where F = 0 the Jacobian matrix reads 

J 12 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 −
3 P 2 2 

KT 2 a 2 
−

I 2 
2 r 

−
P 2 
2 r 

−
a 2 T 

λ(1 + P 2 ) 

2 λI 2 P 2 
ra 2 T 2 

λP 2 2 
ra 2 T 2 

− 2 µ −2 bI 2 

0 0 
eP 2 

rT (1 + P 2 ) 
+ 

ebI 2 
r 

−
m 

r 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (27) 

and the eigenvalues are explicitly evaluated as 

ω 21 = 
eP 2 

rT (1 + P 2 ) 
+ 

ebI 2 
r 

−
m 

r 
, 

ω 22 , 23 = 2 
−rµ ±

√ 

r 2 µ2 − (λK − 2 rµ) µλK 

λK 
. 

Observe that in view of feasibility (5) both eigenvalues ω 22 and 

ω 23 have negative real parts. Stability is thus ensured only by 

m > 
erP 2 

rT (1 + P 2 ) 
+ ebI 2 

= 
eraT 

√ 

2 µr 

rT (1 + aT 
√ 

2 µr ) 
+ ebr 

2 r(λK − 2 µr) 

λK 
, (28) 

where P 2 and I 2 are given by (18) . 
At equilibrium E 13 where I 3 = 0 the Jacobian matrix reads 

J 13 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 −
3 P 2 3 

a 2 T 2 K 
+ 

a 2 T F 3 
λ(1 + P 3 ) 2 

−
P 3 
2 r 

−
a 2 T 

λ(1 + P 3 ) 

0 
λ̂ P 2 3 
ra 2 T 2 

− 2 bF 3 − 2 µ 0 

eF 3 
rT (1 + P 3 ) 

−
eF 3 P 3 

rT (1 + P 3 ) 2 
beF 3 
r 

e ̂  P 3 
rT (1 + P 3 ) 

−
m 

r 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

(29) 

One eigenvalue factors out, namely 

ω 31 = 
λP 2 3 
ra 2 T 2 

− 2 bF 3 − 2 µ . 

The remaining 2 × 2 minor ̂  J is the matrix of the PF -system given 

in (12) evaluated now for P = P 3 and F = F 3 . The eigenvalues are 

ω 32 , 33 = 
1 

2 
( tr ( ̂  J ) ±

√ 

tr ( ̂  J ) 
2 

− 4 det ( ̂  J ) ) . 

The Routh–Hurwitz sufficient condition for asymptotic stability be- 

comes 

tr ( ̂  J ) = r 

(
1 −

3 P 2 3 
a 2 K 

)
+ 

a 2 K 

T 

1 

(1 + P 3 ) 2 
F 3 < 0 , 

det ( ̂  J ) = 
2 e 

T 2 
a 2 K 

(1 + P 3 ) 3 
F 3 > 0 . (30) 

The second condition obviously holds, so that stability of E 13 is 

guaranteed if 

λ

2 ra 2 T 2 
P 2 3 < bF 3 + µ , 

a 2 K 

T 

F 3 
(1 + P 3 ) 2 

+ r < 
3 rP 2 3 
a 2 K 

. (31) 

For the other equilibria, with symbolic manipulators it is pos- 

sible to compute the expressions for the eigenvalues of the Jaco- 

bian matrix evaluated at E 123 in terms of parameters and to derive 

stability criteria. However, these expressions are intractable. Fur- 

thermore it is not possible to perform a symbolic analysis in the 

case of limit cycles (and in general for chaos) or phenomena re- 

lated to global bifurcations. This holds also for the situations when 

extinction of one of the populations occurs in finite time. In order 

to complete the study we perform a numerical bifurcation analysis 

using the parameter values given in Table 1 . 

5.3. Bifurcation analysis: PIF -system 

In Fig. 7 the two-parameter diagram is shown for the endemic 

predator–prey system PIF , where both m and K are varied simulta- 

neously. The three bifurcation curves for the disease-free system, 

TC 1 , H 2 and G � = , were already discussed among the results pre- 

sented in Fig. 6 . Before we start the analysis we point out that ev- 

erywhere in this diagram E 0 will also be an attractor when starting 

close to the plane P = 0 where F > 0 and I > 0. However, in the 

diagrams we indicate only the additional interior attractors. Firstly, 
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Fig. 7. Two-parameter diagram in terms of the parameters K , the carrying capacity, 

and m , the natural mortality, of the PIF ecoepidemic system (17) with I = 0 . All pa- 

rameter values are given in Table 1 . Table 2 gives a list of the asymptotic dynamics 

and Table 3 gives a list of the bifurcations. 

Fig. 8. Two-parameter diagram for parameters carrying capacity, K , and natural 

mortality, m , of the ecoepidemic PIF system (17) . This is a blow up of the diagram 

presented in Fig. 7 for the range 0 ≤ K ≤ 4. 

the healthy prey population goes extinct in finite time and there- 

after the infected prey and predator populations asymptotically. 

We split up the analysis in three different ranges for the pa- 

rameter K , the low range 0 < K < 4, the intermediate one 0 < K < 

20, and the high range K ≥ 20. 

5.3.1. Low carrying capacity 0 ≤ K ≤ 4 analysis: PIF -system 

We start our description of the long-term dynamics of the sys- 

tem for small values of K . A blow up of the two-parameter diagram 

presented in Fig. 7 is shown for the range 0 ≤ K ≤ 4 in Fig. 8 . 

The transcritical bifurcation TC 1 between the origin E 0 and a 

codimension-two point N 1 separates the parameter space between 

the two equilibria E 1 and E 13 . This is clear from Fig. 9 where the 

long-term state variable values are plotted for fixed K = 1 and 

varying m . Above the transcritical bifurcation TC 1 only the healthy 

prey population exists at equilibrium E 1 . Between TC 1 and the Hopf 

bifurcation H 2 the predator and disease-free prey exist at equilib- 

rium E 13 . Below the H 2 the maximum and minimum values for the 

Fig. 9. One-parameter bifurcation diagram for the ecoepidemic PIF system (17) for 

the susceptible prey population, P , the infected prey population I , and the predator 

population, F with free parameter m where K = 1 . See Fig. 2 for a description of the 

symbols. 

Fig. 10. One-parameter bifurcation diagram for the ecoepidemic PIF system (17) 

showing the susceptible prey population, P , the infected prey population I , and the 

predator population, F with free parameter m where K = 4 . See Fig. 2 for a descrip- 

tion of the symbols. 

stable limit cycle L 13 are plotted till the collapse of the complete 

system at the global bifurcation point G � = . 

With increasing K and m from point N 1 in Fig. 8 , three new 

transcritical bifurcations TC 2 , TC 3 and TC 4 emerge. At TC 2 the prey 

population becomes infected, namely a predator-free system PI 

arises: the equilibrium E 12 appears consisting of susceptible and 

infected sub-populations. Furthermore at both TC 3 and TC 4 the 

infected prey invades forming the system PIF with interior posi- 

tive equilibrium E 123 from the subsystems PI and PF respectively. 

Fig. 10 , where K = 4 (instead of K = 1 in Fig. 9 ), illustrates the lat- 

ter case with the transition from PF to PIF at TC 4 . 

5.3.2. Intermediate carrying capacity 4 ≤ K < 20 analysis: 

PIF -system 

Fig. 11 is also an enlargement of a part of the two-parameter di- 

agram of Fig. 7 for 0 ≤ K ≤ 20. The interior equilibrium E 123 of the 

PIF -system becomes unstable at the Hopf bifurcation curve H 3 . This 

Hopf bifurcation can be supercritical, denoted by H 
−
3 , giving rise 
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Fig. 11. Two-parameter diagram for parameters carrying capacity, K , and natural 

mortality, m , of the ecoepidemic PIF system (17) . This is a blow up of the diagram 

presented in Fig. 7 in the range 0 ≤ K ≤ 20. Note that in the (small) region between 

the tangent T 1 between B 1 and N 4 , the torus bifurcation TR starting in N 4 and the 

Hopf bifurcation H + 3 between B 1 and B 2 there is tri-stability of a stable equilibrium 

E 123 a stable limit cycle L 123 and E 0 . Table 2 gives a list of the asymptotic dynamics 

and Table 3 gives a list of the bifurcations. 

to a stable limit cycle L 123 , or subcritical, then denoted by H 
+ 
3 , in 

which case the originating limit cycle L 123 is unstable. At three so 

called Bautin (or Generalised-Hopf) bifurcation points, denoted by 

B i , (i = 1 , 2 , 3) where the switch from super- to subcritical or vice 

versa, takes place continuing the Hopf bifurcation, tangent bifurca- 

tion curves for limit cycles, T i , (i = 1 , 2) emerge ( Fig. 11 ). At K = 20 

the Hopf is supercritical (a stable limit cycle originates). Following 

the Hopf curve H 
−
3 by lowering K , at the first Bautin point B 1 it 

becomes subcritical. The originating tangent bifurcation curve for 

limit cycles, T 1 , goes via a cusp to the global bifurcation curve G � = 

curve. It terminates there at a point N 3 where there are no infected 

prey, I = 0 , and where the system reduces to the PF -system and 

merges there with the curve G � = of PF -system shown in Fig. 6 . 

Continuing on the Hopf curve H 
+ 
3 in Fig. 11 again from point B 1 , 

first the Hopf curve H 
+ 
3 becomes supercritical at the Bautin point 

B 2 , then changes again feature and becomes once more subcritical 

at B 3 . Between the two Bautin points B 2 and B 3 there is a tangent 

bifurcation T 2 above the supercritical Hopf bifurcation curve H 
−
3 

(this supercritical Hopf bifurcation curve is not labeled in Fig. 11 ). 

Continuing from B 3 , the Hopf curve terminates also at the point 

N 2 where there are no infected prey, I = 0 , and where the system 

reduces to the PF -system. At that point it merges with the Hopf 

bifurcation H 2 of the PF -system shown in Fig. 6 . 

In the region bounded by the Hopf bifurcation curve in Fig. 11 

there is a torus bifurcation TR where the stable limit cycle L 123 be- 

comes unstable. This torus bifurcation curve terminates at point 

N 4 on the tangent bifurcation curve T 1 . In the very small region 

bounded by the tangent T 1 between B 1 and N 4 , the torus bifurca- 

tion TR starting at N 4 and the Hopf bifurcation H 
+ 
3 between B 1 and 

B 2 there is tri-stability of a stable equilibrium E 123 and a stable 

limit cycle L 123 and zero equilibrium E 0 . 

This is explained by showing results of continuation studies 

presented in Fig. 12 where K = 10 and varying m and Fig. 13 where 

m = 0 . 42 and varying K . 

Comparison of the diagrams of Figs. 12 and 10 where K = 4 

instead of K = 10 shows the new dynamics related to the periodic 

solutions, where I > 0 in the region 0.4 < m < 0.5. We follow the 

maximum values of I curve starting from the heteroclinic connec- 

tion point G � = at m = 0 . 2862 . Decreasing m gives a tangent bifur- 

Fig. 12. One-parameter bifurcation diagram for the ecoepidemic PIF system (17) 

showing the susceptible prey population, P , the infected prey population I , and the 

predator population, F with free parameter m where K = 10 . All the other parame- 

ter values are given in Table 1 . The solid (dashed) curves denote stable (unstable) 

equilibrium values. The limit cycle L 123 is stable between tangent T 1 and torus TR 

bifurcations and between TR and the torus destruction bifurcation S there is the 

quasi-periodic torus dynamics T 123 . Note that these regions are very narrow. Above 

TC 4 the prey is infected. Below TC 3 the predator invades the healthy and diseased 

prey. Table 3 gives a list of the bifurcations. 

Fig. 13. One-parameter bifurcation diagram for the ecoepidemic PIF system (17) 

showing the susceptible prey population, P , the infected prey population I , and the 

predator population, F with free parameter K where m = 0 . 42 . Note that the stable 

limit cycle between T 1 and TR and the quasi-periodic torus dynamics between TR 

and S described in the text, are hardly apparent, in view of the fact that it exists in 

the very narrow region. Table 3 gives a list of the bifurcations. 

cation curve T 1 at m = 0 . 2757 and then increasing at m = 0 . 43884 

a new point on the tangent bifurcation curve T 1 is found. Except 

close the second T 1 point, the limit cycle is unstable. The small 

region where it is stable is bounded by T 1 at m = 0 . 43884 and a 

torus bifurcation TR at m = 0 . 42938 . The origin of the limit cycles 

and what happens below the TR will be explained now by studying 

the results in Fig. 13 . 

Fig. 13 shows the bifurcation sequence for increasing K till K = 

20 where m = 0 . 42 (see also Fig. 11 again). Starting from say K = 0 

firstly part of the healthy prey populations in equilibrium becomes 

infected at the transcritical TC 2 bifurcation. Increasing K at TC 3 the 
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Fig. 14. Minimum map for the susceptible prey P min versus the infected prey I for 

m = 0 . 42 . The parameter K is close to the right of the torus bifurcation TR . Note 

that for longer times the dots form approximately a closed curve in the Poincaré

plane where d P/d t = 0 . 

Fig. 15. Solution plot in the susceptible prey P , infected prey I and predator F phase 

space for m = 0 . 42 and at a point just below S for K = 9 . 91496 on the quasi-periodic 

torus attractor T 123 depicted in red, at point above of the torus bifurcation TR . Also 

in green the saddle limit cycles is shown that emerges from the subcritical Hopf 

bifurcation H + 3 at K = 10 . 6978 in Fig. 13 . (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

predator population enters into the system and starts to feed on 

the two prey sub-population. Here, there is coexistence between 

two attractors E 0 , E 123 . This stable interior equilibrium E 123 be- 

comes unstable at a subcritical Hopf bifurcation H 
+ 
3 at K = 10 . 6978 . 

The originating limit cycle is unstable and coexists with the stable 

equilibrium. This unstable limit cycle becomes stable at a tangent 

bifurcation T 1 . In this region there is coexistence between three 

attractors E 0 , L 123 and E 123 . Following this stable branch the limit 

cycle becomes unstable at the torus bifurcation TR . 

This torus bifurcation TR occurs with m = 0 . 42 at K = 9 . 68296 . 

The dynamics on the torus emerging from this torus bifurcation 

with increasing K is quasi-periodic (characterized by two Lyapunov 

exponents equal zero). This can be shown by plotting the points 

where the trajectory intersects the Poincaré plane for d P/d t = 0 

(see Fig. 14 ). The dots in the graph form closed curves when sim- 

ulations continue for longer times and hence show quasi-periodic 

dynamics on the torus (which we will call for short torus dynam- 

ics, denoted by T 123 ). Fig. 15 shows the attractor T 123 in the phase- 

space for the three state variables on the torus for K = 9 . 91496 . In 

Fig. 13 also the saddle limit cycle which originated from subcritical 

Hopf bifurcation H 
+ 
3 at K = 10 . 6978 is shown. Hence in this region 

there is coexistence between three attractors E 0 , T 123 and E 123 . 

When we continue following the quasi-periodic torus attractor 

T 123 with increasing K this torus dynamics is destructed at a point 

labeled S by the saddle limit cycle that emerges at the subcriti- 

cal Hopf bifurcation H 
+ 
3 at K = 10 . 6978 . This phenomenon occurs 

between K = 9 . 91496 and 9 . 91596 (see Figs. 15 and 16 ). This bifur- 

cation point is denoted by S . In Fig. 15 where K = 9 . 91496 starting 

Fig. 16. Solution plot in the susceptible prey P , infected prey I and predator F phase 

space for m = 0 . 42 and just above point S for K = 9 . 91596 on the quasi-periodic 

torus attractor T 123 at point above of the torus bifurcation TR . (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 17. One-parameter bifurcation diagram for the ecoepidemic PIF system (17) 

showing the susceptible prey population, P , the infected prey population I , and the 

predator population, F with free parameter m where K = 20 . All other parameter 

values are given in Table 1 . The solid (dashed) curves denote stable (unstable) equi- 

librium values. Table 3 gives a list of the bifurcations. 

on the torus, the dynamics remains on the torus while during time 

intervals the trajectory is close to the saddle limit cycle depicted in 

green. 

In Fig. 16 where K = 9 . 91596 on the other hand, starting on the 

torus shown in Fig. 15 where K = 9 . 91496 , firstly the dynamics in 

red follows closely the torus dynamics but after passing the sad- 

dle cycle, depicted in green, it converges in blue toward the stable 

equilibrium E 123 . Together with the torus dynamics also its basin 

of attraction disappears at the transition point. In other words 

the stable manifold associated with the saddle limit cycle loses its 

function as a separatrix between T 123 and E 123 . Hence, beyond this 

bifurcation point S there is only coexistence between E 0 and E 123 . 

Here we considered the case where the stable equilibrium E 123 
exists, that is for K values below H 

+ 
3 in Fig. 11 . Then, in the interval 

between the tangent T 1 and the torus bifurcation TR there can oc- 

cur several possibilities: tri-stability of the stable equilibrium E 123 
and the stable limit cycle L 123 and a collapse of the whole system 

to equilibrium E 0 after the prey population becomes extinct in a 

finite time. Between TR and S the stable limit cycle L 123 is replaced 

by the quasi-periodic torus attractor T 123 . Beyond S there is bista- 

bility of E 123 and E 0 . 

However, in the region above the Hopf bifurcation H 
±
3 the in- 

terior equilibrium E 123 is unstable, see Fig. 11 . In the next section 
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Fig. 18. Solution plot in the susceptible prey, P , infected prey, I , predator, F , phase 

space for m = 0 . 5711 close below the torus bifurcation TR where the solution is 

quasi-periodic T 123 and m = 0 . 571 (dashed curve) close below to the torus bifurca- 

tion TR where the solution converges to the zero-state solution. 
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Fig. 19. Solution plot in the susceptible prey, P , infected prey, I , predator, F , phase 

space for m = 0 . 57109 close below the torus bifurcation TR where the solution is 

quasi-periodic T 123 . Also the two unstable equilibria E 12 and E 123 are shown. Even- 

tually there is a collapse of the whole system. 

we will study the dynamics of the system in this region in Fig. 7 . 

These results will be important for higher carrying capacities. 

5.3.3. High carrying capacity K ≥ 20 analysis: PIF -system 

For a high carrying capacity keeping K = 20 fixed in Fig. 17 (in- 

stead of K = 10 in Fig. 12 ) we give the one-parameter diagram by 

varying m . 

Starting with a high mortality rate, say m = 0 . 7 above the trans- 

critical bifurcation TC 3 , the prey-only diseased system exists stably. 

Decreasing m at TC 3 the predator invades the system and the in- 

terior equilibrium E 123 is stable. It becomes unstable crossing the 

supercritical Hopf bifurcation H 
−
3 and an interior stable limit cycle 

L 123 emerges. Lowering m further this limit cycle becomes unsta- 

ble at the torus bifurcation TR . It appears that the dynamics on the 

emerging torus is quasi-periodic. This dynamics is shown in Fig. 18 

for m = 0 . 628 , a value slightly below the torus bifurcation TR for 

m = 0 . 629 . 

Decreasing m further shows a very sudden change of the dy- 

namics. The amplitude of the oscillations grow and also the fi- 

nal shape of the trajectory changes drastically. This is shown in 

Fig. 19 where m = 0 . 57109 . We started simulations in time with 

initial values on the torus shown in Fig. 19 for m = 0 . 5711 and then 

first slowly in time the trajectory changes drastically. The ampli- 

tude especially in the F direction increases and during the oscilla- 

tory dynamics the trajectory passes the origin closely and finally 

the system collapses, first P in finite time and thereafter F and I 

exponentially. Observe that the collapse of the system is unrelated 

to a destruction by a saddle limit cycle as we saw in Fig. 16 . 

What occurs is more similar to what happened in the case of 

the two-dimensional PF system when the heteroclinic orbit was 

approached, see Fig. 3 where the vector field for K = 10 with m = 

0 . 278745 was shown. That trajectory ended in the stable limit cy- 

cle L 13 but for lower values this limit cycle was broken and the 

system collapses as in Fig. 5 . At the switching point the trajectory 

lands exactly in the origin. In that situation the stable manifold W s 0 
terminates being a separatrix so that E 0 becomes a global attractor. 

However, the situation for the three-dimensional PIF system dif- 

fers much from that in the two-dimensional PF system due to the 

fact that the interaction between the infected and the predators 

with the healthy prey differs, see Sections 3 and 4 . Now when 

the trajectory approaches the zero equilibrium, not only F becomes 

small but I also. This was shown in Fig. 1 for the PI -system and 

for the PF -system Figs. 3 and 5 . The vector field in the three- 

dimensional state space close to the origin is shown in Fig. 20 for 

m = 0 . 57109 and K = 20 . 

When both F and I get small (blue and green arrows) the trajec- 

tory remains close to the F = 0 and I = 0 plane where P increases 

(red arrows) toward the saddle equilibrium E 1 . Thereafter by in- 

creasing I and to a much lesser extent F it approaches as a spi- 

ral close to the P –I plane the unstable prey-only equilibrium E 12 . 

Indeed condition (28) is not satisfied at this point while the real 

Fig. 20. Vector field plot in the susceptible prey, P , infected prey, I and predator F phase space for m = 0 . 57109 and K = 20 . See also Fig. 19 for the description of the 

dynamics. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 21. Projection plot of Fig. 19 in the susceptible prey, P , predator, F , phase space for m = 0 . 57109 and K = 20 . Also the linear tangent manifold T s 0 is shown. This line is 

crossed before the total collapse occurs with convergence to the zero equilibrium E 0 in the origin. 

parts of the eigenvalues ω 22 and ω 23 are negative. However, close 

to E 12 the predator population F increases sharply and the trajec- 

tory spirals with relatively small amplitude in the P –I plane toward 

the unstable interior equilibrium E 123 . Now the amplitude of the 

oscillatory dynamics in the P –I plane grow while the predator size 

F decreases again. So, there is a kind of torus dynamics. But for 

all m values where the quasi-periodic solution was not stable, we 

found a total collapses of the system where first the healthy prey 

become extinct in finite time and thereafter the infected prey and 

predator. 

The projection of the trajectory of Fig. 20 is shown in Fig. 21 . 

This plot shows that just before collapsing the trajectory crosses 

the linear tangent manifold T s 0 and by assumption also the stable 

manifold W s 0 which does not act as a separatrix anymore. Since we 

found this for all values below the point where the quasi-periodic 

torus dynamics became unstable (the extra zero Lyapunov expo- 

nent became positive) this point is catastrophic in the sense that 

below this curve in the two-parameter diagram the system always 

goes extinct. 

6. Discussion and conclusions 

The analysis of the prey-only system shows that the prey can 

be infected when the carrying capacity is above a certain threshold 

given in (8) independently of the mortality rate of the predator. It 

depends, however, on the contact rate for the transmissible and 

unrecoverable disease of the prey. 

The demographic predator–prey model shows that the preda- 

tors invade the system when the prey-only equilibrium becomes 

unstable, i.e. for a small enough predator mortality rate, see (11) . 

Varying the mortality rate of the predator the predator–prey equi- 

librium exists whenever the predators’ mortality rate falls below a 

threshold (see Fig. 6 ). Through the prey carrying capacity, K , the 

environment always influences that threshold level. The predators 

too contribute to this phenomenon, since their efficiency in hunt- 

ing appears in the threshold expression, i.e. through the hunting 

rate of predator on healthy prey, parameter a . Note that even in 

the purely demographic model besides the hunting rate the prey 

capture time T and the conversion factor of prey into predator e 

appear explicitly in the expression for the threshold (11) . 

The demographic predator–prey equilibrium becomes unstable 

with lowering m at a Hopf bifurcation. The amplitude of the orig- 

inating limit cycle grows very fast and the limit cycle disappears 

suddenly at a heteroclinic connection in a global bifurcation G � = 

from a saddle disease-free prey-only equilibrium point E 1 to the 

zero-solution E 0 where the total system collapsed. This has already 

been discussed in [5,8] but this analysis is extended here by a thor- 

ough phase portrait analysis in this paper. 

The linear stability analysis of the origin shows it to be always 

unstable, a fact that would guarantee the survival of at least some 

part of the ecosystem. This would occur also for the disease-free 

predator–prey model, thereby showing that this ecosystem behav- 

ior is due essentially to demographic reasons. The healthy prey 

reproduction rate provides the positive eigenvalue responsible for 

the origin instability. However, the study of the phase plane anal- 

ysis shown in Figs. 3 and 5 reveals the existence of a sector in 

the phase plane, for which trajectories are doomed to end up into 

the origin, see Fig. 4 (see also [25] ). This indicates that the actual 

ecosystem behavior is prone to become extinct in the region la- 

beled E 0 in the bifurcation diagram ( Fig. 8 ). In unfavorable circum- 

stances, the prey in fact becomes extinct in finite time, followed 

by an exponential decay of the predators. This phenomenon is re- 

lated to the presence of the square root terms in the Holling type 

II functional response in accordance with the findings of Braza in 

[5] . Here, however, we stress that our findings further indicate that 

the phenomenon occurs after the prey population gets extinct in a 

finite time. 

We studied using a phase plane analysis the functioning of the 

separatrix of two coexisting attractors, the demographic predator–

prey equilibrium E 13 or limit cycle L 13 and the zero equilibrium 

E 0 where a total collapse of the system occurred. The relationship 

with the heteroclinic connection was illustrated. The fact that a 

stable manifold is invariant disallows that a trajectory crosses this 

manifold. Hence, the stable manifold loses its separatrix property 

at the heteroclinic connection where the zero equilibrium becomes 

a global attractor. 

There is resemblance with the dynamics of predator–prey sys- 

tems with a strong Allee effect (see for instance [22] ). There the 

quadratic logistic is replaced by a cubic growth function of the 

prey giving three prey-only equilibria instead of two. Also in that 
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predator–prey systems an unexpected collapse can occur. There 

this event is referred to as over-exploitation. 

The bifurcation analysis reveals an organizing center point N 1 in 

the two-dimensional parameter space in which K and m are taken 

as bifurcation parameters ( Figs. 7 and 8 ). Transcritical bifurcations, 

TC ’s, show the change in the composition of the system induced by 

a change in a parameter: these occur when the predator invades a 

prey equilibrium at TC 1 ( P ⇒ PF ) or the prey population becomes 

infected at TC 2 ( P ⇒ PI ). At the transcritical bifurcations TC 3 or TC 4 
the prey population becomes infected ( PF ⇒ PIF ). 

Non-equilibrium, oscillatory dynamic behaviors occur in the 

two parameter bifurcation diagram for the two parameters K and 

m . The non-equilibrium solutions emerge at Hopf bifurcations. The 

pattern of the originating limit cycles shows a cusp bifurcation and 

this gives rise to more complex dynamics together with the fact 

that these limit cycles become unstable at a torus bifurcation. Gen- 

erally this can be the onset of chaotic dynamics. We found how- 

ever only quasi-periodic dynamics originating from the torus bi- 

furcation. 

The way the torus dynamics is destructed by the saddle limit 

cycle (for instance shown in Figs. 15 and 16 ), resembles the way a 

limit cycle is broken by a saddle point giving a homoclinic connec- 

tion of this saddle to itself (see also [4] ). Here it happens in one 

dimension higher: the point is replaced by a limit cycle and the 

limit cycle by a quasi-periodic dynamics on a torus (see also [6] 

for more details). In [3] the destruction by a saddle-cycle, is called 

a homoclinic bifurcation. 

We stress that these results were obtained for the parameter 

values given in Table 1 . Because of the smoothness of the model 

these results are robust for small perturbations of the other param- 

eters, that are now fixed. For larger deviations, however, the region 

where complex dynamics occurs can grow or even disappear and 

furthermore even other complex dynamics may show up. This is 

inherent in applying a numerical bifurcation analysis. On the other 

hand, the results obtained for the standard transcritical and Hopf 

bifurcations remain valid. 

A model with diseased predators instead of infected prey was 

described and analysed in [8, Eq. (14)] , with the three state vari- 

ables: the prey, healthy predators and infected predators. There 

the topological structure was that of a food chain, namely infected 

predators have a negative effect on healthy predators and healthy 

predators on the prey whereby the self-regenerating prey have 

a negative effect on themselves. The topological structure of the 

ecoepidemic studied here, system (17) , is the one of an ecosys- 

tem with omnivory, namely here predators have a negative ef- 

fect on both infected and healthy prey while infected prey have 

a negative effect on healthy prey. Hence, the infected prey and the 

predator are also competitors. The healthy prey population has a 

negative effect on itself expressed by the logistic growth because 

they are self-replicating. The resulting bifurcation diagrams respect 

these topologies (see also [13,14] ). There is an organizing center N 1 

where the population at the lowest level, the healthy prey, can be 

invaded by both the other populations, infected prey and predator, 

either separately or together (see [13, Fig. 11 (left-bottom panel)] ). 

This is the typical invasion of the prey by two predator populations 

that compete for the prey. 

From the two-parameter diagram ( Fig. 7 ) due to the weakening 

of the prey population by infection we conclude that the predator 

feeding on the prey population can exist for larger natural mortal- 

ity rates of predators when prey carrying capacities are sufficient. 

However, with larger carrying capacities the system starts first to 

show oscillatory dynamics, a phenomenon related to the “paradox 

of enrichment” [20] , and for higher values a collapse of the system 

occurs for a wide range of natural mortality rates where the prey 

population goes extinct in finite time. 
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