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Abstract

Fuzzing is one of the most effective approaches for identifying

security vulnerabilities. As a state-of-the-art coverage-based

greybox fuzzer, AFL is a highly effective and widely used

technique. However, AFL allocates excessive energy (i.e.,

the number of test cases generated by the seed) to seeds that

exercise the high-frequency paths and can not adaptively ad-

just the energy allocation, thus wasting a significant amount

of energy. Moreover, the current Markov model for model-

ing coverage-based greybox fuzzing is not profound enough.

This paper presents a variant of the Adversarial Multi-Armed

Bandit model for modeling AFL’s power schedule process.

We first explain the challenges in AFL’s scheduling algo-

rithm by using the reward probability that generates a test

case for discovering a new path. Moreover, we illustrated the

three states of the seeds set and developed a unique adaptive

scheduling algorithm as well as a probability-based search

strategy. These approaches are implemented on top of AFL

in an adaptive energy-saving greybox fuzzer called EcoFuzz.

EcoFuzz is examined against other six AFL-type tools on

14 real-world subjects over 490 CPU days. According to the

results, EcoFuzz could attain 214% of the path coverage of

AFL with reducing 32% test cases generation of that of AFL.

Besides, EcoFuzz identified 12 vulnerabilities in GNU Binu-

tils and other software. We also extended EcoFuzz to test

some IoT devices and found a new vulnerability in the SNMP

component.

1 Introduction

Fuzzing is an automated software testing method that is pop-

ular and effective for detecting vulnerabilities in software,

which was first devised by Barton Miller in 1989 [23, 32].

Since then, fuzzing has been developed rapidly [22]. As one

of the most effective techniques, Coverage-based Greybox

Fuzzing (CGF) has attracted several researchers’ attention [6].

*Corresponding author

Combined with genetic algorithms, CGF obtains the path cov-

erage generated by the instrumentation tools and uses it to

select good seeds. This technique helps the fuzzing to proceed

in a direction that constantly improves the coverage, and more

coverage being achieved leads to more bugs for triggering [9].

As Miller’s report, a 1% increase in code coverage increases

the percentage of bugs found by 0.92% [24].

One of the most popular and widely-adopted CGF is Ameri-

can Fuzzy Lop (AFL) [40]. AFL is an efficient method for file

application fuzzing and has identified numerous high-impact

vulnerabilities [39]. However, when AFL was used to fuzz

real-world programs, it displayed certain shortcomings. The

main challenge is that the majority of the test cases exercise

the same few paths, thus causing a significant amount of en-

ergy wasted on the high-frequency paths [6]. Especially in the

later stages of fuzzing, the seeds that exercise high-frequency

paths can no longer help in improving the discovery of new

paths. However, AFL’s constant power schedule is unable to

allocate energy to the seeds reasonably. Typically, AFL as-

signs too much energy to the seeds exercising high-frequency

paths. Such problems reflect the insufficient performance of

AFL’s schedule algorithm. More importantly, the schedule

algorithm of AFL is not built on a scientific theoretical model.

Some methods and techniques have been proposed to in-

crease the performance of scheduling algorithms. AFLFast

modeled the transition probability of mutating a seed for gen-

erating a test case exercising another path with the transition

probability in a Markov chain [6]. Then, AFLFast imple-

mented a monotonous power schedule to assign energy [6].

This can rapidly approach the minimum energy required for

discovering a new path. However, AFLFast cannot flexibly

adjust the allocation strategy according to the fuzz process,

thereby increasing the average energy cost of discovering a

new path. Besides, though AFLFast proposed the transition

probability in fuzzing and determined the method for assign-

ing energy as per the transition probability [6], it was unable

to provide a detailed analysis of the transition probability. It

is not possible to calculate the transition probability from a

discovered path to an undiscovered path. In fact, in this con-
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text, selecting the next seed and assigning energy to the seed

is the classic “exploration vs. exploitation” trade-off problem

from game theory, not a simple probability problem.

This paper proposes a variant of the Adversarial Multi-

Armed Bandit (VAMAB) model to model CGF. We modeled

each seed as a “bandit” of VAMAB, which is a classical con-

cept from MAB, and explained the trade-off between explo-

ration and exploitation in CGF as per the VAMAB model.

Moreover, the Markov chain was used for understanding

the details from a probabilistic perspective. As opposed to

AFLFast [6], our model’s perspective for regarding the pro-

cess of power schedules is derived from game theory, which

helps in better understanding the challenges in schedule al-

gorithm compared to the Markov chain. Further, an adap-

tive average-cost-based power schedule algorithm as well as

a self-transition-based probability estimation method were

developed according to the VAMAB model and were imple-

mented on AFL in a tool named EcoFuzz, which is an adaptive

energy-saving greybox fuzzer. Compared to AFL’s constant

schedule and AFLFast’s monotonous schedule, EcoFuzz im-

plements an adaptive schedule that can effectively reduce

energy wastage, which maximizes the path coverage in the

finite times of executions. EcoFuzz is particularly well-suited

in situations that have limited performance, such as fuzzing

the IoT devices and fuzzing the binary programs via QEMU.

In this paper, EcoFuzz was evaluated with six state-of-the-art

AFL-type fuzzers such as AFLFast, FairFuzz and MOPT on

14 real-world software [6,17,21]. We also compared EcoFuzz

with other four tools like Angora on LAVA-M [10, 12]. The

following are the contributions made in this paper.

• An Variant of the Adversarial Multi-Armed Bandit

(VAMAB). We proposed a VAMAB model to model the

CGF, as well as proposed the reward probability which

is the probability of the seed to discover new paths. We

presented the variations of reward probability in detail

and introduced the attenuation of this probability. Fur-

ther, we explained AFL’s challenges, classified CGF into

three states, and put forth strategies that could enhance

AFL’s performance in each state.

• Self-transition-based Probability Estimation Method

(SPEM). We designed a method to estimate the reward

probability for selecting seeds in the exploitation state.

This method is more accurate than AFL’s search strategy

for selecting the next seed with a high reward probability.

• Adaptive Average-Cost-based Power Schedule (AAPS).

We recommended an adaptive power schedule that as-

signs energy to each seed by utilizing the average-cost

as the baseline, and then monotonously increases the en-

ergy. Compared to AFLFast, AAPS can adjust the next

energy allocation by assessing previous allocations.

• Tool. We implement our approaches on AFL, an adap-

tive energy-saving fuzzer named EcoFuzz. EcoFuzz was

then assessed as per 14 real-world software and LAVA-

M compared to certain state-of-the-art tools. Results

showed that EcoFuzz could find more paths compared

to other AFL-type fuzzers with the same number of ex-

ecutions. Moreover, EcoFuzz detected more bugs than

others on LAVA-M, and found 12 vulnerabilities in some

software, obtaining 2 CVEs. EcoFuzz was also adopted

for testing the SNMP component and found a vulnera-

bility. We have published EcoFuzz on Github (https:

//github.com/MoonLight-SteinsGate/EcoFuzz).

2 Background

2.1 American Fuzzy Lop

As a state-of-the-art CGF, AFL is favored by numerous re-

searchers [6,13,17,43]. AFL uses lightweight instrumentation

to capture basic block transitions and determine a unique iden-

tifier for the path exercised by a test case, and employs genetic

algorithms to discover test cases that are likely to trigger new

paths [42]. Its efficiency is affected by some factors.

Search strategy for seeds. AFL keeps a seed queue, de-

queues seeds one by one, and fuzzes them. AFL marks some

seeds as favored seeds and gives these seeds preference over

the non-favored ones [26]. In detail, AFL determines a seed

as a favored seed according to the fav factor calculated by the

seed’s execution time and length.

Mutation strategies and power schedules. AFL has two

categories of mutation strategies, which are deterministic and

indeterministic [42]. The deterministic strategies operate at

every bit/byte of each input. And they are only used when it is

the first time for fuzzing the seed. In deterministic strategies,

AFL assigns energy to the seed according to its length.

After implementing deterministic strategies, AFL effectu-

ates the indeterministic strategies, including havoc and splice.

In this stage, AFL mutates the seed by randomly selecting a

sequence of mutation operators and applies them to random

locations in the seed file. AFL assigns energy to the seed

according to its score, which is based on coverage (prioritize

inputs that cover more of the program), execution time (prior-

itize inputs that execute faster), and discovery time (prioritize

inputs discovered later) [15]. Particularly, if the test case exer-

cises a new path, AFL will double the assigned energy.

Numerous researchers prefer AFL as its high speed of muta-

tion and execution. AFL also supports source code instrumen-

tation as well as binary instrumentation via QEMU [4], thus

making AFL easy to start. However, its performance can be

further enhanced. AFL is unable to adjust its energy allocation

adaptively and constantly assigns more than the minimum en-

ergy required to discover a new path on some seeds, resulting

in significant energy wastage [6]. Additionally, AFL has a sim-

ple search strategy that is inefficient, leading to AFL taking

more turns to select valuable seeds. Finally, the deterministic

strategies are also not as effective as random strategies [41].
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2.2 Coverage-based Greybox Fuzzing as

Markov Chain

Böhme et al. [6] modeled CGF as a systematic exploration

of the state space of a Markov chain. More importantly, they

proposed the transition probability in CGF and modeled it as

that in the Markov chain [25].

A Markov chain is a stochastic process that transitions

from one state to another. Formally, a Markov chain refers

to a sequence of random variables {X0,X1, ...,Xn} where Xi

denotes the state of the process at time i. The value of Xi is

taken from a set of states S = {1,2, ...,N} for some N ∈ N.

Further, the transition probability pi j indicates the chain’s

state transition probability from state i at time t to state j at

time t +1, which is signified as the conditional probability,

pi j = P(Xt+1 = j|Xt = i) (1)

Particularly, if the transition probability pi j depends only

on the state i and j, and not on the time t, the Markov

chain is called time-homogeneous. To model CGF as a time-

homogeneous Markov chain, Böhme et al. defined the Markov

chain’s state space as the discovered paths and their immedi-

ate neighbors [6]. That is, given a set of seeds T , S+ indicates

the set of discovered paths that are exercised by T while S− is

the set of undiscovered paths [6] that are exercised by inputs

generated by randomly mutating any seed from T . The set of

states S is defined as

S = S+∪S− (2)

The transition probability is defined as follows. For path

i ∈ S+, pi j is the probability of generating a test case ex-

ercising the path j through the mutation of the seeds ti ∈ T

that exercises the path i.

According to this model, Böhme et al. [6] proposed that

a more efficient CGF can discover an undiscovered state in

a low-density region while assigning the least amount of

total energy. That is, defining E[Xi j] is the expectation of the

minimum energy that should be assigned to seed ti ∈ T for

discovering the new state j, CGF must choose ti for fuzzing

such that ∃ j ∈ S− where the probability of executing path j

is low and E[Xi j] is minimal. Moreover, the energy assigned

to ti should be E[Xi j], which is deduced as 1/pi j in [6].

Unfortunately, when fuzzing real-world programs, it is im-

possible to calculate the transition probability of discovering

a new path from the current seed precisely, and thus, a com-

pletely accurate approach cannot be determined for selecting

the next seed and assigning energy to it. However, there is a

seed ti ∈ T that has the highest probability of finding a new

path. AFLFast [6] recommended selecting the next favored

seed that is chosen from the queue with the smallest number

of times and that exercises a path with the least amount of

fuzz. However, the efficiency of this search strategy depends

on the information about all seeds. If there is a queue of seeds

Q where some seeds from Q have been fuzzed while others

are not, there may be more accurate recognition for seeds

that have been fuzzed than those that have not. For choosing

the next seed ti where the probability of executing path i is

the minimum, it is necessary to conduct an examination for

fuzzing seeds that have not been fuzzed, which is a classic

“exploration vs. exploitation” trade-off problem.

2.3 Multi-Armed Bandits Problem

The Multi-Armed Bandit problem is important as one of the

simplest non-trivial problems wherein the conflict between ex-

ploitation and exploration [7, 35]. This problem resulted from

the slot machine with multiple arms. In this case, the player

plays one of the arms and obtains a reward. The player’s main

goal is maximizing the rewards in finite trials [35].

Formally, as shown in Fig. 1, there are N parallel arms,

indexed i ∈ K = {1,2, ...,N}, and each time only a single

arm is allowed to be selected to play. The state of arm i at

time t is denoted as xi(t), while the expectation of reward

of the arm i at time t is Ri(xi(t)) [35]. However, there is no

indication about the reward expectations related to each arm.

Thus, the problem is how to allocate the trials over arms

sequentially in time to maximize the expected total reward.

It should be noted that an increasing number of trails being

allocated to an arm i will lead to more accurate information

being deduced regarding the reward expectation of i, which

is the process of exploration. If all the reward expectations

of all arms are known, then we only select those arms with

the highest expectation to gain the highest reward, which is

the process of exploitation. Therefore, our goal is achieved by

having a trade-off between exploration (trying out some arms)

and exploitation (choosing an arm with the highest reward).

Exploitation helps maximize the expected rewards for a single

step, whereas the combination of exploration and exploitation

helps achieve higher rewards in the long run [26].

Arm-1 Arm-2 Arm-3 ……N parallel
arms

Playing for some times

Arm-3

Arm-N

ExplorationExploitation

R1 R2

R3

? ?

Reward Probability

Figure 1: The schematic diagram of the MAB problem, where

the grey color block symbolizes that this arm has been played

for some times.

In the classic MAB problem, there are two assumptions that

the distribution of rewards for each arm is time-invariant, and

the number of arms is constant. Thus, solutions concerning the

MAB problem have almost relied on these assumptions [2].

However, these assumptions limit the MAB model’s applica-

bility. For modeling CGF as the MAB-type model, it is natural

to regard an arm as a seed. However, during fuzzing, the num-

ber of seeds (i.e., arms) is increasing and the probability of
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finding a new path (i.e., reward probability) is decreasing,

which are not constant. Particularly, Auer et al. proposed the

MAB problem variant that includes no-statistical assumptions

about generating rewards as the Adversarial Multi-Armed

Bandit (AMAB) problem [3]. We consider modeling CGF by

the variant of the AMAB model, not the MAB model.

3 A Variant of the Adversarial Multi-Armed

Bandit Model

In this section, we model the process of searching seeds and

assigning energy as a variant of the AMAB problem, thus

enabling exposing the essence of the CGF. Moreover, we

explain the exploration and exploitation during fuzzing ac-

cording to this model, and point out certain challenges in

enhancing AFL.

3.1 Coverage-based Greybox Fuzzing as the

Variant of the Adversarial Multi-Armed

Bandit Model

In this subsection, we define some assumptions and terms,

then build our VAMAB model. Assuming that we are fuzzing

program A, several assumptions are stated below.

Assumption 3.1 The number of total paths and unique

crashes that can be executed of program A are finite, denoted

as np and nc, respectively.

This assumption helps to consider the mathematical model

in the finite state space, which could simplify the problem.

Assumption 3.2 The program A is stateless. That is, the path

of each execution depends only on the input generated by

fuzzer.

This assumption ensures that the reward probability is in-

dependent in VAMAB model, only determined by the seed.

The following are some important definitions.

Definition 3.1 The set of total paths of program A is signi-

fied as S = {1,2, ...,np} and the corresponding seeds set is

denoted as T = {t1, t2, ..., tnp}.

Definition 3.2 We followed the definitions of transition prob-

ability pi j and the minimum energy E[Xi j] in [6]. pi j is the

probability of generating a test case exercising path j from the

seed ti. E[Xi j] is the expectation of minimum energy (i.e., the

number of test cases generated by ti) of this process, deduced

as 1/pi j in [6].

Definition 3.3 Based on Definition 3.2, we define the tran-

sition frequency fi j as the frequency of path transition from

path i to path j, as

fi j =
fi( j)

s(i)
(3)

fi( j) indicates the number of test cases exercising path j

generated by seed ti. Particularly, fii is defined as the self-

transition frequency. s(i) is the number of trials conducted

to seed ti, satisfying

s(i) =
np

∑
j=1

fi( j) (4)

Definition 3.4 We define the probability of mutating ti for

generating inputs executing other paths as pi∗, deduced as

pi∗ = 1− pii =
np

∑
j=1

pi j − pii =
np

∑
j=1, j 6=i

pi j (5)

Providing the queue with n seeds is Tn, |Tn|= n, 1≤ n< np,

some of the seeds in Tn that have been fuzzed are denoted

as T+
n and the others are marked as T−

n . Additionally, the

number of trials being conducted thus far is m.

When fuzzing the program A, the aim might be maximizing

the number of discovered crashes and paths of A as well as

assuming them as the arms in the MAB model. However, Woo

et al. [36] pointed out that focusing on one seed may trigger

the same crashes, thus impacting the selection in exploitation.

Thus, our model regards the seeds as the arms and aims

to maximize path coverage in finite trials. Therefore, we

define the reward of each trial as generating an input that

triggers new path. Each trial to play an arm i denotes mutating

a corresponding seed ti and executing the generated test case.

Now we have conducted the trials for m times. ∀ti ∈ Tn, we

denote earn a reward in next trial as,

Ri(m+1,Tn) = 1 (6)

The probability of the arm i to earn a reward (i.e., discovering

a new path) in this trial is deduced as

P(Ri(m+1,Tn) = 1) =
np

∑
j=n+1

pi j

= 1−
n

∑
j=1

pi j

(7)

We define this probability as the reward probability. Ac-

cording to Equation (7), we can deduce that: (1) the reward

probability P(Ri(m+1,Tn) = 1) depends only on the seed ti
and the seeds set Tn of discovered paths, and is not related

to the number of trials being conducted (i.e., m). Thus, the

reward probability is simplified as PRi,n ; (2) with a rise in

the number of discovered seeds n, there is a decrease in the

number of undiscovered paths (np − n) which leads to a re-

duction in the probability of arm i to find new paths. These

are following the general results in most evaluation that as

more paths are found, the discovery of new paths decelerates

monotonically [6].

Therefore, it is evident that the distribution of the reward of

each arm is not invariant. Actually, the probability decreases
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once a reward is gained in some trials. This is called proba-

bility attenuation. As a result, the process of fuzzing is not

modeled as the classic MAB model, which is closer to the

AMAB model. Moreover, according to the mechanism of

CGF, once a reward is earned, it leads to a new and interesting

path. New seed will also be added into the queue of seeds,

with the seeds set Tn transferring into Tn+1 and the number of

arms increasing to n+1, as shown in Fig. 2. Based on these

differences, this problem is defined as a VAMAB.

As opposed to the traditional MAB model, the number of

arms of the VAMAB model will increase, and the reward

probability will decrease if rewards are earned until all paths

of program A are found. Therefore, before discovering all

paths, there is always a trade-off between exploration (fuzzing

seeds that have been not fuzzed) and exploitation (selecting

the fuzzed seeds to get more rewards).

Seed-1 Seed-3Seed-2 Seed-N……

Seed-1 Seed-3Seed-2 Seed-N……

R1 R2

R1 R2 R3

? ?

?

Fuzz ing for some times

Seed-(N+1)

?

Getting a reward

Tn

Figure 2: The figure illustrating VAMAB model , in which the

grey color block symbolizes that this seed has been fuzzed.

3.2 Exploration vs Exploitation in VAMAB

Model

Providing we could calculate the reward probability of seeds

after conducting some trials on them, for the seeds set Tn,

we can determine the reward probability PRi,n of the seed

ti from T+
n , which is the set of fuzzed seeds. Then we can

calculate the minimum energy the seed requires to find new

paths following Definition 3.2. For gaining more rewards in a

short period, it may be better to select the seeds from T+
n with

the highest reward probability, as “exploitation”. In contrast,

focusing on the unfuzzed seeds in T−
n and allocating them

enough energy can help to calculate their reward probability.

Seeds with higher reward probability may be found from T−
n

compared to those from T+
n , as “exploration”.

Thus, based on the level of testing on the seeds, as shown

in Fig. 3, the states of Tn were classified into three categories:

(1) Initial State. The initial state refers to the first stage of

the fuzzing process, where all seeds are unfuzzed. After

beginning the fuzzing of the seeds, the initial state transi-

tions to the exploration or exploitation state, as indicated

by Curve 1 and Curve 2 in Fig. 3.

(2) Exploration State. In this state, some seeds in Tn are

fuzzed, while some are not. Therefore, energy should

be assigned to the seeds that have not been fuzzed to

earn rewards and estimate their reward probability. After

Seed Seed Seed

Seed Seed Seed

Seed Seed Seed Seed

Seed

Init ial

Explorat ion

Exploitat ion

1

2

3
4

Figure 3: The three states of the seeds set and the transition

relationship between them, in which the grey color block

symbolizes that this seed has been fuzzed.

attaining a reward, Tn transits to Tn+1. Once all seeds in

Tm are fuzzed, the exploration state transitions into the

exploitation state, as shown by Curve 3 in Fig. 3.

(3) Exploitation State. In this state, all seeds have been

fuzzed. It is crucial to select those seeds with the highest

reward probability to test for discovering new paths. Once

a test case exercises an undiscovered path, the transition

from the exploitation to exploration occurs until all paths

have been found, as shown by Curve 4 in Fig. 3.

For these three states, it is necessary to implement different

strategies to maximize rewards. As previously discussed, it

is risky to focus only on exploitation and skip exploration.

Therefore, we considered the strategy of testing each seed in

the initial and exploration stage and selecting the high-quality

seeds with high reward probabilities in the exploitation stage.

3.3 Challenges in VAMAB Model

Although we have proposed how to improve the efficiency of

the scheduling algorithm, some challenges persisted.

The first challenge is how to determine the reward prob-

ability of each seed to select the next seed in the exploita-

tion stage. Given ti ∈ Tn, its reward probability PRi,n is certain.

According to Equation (7), the reward probability depends

on transition probability. In [6], Böhme et al. calculated the

transition probability between seeds in an example. How-

ever, determining the transition probability pi j relies on the

path constraints of path i and j, which can only be inferred

through manual analysis with source code, not accessed by

CGF. Therefore, we could not accurately calculate the re-

ward probability of seeds despite conducting several trials

on the seeds. We can only estimate it. A common method is

to estimate the transition probability through transition fre-

quency. That is, for pi j, it is possible to approximate it as fi j

for 1 ≤ i, j ≤ n. However, based on Equation (3), (4) and (7),

we may estimate the reward probability PRi,n as

PRi,n ≈ 1−
n

∑
j=1

fi j = 1−
n

∑
j=1

fi( j)

s(i)
= 0

(8)
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This is useless for CGF to select seeds. Consequently, it is im-

portant to find other criteria or parameters for approximating

the reward probability to select the seeds to fuzz.

The second challenge pertains to how to assign suitable

energy to each arm to balance the trade-off between ex-

ploration and exploitation. Especially in the exploration

stage, assigning too much energy to an unfuzzed seed in T−
n

is very risky. Researchers proposed some algorithms for re-

solving the problem of trade-off in the Adversarial MAB

problem (e.g., Exp3) [3]. However, this algorithm is based

on the assumption that the number of arms is constant. Our

model differs from the traditional AMAB problem on the

variability of the number of arms. Therefore, some current

algorithms are not suitable for our model.

Therefore, to maximize the path coverage, we need to es-

tablish efficient mechanisms, which use existing information

to estimate the reward probability of each seed for searching

seeds in the exploitation stage and allocate appropriate energy

to seeds for reducing energy waste.

4 Implementation

In this section, we implemented a prototype tool called Eco-

Fuzz. We introduce the framework and algorithm of EcoFuzz

firstly. After that, we detail the search strategy and energy

schedule algorithm implemented in EcoFuzz.

4.1 Main Framework of EcoFuzz

EcoFuzz is based on AFL 2.52b, which follows the framework

and most of the mechanisms of AFL, including the feedback-

driven coverage and crash-filter mechanisms. Based on these,

we developed a scheduling algorithm called AAPS and a

search strategy called SPEM. The state determination mech-

anism was added. EcoFuzz is based on the VAMAB model

to determine which state the seeds queue stays at. Moreover,

EcoFuzz runs without the deterministic strategies, while our

algorithm eliminated the mechanism in AFL that doubling

energy when a new path is found. Fig. 4 presents an overview

of EcoFuzz. Further details are given in Algorithm 1. The

three states of EcoFuzz are introduced below:

Initial State. EcoFuzz only stays at this state before

fuzzing. In this state, EcoFuzz chooses the first seed to fuzz.

Then, EcoFuzz turns to the exploration or exploitation state.

Exploration State. In this state, EcoFuzz selects the next

seed based on the index order of the seeds which are not

fuzzed, without skipping the seeds that are not preferred, and

assigns energy by AAPS. If all seeds in the queue have been

fuzzed, EcoFuzz transfers into the exploitation state.

Exploitation State. In this state, as all seeds have been

fuzzed, EcoFuzz implements SPEM for estimating the reward

probability of all seeds and prioritizes the seeds with high

reward probability for testing. Each seed is selected at most

once until all seeds have been selected or a new path is found.

Initial Seeds

State Determine Initial
Seeds

Queue T

Exploitation

Exploration

t

AssignEnergy As AAPS

AssignEnergy By AAPS

ChooseNext

AssignEnergy By AAPS

ChooseNext By SPEM

input

Mutate

IsInteresting?Yes
Add t into T

Figure 4: The overview of EcoFuzz, where the SPEM and

AAPS denote the search strategy and energy schedule we

propose in Section 4.2 and Section 4.3, respectively.

If all seeds have been selected in this state, EcoFuzz will re-

select the seeds until finding paths. After a new path is found,

EcoFuzz transfers from exploitation to exploration.

Algorithm 1 The algorithm of EcoFuzz

Require: Initial Seeds Set S

total_ f uzz = 0

rate = 1

Q = S

repeat

queued_path = |Q|
average_cost = CalculateCost(total_ f uzz, queued_path)
state = StateDetermine(Q)

if state == Exploitation then

s = ChooseNextBySPEM(Q)

else

s = ChooseNext(Q)

end if

Energy = AssignEnergy(s, state, rate, average_cost)

for i from 1 to Energy do

t = Mutate(s, Indeterministic)

total_ f uzz += 1

res = Execute(t)

if res == CRASH or IsInteresting(res) then

regret = i / Energy

s.last_ f ound += 1

if IsInteresting(res) then

add t to Q

else

add t to Tc

end if

end if

end for

rate = UpdateRate(regret, rate)

s.last_energy = Energy

until timeout reached or abort-signal

Ensure: Tc

Additionally, according to [11], we add a static analysis

module for extracting some magic bytes to a dictionary for

certain programs. In detail, the static analysis module extracts

some hardcode and magic bytes in the target binary by search-

ing from its disassembly information, which is efficient and

uncomplicated.
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4.2 Self-transition-based Probability Estima-

tion Method

In Section 3, we introduced the reward probability of each

seed and proved that it is not possible to determine the reward

probability accurately. Fortunately, our model aims to select

the seeds with high reward probability in the exploitation state.

Therefore, there is a greater focus on the magnitude relation-

ship but not on the specific value of the reward probability.

From Equation (5) (7), we can deduce that

PRi,n = pi∗−
n

∑
j=1, j 6=i

pi j (9)

For i ∈ {1,2, ...,n}, the probability pi∗ is constant and
n

∑
j=1, j 6=i

pi j depends only on the set Tn. Based on the discussion

in Section 3.3, we considered using (1− fii) as an approxi-

mate estimation of pi∗. However, for
n

∑
j=1, j 6=i

pi j, as it is the

reason for probability attenuation, the earlier the seed is dis-

covered, the more its reward probability attenuates. Hence,

the index of the seed was used to illustrate the probability

attenuation qualitatively. Following is the estimation method:

PRi,n ≈ 1− fii√
i

(10)

According to Equation (10), our method prefers to select the

seeds with lower self-transition frequency and larger index.

However, the estimation method is only used to qualitatively

estimate the magnitude relationship of the reward probability

between the seeds. Thus, we could not calculate the minimum

energy of the selected seed. For this, an adaptive average-cost-

based power scheduling algorithm was proposed.

4.3 Adaptive Average-Cost-based Power

Schedule

As the lowest energy to find a new path can not be calcu-

lated, a scheduling algorithm was developed to approximate

it monotonically. Compared to AFL, which allocated redun-

dant and constant energy each time, our algorithm aims to be

economical and flexible, particularly in the exploration stage.

total executions1

1 1

1

1

2

2

3
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Figure 5: A relationship between the number of paths and the

number of total executions during the fuzzing process.

Considering a typical fuzzing process, as shown in Fig. 5,

Curve s represents the relationship p(e) between the number

of paths p and the number of total executions e when the CGF

is fuzzing a target. Further, Fig. 5 shows that the derivative of

p(e) decreases with an increase in the number of executions

e, meaning that the CGF found new paths more efficiently

in an early stage than a later stage. Particularly, the point

(0, p0) denotes the initial state of fuzzing and the point (e1, p1)
shows that the CGF found (p1 − p0) unique paths with the e1

executions. The average-cost of finding a path is defined as

C(p1,e1, p0) =
e1

p1 − p0
(11)

This represents the average number of executions required for

discovering a new path when the CGF has executed e1 test

cases, which is the reciprocal of the slope of Line L3 in Fig.

5. Notice that, the average-cost decreases with an increase in

the executions. Therefore, the next point (e2, p1 +1) is likely

to appear in Area S4 in Fig. 5. However, if the CGF generates

test cases less than C(p1,e1, p0) to find a new path, the next

point will appear in Area S1 ∪S2 ∪S3, above Line L3.

It was expected that CGF could find as many new paths

within the average-cost of energy as possible. Thus, we consid-

ered using the average-cost C as the basic line for allocating

energy, which is economical for the CGF, to design the AAPS

algorithm, as shown in Algorithm 2.

For the seed s, we allocate energy no more than average-

cost to s in the exploration stage. In addition, less energy allo-

cation was considered for the seeds exercising high-frequency

paths than those exercising low-frequency path, which is re-

alized by the function CalculateCoefficient(). In detail, we

calculate the ratio r of the total number of test cases exercising

the same path with s (i.e., s.exec_num) and average_cost. For

the ratio r in (0,0.5], (0.5,1] and (1,+∞), we set the coeffi-

cient k as the empirical values: 1, 0.5 and 0.25, respectively,

allocated energy k×C corresponding to the reciprocal of the

slope of Line L3, L2 and L1 in Fig. 5.

Algorithm 2 The AAPS algorithm

Require: s, state, rate, average_cost

Energy = 0

if state == Exploration then

k = CalculateCoefficient(s.exec_num, average_cost)

Energy = average_cost × k × rate

else if state == Exploitation then

if s.last_ f ound > 0 then

Energy = Min(s.last_energy, M) × rate

else

Energy = Min(s.last_energy × 2, M) × rate

end if

else

Energy = 1024 × rate

end if

Ensure: Energy

Furthermore, the regret concept in certain solutions of

the classic MAB problem were combined for establishing
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a context-adaptive energy allocation mechanism [1]. This

mechanism aims to improve the coefficient of energy utiliza-

tion. If more energy is allocated than the seed need to find a

path, this mechanism reduces energy assigned the next time.

Moreover, the regret is calculated according to the energy

assigned to the seed and the energy it uses if it finds new

paths. Based on a previous assessment of energy allocations,

the coefficient rate was updated to adjust the next allocation.

Particularly, to avoid wasting too much energy on a seed

in the exploitation stage, we set M as the upper bound for

one turn of energy allocation and assign the empirical value

16×average_cost to M.

5 Evaluation

5.1 Configuration of Evaluation

Real-World Programs. We evaluated EcoFuzz as per 14 real-

world utility programs. These programs were selected from

those evaluated by other AFL-type tools [17,21]. All the eval-

uation was conducted without dictionaries. The configuration

of all programs is listed in Table 1. For each case, we ran the

fuzzing with one seed provided by AFL.

Table 1: The configuration of target programs

Subjects Version Format

nm -C @@ Binutils-2.32 elf

objdump -d @@ Binutils-2.32 elf

readelf -a @@ Binutils-2.32 elf

size @@ Binutils-2.32 elf

c++filt @@ Binutils-2.32 elf

djpeg @@ libjpeg-turbo-1.5.3 jpeg

xmllint @@ libxml2-2.9.9 xml

gif2png @@ gif2png-2.5.13 gif

readpng @@ libpng-1.6.37 png

tcpdump -nr @@ tcpdump-4.9.2 pcap

infotocap @@ ncurses-6.1 text

jhead @@ jhead-3.03 jpeg

magick convert @@ /dev/null ImageMagick-7.0.8-65 png

bsdtar -xf @@ /dev/null libarchive-3.4.0 tar

Baseline. We compared EcoFuzz against other six

AFL-type fuzzers, including AFL, FidgetyAFL, AFLFast,

AFLFast.new, FairFuzz and MOPT-AFL [6, 17, 21, 41].

We executed the AFLFast and AFLFast.new with the fast

model, which is the fastest schedule strategy of AFLFast [6],

and ran MOPT-AFL with the parameter “-L 30” to launch the

MOPT scheme.

Platform. We fuzzed each case for 24 hours (on a single

core) and repeated each experiment 5 times to reduce the

effects of randomness according to [16]. The experiments

were conducted on a 64-bit machine with 40 cores (2.8 GHz

Intel R Xeon R E5-2680 v2), 64GB of RAM, and Ubuntu

16.04 as server OS. The experiments ran for 490 CPU days.

5.2 Evaluation of Path Exploration and

Energy-Saving

Evaluation Metrics. We choose the total number of paths

discovered by different techniques, the total number of test

cases generated, and the average-cost as the measurements.

The reason is derived from the model design. The VAMAB

model aims to maximize the number of paths in the least

number of test cases generated. According to the definition

of average-cost, our scheduling algorithm uses the average-

cost as the basic line for allocating energy and measuring

the efficiency of each allocation. Thus, EcoFuzz intended to

achieve the same number of paths with other tools in the least

number of fuzz, namely, the least average-cost.

Path Coverage. For each subject and technique, Fig. 6

plots the average number of paths discovered throughout five

runs at each average number of executions point in 24 hours.

Fig. 6 shows that EcoFuzz outperforms other six AFL-type

fuzzers on most programs while achieving the upper bound

on the number of paths on nm, objdump, size , gif2png,

readpng, tcpdump, jhead, magick and bsdtar in the least

executions. The path coverage achieved by EcoFuzz on the

other five programs is approximately the same as that of Fid-

getyAFL or AFLFast.new, and is more than that of FairFuzz

and MOPT-AFL. Particularly, except readelf and djpeg,

EcoFuzz finds the most paths with the same executions than

other tools. More analysis is detailed in Appendix 8.1.

Average-Cost. As FidgetyAFL, AFLFast.new, and Fair-

Fuzz outperform the other three tools in path exploration, we

focused on comparing their efficiency with that of EcoFuzz.

Table 2 presents the number of total paths, total executions,

and the average-cost of these techniques on each subject.

From Table 2, EcoFuzz generates fewer test cases than

the other three state-of-the-art tools on eight subjects, and

finds more paths than others on nine programs. Moreover,

EcoFuzz’s average-cost is observed to be significantly lower

than that of others on most programs. On size, djpeg and

gif2png, though FairFuzz has the lowest average-cost, the

number of paths it found is also the least. In contrast, EcoFuzz

finds more paths than others on size and gif2png, with a

lower average-cost than that of AFLFast.new and FidgetyAFL.

Particularly, on jhead, EcoFuzz attained more paths upper

bound than other techniques in the early stage with fewer

executions. Therefore, EcoFuzz outperforms other tools in

energy-saving. More analysis is detailed in Appendix 8.1.

Statistical Analysis. Following the guidance of [16], we

conducted statistical analyses to ensure that the evaluation

is comprehensive. We used p value and extremum to eval-

uate the performance of these tools. For p value, p1 repre-

sents the difference between the performances of EcoFuzz

and AFL. Further, p2, p3, p4, p5, and p6 denote the differ-

ences between the performances of EcoFuzz and FidgetyAFL,

AFLFast, AFLFast.new, FairFuzz, and MOPT-AFL, respec-

tively. The number of paths and average-cost were considered

for calculating the p value. All the results and more analysis

are shown in Table 6 and 7 in Appendix 8.1.

From these results, EcoFuzz and AFLFast.new outperform

the other five tools significantly in the extremum of discov-

ered paths. On the path coverage, p1 is smaller than 10−4 in
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Figure 6: Number of total paths discovered by different AFL techniques averaged over 5 runs, where the X axis represents the

number of total executions in 24 hours, which is scaled in units of 107.

Table 2: The average-cost of each fuzzer on each subject

Subjects
Number of total paths / Number of executions finding these paths Average-cost

FidgetyAFL AFLFast.new FairFuzz EcoFuzz FidgetyAFL AFLFast.new FairFuzz EcoFuzz

nm 4,975 / 80.34M 8,127 / 60.95M 3,890 / 51.42M 8,266 / 42.88M 16,152 7,500 13,222 5,188

objdump 7,186 / 65.03M 7,241 / 62.45M 5,287 / 43.34M 7,474 / 42.78M 9,051 8,626 8,200 5,724

readelf 13,063 / 51.73M 14,048 / 60.90M 8,813 / 47.47M 12,649 / 53.90M 3,960 4,335 5,387 4,261

size 3,352 / 87.12M 3,601 / 85.31M 2,782 / 48.90M 3,939 / 76.45M 25,998 23,698 17,581 19,412

cxxfilt 7,715 / 72.37M 8,192 / 64.90M 5,054 / 67.59M 7,119 / 26.19M 9,381 7,923 13,377 3,679

djeg 3,587 / 57.77M 3,706 / 50.29M 1,902 / 10.45M 2,996 / 36.78M 16,109 13,572 5,498 12,280

xmllint 6,269 / 55.69M 7,214 / 52.12M 5,322 / 43.21M 6,803 / 33.11M 8,884 7,225 8,120 4,868

gif2png 4,004 / 107.46M 4,226 / 112.38M 2,952 / 25.88M 4,292 / 59.53M 26,844 26,600 8,769 13,873

readpng 1,884 / 61.36M 1,952 / 44.39M 1,753 / 35.48M 2,023 / 22.66M 32,585 22,755 20,253 11,205

tcpdump 10,432 / 93.37M 12,993 / 126.74M 11,489 / 137.89M 13,059 / 74.27M 8,951 9,755 12,003 5,688

infotocap 6,125 / 36.23M 6,389 / 33.47M 3,921 / 25.23M 5,840 / 12.36M 5,917 5,239 6,436 2,117

jhead 538 / 120.60M 539 / 32.16M 506 / 49.69M 594 / 164.86M 224,575 59,775 98,402 278,005

magick 4,903 / 6.70M 5,375 / 9.63M 3,419 / 6.56M 5,483 / 5.97M 1,367 1,793 1,919 1,089

bsdtar 6,685 / 54.84M 7,143 / 51.15M 3,981 / 39.55M 7,209 / 45.17M 8,204 7,162 9,936 6,266

* The number of executions finding these paths denotes the number of test cases are generated when the fuzzers have reached these paths, of

which the unit is M(106). Bold fonts represent the best performance.

all evaluations, indicating that the distribution of total paths

found by EcoFuzz and AFL differ significantly. Compared to

AFLFast.new, though EcoFuzz achieves the path coverage ap-

proximate to AFLFast.new, the energy depletion and average-

cost of EcoFuzz are significantly lower than AFLFast.new.

Overall. EcoFuzz performs better than other AFL-type

techniques in the average-cost. Moreover, compared to AFL,

AFLFast, FairFuzz, and MOPT-AFL, more paths were found

by EcoFuzz on tested programs. EcoFuzz finds 214% of the

paths discovered by AFL and generates only 68% test cases

of AFL, while reducing 65% average-cost of AFL. EcoFuzz

also generates only 65% test cases of FidgetyAFL and finds

110% of the paths found by FidgetyAFL, and 65% test cases

of AFLFast.new, along with determining the same number

of paths. In addition, EcoFuzz reduces the average-cost of

approximately 39% of FidgetyAFL and 33% of AFLFast.new.

5.3 Evaluating the Search Strategy and Power

Schedule

This subsection focuses on the efficiency of SPEM and AAPS

algorithm.

Evaluation Metrics. We define the utilization ratio of en-

ergy, which is the ratio of the energy consumed for finding

the newest path to the total energy allocated in each turn, to

evaluate the scheduling algorithms of different techniques.
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Figure 7: The utilization ratio in each time of allocation as the times of energy distribution during these four fuzzers test the nm.

We recorded the turns of allocation and energy consumed

in indeterministic strategies. Because all fuzzers except Eco-

Fuzz implement the splice strategy, and as the mechanism of

splice strategy is very similar to that of havoc strategy, each

allocation in splice strategy was regarded as a time of energy

allocation. Particularly, if the fuzzer did not find new paths

in one turn of energy allocation, the ratio was recorded as 0.

Thus, the value of ratio ranges from 0 to 1.

Based on the utilization ratio, certain indicators for multi-

faceted assessments, including the average utilization ratio

and the effective allocation, were defined. The index of allo-

cation times was denoted as i, ranging from 1 to N, while the

corresponding utilization ratio was denoted as ri. In addition,

the number of paths found in this energy allocation is ni, and

the first indicator is average utilization ratio, calculated as

r̄ =

i=N

∑
i=1

ri

N
(12)

The frequency p of allocation finding new paths (we call this

effective allocation) is the second measurement, denoted as

p =
|{i|ni > 0,1 ≤ i ≤ N}|

N
(13)

We choose each best run of EcoFuzz, FidgetyAFL, Fair-

Fuzz, and AFLFast.new on fuzzing nm to start our evaluation.

Evaluation of AAPS Algorithm. Fig. 7 plots the utiliza-

tion ratio in each turn of the energy distribution of these four

tools during fuzzing nm. The utilization ratio of a point being

closer to 1.0 indicates less energy being wasted. Further, the

degree of density of points represents the path coverage.

As shown in Fig. 7, EcoFuzz utilizes energy more effi-

ciently than the other three tools, as its distribution of points

is closer to 1.0 than others. EcoFuzz also found the most paths

among all tools, which was significantly more than that found

by FairFuzz and FidgetyAFL, with the densest distribution

of points. Further, for the distributions of FidgetyAFL and

AFLFast.new, the majority of the points are located in the

interval with the ratio being between 0 and 0.5, and only a

few points’ ratios are higher than 0.5. In contrast, EcoFuzz’s

distribution of points is much closer to 1.0 than those of other

techniques, with approximately half the points concentrated

in an area with the ratio above 0.5, thus proving that the AAPS

algorithm assigns energy more efficiently.

Why the utilization ratio of most points in FidgetyAFL

and AFLFast.new is under 0.5? As stated in Section 2.1, if

AFL finds a new path in random strategies, AFL will double

the energy assigned to this seed. FidgetyAFL and AFLFast

both follow this mechanism. However, Fig. 7 shows that this

mechanism can create unnecessary energy depletion as, often

during allocation, fuzzers do not find new paths after dou-

bling energy. Thus, the remaining energy is wasted. On the

other hand, our AAPS algorithm eliminates this mechanism

that doubles the assigned energy and introduces an adaptive

mechanism. If more energy has been assigned compared to

the seeds that need to find new paths for some time, the AAPS

algorithm helps reduce the next energy allocation to decrease

energy depletion. Therefore, the distribution of points in Eco-

Fuzz is more even compared to that in other tools.

Table 3: The evaluation of power schedule

Techniques Average utilization ratio Effective allocation Average-cost

EcoFuzz 0.121 0.290 4,314

FidgetyAFL 0.005 0.013 9,078

AFLFast.new 0.010 0.031 7,046

FairFuzz 0.107 0.204 4,930

In detail, we calculated some indicators to evaluate the

AAPS algorithm. Table 3 shows that the efficiency of differ-

ent scheduling algorithms on nm. EcoFuzz demonstrates the

best performance with the least average-cost, highest aver-

age utilization, and highest frequency of effective allocation.

EcoFuzz’s effective allocation frequency is more than Fid-

getyAFL, while its average-cost is half of FidgetyAFL.

We also evaluated the adaptive mechanism in AAPS. The

adaptive mechanism was implemented on FidgetyAFL. This

new FidgetyAFL + Adaptive fuzzer was run on nm and
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Figure 8: The average path coverages achieved by Fid-

getyAFL and FidgetyAFL + Adaptive.

tcpdump for 24 hours for 5 times. Fig. 8 shows the results.

FidgetyAFL + Adaptive found more paths than FidgetyAFL

on nm and tcpdump. It can be concluded the adaptive mecha-

nism can improve the efficiency of AFL’s power schedule.

Evaluation of SPEM Algorithm. As shown in Fig. 7, in

the later stage of fuzzing where EcoFuzz transitions into the

exploitation stage frequently, EcoFuzz’s point distribution is

denser than that of the other three tools. This qualitatively

illustrates that the SPEM algorithm is effective.

More quantitatively, we calculate the frequency of effective

allocation for the seeds chosen repeatedly in the exploitation

stage to estimate the efficiency of the search strategies. The

results are shown in Table 4. EcoFuzz’s measured 0.069,

which is more than FidgetyAFL at 0.031 and AFLFast.new at

0.026, thus proving that the SPEM algorithm is efficient.

Table 4: The evaluation of search strategy

Techniques Allocation with New Finding Repeated Chosen Ratio

EcoFuzz 705 10,174 0.069

FidgetyAFL 364 11,703 0.031

AFLFast.new 54 2,066 0.026

FairFuzz 0 0 -

5.4 The Validity on Detecting Vulnerabilities

As most tested software are the latest version, it is difficult for

these tools to find crashes in them using the seeds provided

by AFL. However, EcoFuzz still found 5 vulnerabilities. For

further evaluating EcoFuzz’s efficiency in detecting vulnera-

bilities, we attempted to select the seeds for the latest version

of the software by considering crashes in its previous version.

Unique Crashes. We tested GNU Binutils-2.31 programs

with EcoFuzz and found few crashes in nm and size of GNU

Binutils-2.31. Some crashes were selected as the initial seeds

for testing the nm and size from GNU Binutils-2.32. As

AFLFast.new outperforms the other five tools, we compared

EcoFuzz with it. After 24 hours of testing, EcoFuzz found

53 and 63 unique crashes in nm and size, respectively, while

AFLFast.new found 17 and 76 unique crashes.

Analysis of Vulnerabilities. EcoFuzz found more unique

crashes than AFLFast.new in nm and fewer crashes than

AFLFast.new in size. We used AddressSanitizer for fur-

ther vulnerability analysis [31]. After analysis, EcoFuzz and

AFLFast.new both detect the vulnerability in nm when calling

the d_expression_1 function in cp-demangle.c, which has

been confirmed as the CVE-2019-9070 by others. Moreover,

two 0-day heap buffer overflow vulnerabilities exist in size

that are only found by EcoFuzz. One is trigged when calling

the bfd_hash_hash function and the other is triggered when

calling the _bfd_doprnt function. Although AFLFast.new

found more crashes in size than EcoFuzz, it failed to trigger

these two bugs. We submitted the bugs for requiring CVEs,

and the heap buffer overflow in _bfd_doprnt has been affirmed

as CVE-2019-12972. Besides, when testing GNU Binutils-

2.31, EcoFuzz found four stack-overflow in xmalloc.c and

cplus-dem.c. They were reported to the Binutils group and

have been patched. Table 8 in Appendix 8.2 presents the

analysis of all vulnerabilities. These results show that Eco-

Fuzz can detect vulnerabilities efficiently in some real-world

programs.

5.5 Evaluation on LAVA-M

The LAVA-M dataset is proposed as a benchmark for assess-

ing the fuzzers’ performance [12]. The dataset contains four

programs that are base64, md5sum, uniq, and who. Each pro-

gram was generated by injecting some bugs into the source

code. Recently, several fuzzers (e.g., VUzzer, Steelix, Angora,

and T-Fuzz [10,19,27,29]) used this benchmark in evaluation.

Baseline. In addition to tools in Section 5.2, we compared

EcoFuzz with other state-of-the-art tools on LAVA-M, includ-

ing Angora and VUzzer [10, 29].

Configuration. Since our platform in Section 5.2 was not

connected to the Internet, for installing and running Angora

as well as VUzzer, we deployed them on our cloud server, a

ubuntu 16.04 server os with 8 cores (Intel Xeon Platinum 8163

CPU @ 2.50GHz) and 16GB of RAM. A similar experiment

was also conducted by executing each program for 5 hours,

such that the configuration was the same as that in VUzzer

and Angora. Each experiment was repeated 5 times. Further,

EcoFuzz was run with the static analysis module, and the

dictionary that this module generated is provided for all AFL-

type fuzzers. Table 5 lists the total bugs found by all fuzzers

during the five runs.

Discovered Bugs. As shown in Table 5, EcoFuzz found

the most bugs and outperformed others on LAVA-M. On

base64, md5sum, and uniq, EcoFuzz found all listed as well

as unlisted bugs. On who, as there were numerous bugs in

who, the efficiency of detecting bugs of each fuzzer can be

evaluated distinctly. It was observed that EcoFuzz found the

most bugs on who than the other fuzzers, with 1,252 listed and

200 unlisted bugs. Moreover, AFLFast.new performed the

best in other techniques, but it was not better than EcoFuzz.

Angora found 1,012 listed and 155 unlisted bugs, which is

less than those found by EcoFuzz.

Moreover, the result showed that AFL-type fuzzers could

also find numerous bugs on LAVA-M in the dictionary model,

with finding almost all bugs in base64, md5sum, and uniq.
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Table 5: The number of total bugs discovered in LAVA-M

Program Bugs AFL AFLFast FidgetyAFL AFLFast.new FairFuzz MOPT-AFL Angora VUzzer EcoFuzz

base64 44 44(+4) 44(+4) 44(+4) 44(+4) 44(+4) 44(+4) 43(+1) 1(+0) 44(+4)

md5sum 57 57(+1) 57(+3) 57(+4) 57(+4) 57(+3) 57(+0) 57(+4) 16(+0) 57(+4)

uniq 28 28(+1) 28(+1) 28(+1) 28(+1) 28(+1) 28(+1) 28(+1) 28(+1) 28(+1)

who 2136 466(+22) 490(+28) 1132(+158) 1147(+164) 463(+28) 71(+3) 1012(+155) 47(+6) 1252(+200)

* Listed and (+unlisted bugs) found by existing techniques and EcoFuzz.

In addition, EcoFuzz outperformed other AFL-type fuzzers

on who, with finding 3× more bugs than AFL. Therefore,

EcoFuzz is efficient in discovering bugs in LAVA-M. Since

AFL-type fuzzers are deployed in our platform, where the

configuration is slightly different from the cloud server, the

comparison of EcoFuzz with Angora and VUzzer in Table 5

may not be strict enough. Therefore, we implement EcoFuzz

on the same cloud server and do more analysis in Appendix

8.3.

5.6 Extended Application for EcoFuzz

The previous evaluation proved that EcoFuzz could find more

paths than other AFL-type fuzzers in most cases with lower

average-cost. There are also certain specific cases, such as

when the test cases have slow execution speed and there is

a low upper bound of paths (e.g., fuzzing the IoT devices or

binary programs via QEMU), where EcoFuzz’s advantages

are prominent.

In such cases, EcoFuzz was applied on IoTHunter [37]

to fuzz the SNMP component [8]. In RoutterOS’6.44.3 stable

version, a vulnerability of SNMP component was observed.

This issue was declared to be a failure of the processing input

SNMP packet that may lead to a denial of service. The SNMP

process will crash and restart when the packet in POC is

received. Although SNMP does restart after a crash, repeated

crashes might create an extended Denial of Service (DoS)

condition, as shown in Table 8. Though we had submitted the

crash, Mikrotik company released a new version of 6.45beta54

that has patched the bug.

6 Discussion

Compared to other techniques, EcoFuzz can effectively ex-

plore more paths in the same number of executions. The

adaptive mechanism implemented by EcoFuzz enables Eco-

Fuzz to flexibly revise subsequent energy allocations as per

the current utilization ratio of energy.

It is noteworthy that EcoFuzz developed AFL’s search strat-

egy and power schedule, not including the mutation strategies,

to be similar to that of AFLFast. That is, EcoFuzz does not

change the transition probability pi j, which is different from

FairFuzz. Though FairFuzz improves the efficiency of random

mutation, the result shows that EcoFuzz outperforms FairFuzz

in terms of the ability to explore more paths while consuming

less energy. Additionally, when testing the real-world soft-

ware, sometimes the ability to maximize the coverage while

saving energy is crucial for CGF. This has already been ex-

plained by implementing EcoFuzz for testing the IoT devices.

As EcoFuzz is built on AFL, EcoFuzz follows AFL’s ad-

vantages. Compared to VUzzer [29] or other greybox fuzzing

with taint analysis techniques, EcoFuzz’s execution speed is

higher. EcoFuzz also benefits from certain techniques used

for enhancing AFL (e.g., CollAFL [13]), thus ensuring that

EcoFuzz’s performance can still be enhanced.

More importantly, regardless of which program analysis

technique is used, whether the goal is to maximize coverage

or explore rare branches, selecting an optimal seed to fuzz and

assigning suitable energy are crucial for enhancing efficiency.

The VAMAB model can still optimize the power schedule

of other fuzzers, whether they are AFL-type fuzzers or other

greybox fuzzers, by simply modifying the definition of goal

and rewards as per the actual requirement.

7 Related Work

7.1 Scheduling Algorithms in Fuzzing

As a novel work that focuses on improving AFL’s schedul-

ing algorithm, AFLFast proposed a crucial concept transi-

tion probability for illustrating the transition between differ-

ent paths, providing the direction of improving efficiency in

power schedule and search strategy [6]. However, AFLFast

did not conduct a deeper study of the transition probability.

In contrast, we developed a VAMAB model for explaining

the fuzzing process in terms of game theory and presented

the reward probability of depicting each seed’s ability to find

new paths according to the transition probability. We also il-

lustrated the probability attenuation of reward probability and

stated the reward probability was not calculated accurately.

Moreover, the fuzzing process was classified into three states,

and the challenges of the different states were explained, fol-

lowed by suggesting optimal strategies for each state. Com-

pared to the Markov chain, our model reveals the challenges

in scheduling algorithms more profoundly.

Woo et al. [36] once stated searching over the parameter

space of blackbox fuzzing as the MAB problem. However, the

goal of Woo et al. was finding the highest number of unique

bugs, which is not applicable to CGF. If more energy is as-

signed to the seeds finding crashes, it may only trigger the

same crashes. This is one of the reasons for not selecting the

number of crashes as the target of our VAMAB model. On
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the other hand, aiming coverage helped in finding more seeds

exercising rare paths, thus aiding in finding unique crashes

in different functions. In addition, Patil et al. [26] modeled

the problem of deciding the number of random fuzzing it-

erations as Contextual Bandits (CB) problem between the

full reinforcement learning problem and MAB problem [18].

Patil et al. considered the seeds as arms and proposed mul-

tipliers of the test case’s energy, treating them as the arms

in the contextual bandit setting [26]. The aim of Patil et al.

was to determine the energy value from the test case contents

by using reinforcement learning techniques. However, their

work did not utilize the model for explaining the details of

the fuzzing process and only presented an algorithm to decide

a test case’s energy multiplier, given fixed length contents

of the test case [26]. In contrast, we considered the trade-off

between exploration and exploitation of power schedules in

CGF in detail. Therefore, our VAMAB model is better suited

for modeling the scheduling algorithm of CGF than MAB or

CB. To the best of our knowledge, we are the first to model

the scheduling problem as VAMAB.

7.2 Smart Seeds Generation or Selection

Certain directions for enhancing CGF can be understood

based on the VAMAB model. The first research direction

is to improve the quality of the initial seeds, and this includes

selecting the seed inputs from a wealth of inputs [30] or gen-

erating well-distributed seed inputs for fuzzing programs that

process highly-structured inputs [33]. The core of these works

is providing the high reward probability seeds to the initial

state. As stated in Section 5.4, EcoFuzz can also benefit from

a smart mechanism of seed generation. Besides, there are

researchers who aim to establish the mechanism for estimat-

ing each seed’s quality, which can help fuzzers accurately

select the seeds with high reward probability. Further, Zhao

et al. [44] designed a Monte Carlo-based probabilistic path

prioritization model for quantifying each path’s difficulty and

prioritizing them for concolic execution as well as implement-

ing a prototype system DigFuzz. Moreover, Böhme et al. [5]

proposed the Directed Greybox Fuzzing by using the distance

between the seeds and the target to measure the seeds’ quality.

Based on the VAMAB model, these researches provide cer-

tain methods for accurately estimating the reward probability

of their problem. EcoFuzz also uses the SPEM algorithm to

measure the quality of seeds. Moreover, the experiments in

our evaluation showed that the frequency of effective search-

ing in SPEM is approximately twice that of FidgetyAFL on

nm, which is regarded as a precise method for estimating the

quality of seeds. Besides, compared to AFLGo [5] and Dig-

Fuzz [44], EcoFuzz does not require additional program anal-

ysis techniques to achieve the same goals.

7.3 Greybox Fuzzing with Optimizing Muta-

tion Strategies

Several approaches focus on the second direction that en-

hances the mutation efficiency by using program analysis

techniques. Some approaches aim to find locations in seed

inputs related to high-probability crash locations or to deter-

mine statements in the program [10,34], and other approaches

try to learn input format and utilize it for assisting mutation.

VUzzer [29] leveraged control- and data-flow features of tar-

gets and used this information in the feedback loop for gen-

erating new inputs. However, VUzzer realized this function

based on Pin [20], which is slower than the techniques of

instruments used by EcoFuzz.

FairFuzz is implemented on AFL and can identify the parts

of the input that are crucial for satisfying the determined condi-

tions. In test cases generation, it avoids mutating these crucial

parts of the input and reduces the number of fuzz exercising

high-frequency paths [17]. Nevertheless, FairFuzz achieves

this function depending on the deterministic strategies being

implemented, which is not as effective as the random mutation.

In this paper, EcoFuzz was assessed against FairFuzz, and it

had been proved that, with the same number of executions,

EcoFuzz outperforms FairFuzz in exploring paths.

Some researchers aim to learn file formats and use them

in mutation to improve efficiency. Learn&Fuzz [14] used

sequence-based learning methods for the PDF’s structures.

Further, AFLSmart [28] kept the format attribute unchanged

in the mutation by providing prior knowledge. However, such

techniques require lots of initial files or prior knowledge, mak-

ing it difficult to implement in testing real-world programs.

In contrast, EcoFuzz can be started conveniently.

8 Conclusion

In this paper, we proposed a variant of the Adversarial Multi-

Armed Bandit (VAMAB) model and used it for modeling the

scheduling problem in CGF. We also introduced the reward

probability for illustrating the ability of each seed to discover

new paths and explained problems such as the probability

attenuation. In addition, we classified the states of the seeds

set into three categories and illustrated the challenges and

opportunities in these states. Based on this, we proposed the

SPEM for measuring the reward probability and developed an

adaptive power schedule. We implemented these algorithms

on an adaptive energy-saving greybox fuzzer called EcoFuzz.

EcoFuzz explores more paths than six AFL-type fuzzers with

fewer executions, significantly reducing the average-cost for

discovering a new path. Besides, EcoFuzz’s adaptive mecha-

nism and energy-saving advantages can help improve other

techniques. EcoFuzz was also compared with other works, and

their optimization directions were explained by the VAMAB

model, indicating that the applicability of our model is strong.

Since our VAMAB model is related to the reinforcement
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learning and the schedule algorithms of EcoFuzz are slightly

empirical, in the future, we may consider to optimize the

schedule algorithms and improve our work by implementing

some methods of reinforcement learning.
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tosa, Alexandru Răzvan Căciulescu, and Abhik Roy-

choudhury. Smart greybox fuzzing. arXiv preprint

arXiv:1811.09447, 2018.

[29] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-

jocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:

Application-aware evolutionary fuzzing. In NDSS, vol-

ume 17, pages 1–14, 2017.

[30] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos,

Jonathan Foote, David Warren, Gustavo Grieco, and

David Brumley. Optimizing seed selection for fuzzing.

In 23rd {USENIX} Security Symposium ({USENIX}
Security 14), pages 861–875, 2014.

[31] Konstantin Serebryany, Derek Bruening, Alexander

Potapenko, and Dmitriy Vyukov. Addresssanitizer:

A fast address sanity checker. In Presented as part

of the 2012 {USENIX} Annual Technical Conference

({USENIX}{ATC} 12), pages 309–318, 2012.

[32] Michael Sutton, Adam Greene, and Pedram Amini.

Fuzzing: brute force vulnerability discovery. Pearson

Education, 2007.

[33] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Sky-

fire: Data-driven seed generation for fuzzing. In 2017

IEEE Symposium on Security and Privacy (SP), pages

579–594. IEEE, 2017.

[34] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou.

Taintscope: A checksum-aware directed fuzzing tool

for automatic software vulnerability detection. In 2010

IEEE Symposium on Security and Privacy, pages 497–

512. IEEE, 2010.

[35] Peter Whittle. Multi-armed bandits and the gittins in-

dex. Journal of the Royal Statistical Society: Series B

(Methodological), 42(2):143–149, 1980.

[36] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and

David Brumley. Scheduling black-box mutational

fuzzing. In Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security,

pages 511–522. ACM, 2013.

[37] Bo Yu, Pengfei Wang, Tai Yue, and Yong Tang. Poster:

Fuzzing iot firmware via multi-stage message genera-

tion. In Proceedings of the 2019 ACM SIGSAC Confer-

ence on Computer and Communications Security, pages

2525–2527. ACM, 2019.

[38] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and

Taesoo Kim. {QSYM}: A practical concolic execution

engine tailored for hybrid fuzzing. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pages

745–761, 2018.

[39] Michal Zalewski. Afl vulnerability trophy case. Website,

2014. http://lcamtuf.coredump.cx/afl/#bugs.

[40] Michal Zalewski. American fuzzy lop.(2014). Website,

2014. http://lcamtuf.coredump.cx/afl.

[41] Michał Zalewski. Fidgetyafl. Website, 2016.

https://groups.google.com/forum/#!msg/

afl-users/fOPeb62FZUg/CES5lhznDgAJ.

[42] Michał Zalewski. American fuzzy lop technical details.

Website, 2018. http://lcamtuf.coredump.cx/afl/

technical_details.txt.

[43] Gen Zhang, Xu Zhou, Yingqi Luo, Xugang Wu, and

Erxue Min. Ptfuzz: Guided fuzzing with processor trace

feedback. IEEE Access, 6:37302–37313, 2018.

[44] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. Send

hardest problems my way: Probabilistic path prioritiza-

tion for hybrid fuzzing. In NDSS, 2019.

USENIX Association 29th USENIX Security Symposium    2321

http://lcamtuf.coredump.cx/afl/#bugs
http://lcamtuf. coredump. cx/afl
https://groups.google.com/forum/#!msg/afl-users/fOPeb62FZUg/CES5lhznDgAJ
https://groups.google.com/forum/#!msg/afl-users/fOPeb62FZUg/CES5lhznDgAJ
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt


Appendix

8.1 More Analysis of Average-Cost Evalua-

tion

In this subsection, we implement a more in-depth analysis of

the evaluation results in Section 5.2.

Path Coverage. From Fig. 6, EcoFuzz outperforms the

other six fuzzers on most programs except cxxfilt, readelf,

djpeg, xmllint and infotocap. For these five programs,

on xmllint and infotocap, EcoFuzz finds more paths than

other tools in the same number of executions. The path cover-

age EcoFuzz achieves is only slightly lower than FidgetyAFL

or AFLFast.new. The reason is that they generate more test

cases than EcoFuzz. On cxxfilt, EcoFuzz performs bet-

ter than AFLFast.new and FidgetyAFL when the number

of paths is below 7,000. After that, AFLFast.new and Fid-

getyAFL generate more test cases than EcoFuzz so that the

paths discovered by AFLFast.new and FidgetyAFL are more

than EcoFuzz. On readelf, EcoFuzz performs similarly to

AFLFast.new and FidgetyAFL in the early stage. In the later

stage, the number of paths discovered by EcoFuzz is slightly

less than that of AFLFast.new and FidgetyAFL. On djpeg, as

can be seen from Fig. 6, there are two significant increases in

the curve of AFLFast.new and FidgetyAFL in the latter stage,

which makes the numbers of paths found by AFLFast.new

and FidgetyAFL exceed that of EcoFuzz. We analyze the re-

sult of each run on djpeg and find that there are two runs of

AFLFast.new and FidgetyAFL discovering over 4,500 paths

on djpeg, respectively. In other cases, the number of paths

they found is approximate to that of EcoFuzz. We regard this

as the impact of experimental contingency.

In addition, in most cases, fuzzers without indeterministic

strategies (EcoFuzz, FidgetyAFL, and AFLFast.new) were

noted to perform better than FairFuzz, AFL, AFLFast, and

MOPT-AFL. This proves that the indeterministic mutation

strategies are efficient in general. Particularly, EcoFuzz finds

significantly more paths than these four tools, and overall,

EcoFuzz performs better than six other techniques in path

exploration and energy saving.

Average-Cost and Total Executions. From Table 2, no-

tice that, on most cases, under the same testing hours, the num-

ber of test cases produced by EcoFuzz is far fewer than other

techniques, especially on the subjects cxxfilt, xmllint and

infotocap. The reason is that when EcoFuzz assigns energy

to a seed, EcoFuzz does not take the execution time or length

of the seed into consideration. That leads EcoFuzz to allo-

cate energy on a long execution time seed as same as other

some fast seed, which costs EcoFuzz more time to fuzz it than

some other seeds. Besides, EcoFuzz has fuzzed all seeds from

the queue, with implementing more executions on the trim

strategy than other techniques. Different from our scheduling

algorithm, the power schedules of other fuzzers we compare

against to EcoFuzz are mainly based on that of AFL and

maintain most features. As introduced in Section 2.1, dur-

ing the indeterministic strategies, AFL assigns energy to the

seed according to its performance score, which is calculated

based on the execution time, coverage, and discovery time.

The longer its execution time is, the less energy is allocated.

This mechanism guarantees that AFL will not spend a lot of

time on fuzzing these long execution time seeds. However, it

makes sense to allocate energy to these long execution time

seeds, which also helps us to improve the coverage.

More Statistical Analysis. In Section 5.2, we have re-

ported the results of statistical analysis and pointed out that

EcoFuzz outperforms other tools in general. In this subsection,

we analyze the statistical results of p value and extremum in

detail.

From Table 6, on the path coverage, p1 is smaller than

10−4 in all evaluations, indicating that the distribution of

total paths found by EcoFuzz and AFL differs significantly.

Further, p3, p5, and p6 are also mostly tend to be smaller than

10−3, which proves that EcoFuzz also outperforms AFLFast,

FairFuzz, and MOPT-AFL notably in path exploration. In

the majority of evaluation, p4 is approximately the same as

10−1, this indicating that the paths EcoFuzz and AFLFast.new

find are not significantly different. However, on the average-

cost, p4 is smaller than 10−2 on 11 evaluations, thus proving

that EcoFuzz’s average-cost is significantly lower than that of

AFLFast.new.

From Table 7, EcoFuzz and AFLFast.new outperform the

other five tools on most programs, whether in the maximum or

the minimum of discovered paths. EcoFuzz achieves the up-

per bound of the maximum of path coverage on six programs,

minimum of path coverage on eight programs. Compared to

AFLFast.new, though EcoFuzz achieves the path coverage ap-

proximate to AFLFast.new, the energy depletion of EcoFuzz

is lower than AFLFast.new.

8.2 Analysis of Vulnerabilities Detected by

EcoFuzz

In Section 5.4, we evaluated the validity of EcoFuzz on detect-

ing vulnerabilities and reported some vulnerabilities found by

EcoFuzz in general. We state some detailed analysis of these

vulnerabilities in this subsection.

In addition to the bugs found in GNU Binutils, Eco-

Fuzz also found 5 vulnerabilities on some programs tested

in Section 5.2, with 2 heap-buffer-overflow in gif2png,

and tcpdump, as well as 3 memory leak in libpng and

jhead, which were only found by EcoFuzz, FidgetyAFL and

AFLFast.new. In detail, there are 2 vulnerabilities found in

gif2png, a heap-buffer-overflow in the writefile function in

gif2png.c and a memory leek in the xalloc function in mem-

ory.c. In addition, since gif2png is built on libpng, Eco-

Fuzz also found a memory leak in png_malloc_warn in png-

mem.c of libpng when recurred a crash in gif2png. More-

over, EcoFuzz found a heap-buffer-overflow in jhead, which
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Table 6: The p-value result in each evaluation

Subjects
Number of total paths Average-cost

p1 p2 p3 p4 p5 p6 p1 p2 p3 p4 p5 p6

nm 1.2*10−7 1.2*10−2 1.3*10−4 6.4*10−1 1.2*10−4 3.9*10−7 1.5*10−5 8.5*10−3 5.7*10−4 2.9*10−4 3.2*10−3 1.4*10−5

objdump 5.0*10−8 1.4*10−1 1.9*10−7 2.6*10−1 2.2*10−6 3.6*10−8 9.5*10−8 1.9*10−3 1.4*10−5 5.6*10−3 1.2*10−2 4.0*10−8

readelf 9.2*10−7 5.2*10−1 2.4*10−5 4.6*10−2 2.8*10−4 1.4*10−6 4.9*10−8 6.2*10−1 2.4*10−6 7.9*10−1 3.5*10−2 8.8*10−9

size 9.2*10−7 2.8*10−5 4.6*10−6 9.5*10−3 1.3*10−6 4.8*10−6 1.0*10−5 7.2*10−6 1.4*10−3 1.3*10−4 2.9*10−1 4.8*10−4

cxxfilt 5.8*10−6 4.4*10−3 3.3*10−5 7.1*10−4 6.1*10−8 3.2*10−1 4.4*10−7 5.1*10−8 1.4*10−7 2.4*10−6 4.4*10−7 2.4*10−6

djpeg 7.6*10−5 2.3*10−1 9.3*10−4 1.4*10−1 9.2*10−6 4.4*10−2 7.4*10−4 4.8*10−2 1.2*10−3 3.7*10−1 1.5*10−4 2.4*10−5

xmllint 9.3*10−9 6.6*10−3 1.7*10−7 6.1*10−2 1.9*10−3 1.9*10−3 2.0*10−5 5.5*10−6 1.4*10−7 2.9*10−4 8.6*10−5 3.0*10−6

gif2png 4.2*10−7 6.3*10−4 4.6*10−4 1.5*10−1 2.2*10−6 1.8*10−4 1.2*10−1 9.2*10−4 5.1*10−1 1.0*10−3 2.1*10−3 7.2*10−3

readpng 7.1*10−6 4.3*10−2 9.1*10−5 3.2*10−1 9.8*10−2 4.8*10−2 3.6*10−3 2.0*10−4 1.3*10−3 2.1*10−4 5.4*10−2 4.3*10−4

tcpdump 1.8*10−6 2.3*10−3 7.1*10−6 9.1*10−1 3.6*10−2 2.6*10−5 3.9*10−7 1.4*10−2 1.1*10−4 1.4*10−3 1.1*10−4 3.4*10−7

infotocap 4.5*10−6 2.7*10−1 7.0*10−5 1.6*10−1 8.7*10−5 3.3*10−2 6.4*10−6 3.3*10−5 7.1*10−8 7.3*10−5 1.4*10−6 1.5*10−7

jhead 5.7*10−6 1.5*10−4 6.9*10−5 1.8*10−4 7.9*10−6 1.8*10−4 8.4*10−7 3.0*10−4 6.0*10−6 1.4*10−10 1.4*10−8 1.3*10−3

magick 1.8*10−10 3.8*10−2 3.3*10−9 4.4*10−1 1.6*10−5 7.1*10−7 5.6*10−9 2.3*10−2 3.8*10−8 1.9*10−5 5.9*10−5 3.3*10−5

bsdtar 1.0*10−10 6.7*10−3 9.4*10−6 7.8*10−1 3.3*10−7 6.1*10−7 2.9*10−10 2.6*10−3 9.7*10−5 9.4*10−2 2.3*10−3 1.1*10−5

Table 7: The maximum and minimum of discovered paths in each evaluation

Subjects
Maximum / Minimum of Discovered Paths

AFL FidgetyAFL AFLFast AFLFast.new FairFuzz MOPT-AFL EcoFuzz

nm 2,651 / 4,074 3,197 / 7,671 2,675 / 5,548 7,406 / 8,966 2,683 / 5,613 2,547 / 4,069 7,986 / 8,659

objdump 3,633 / 4,238 6,952 / 7,496 3,791 / 4,520 6,933 / 7,587 5,033 / 5,646 4,361 / 4,549 7,063 / 7,810

readelf 5,371 / 5,840 12,118 / 14,032 7,997 / 8,332 13,110 / 14,813 8,111 / 10,124 5,723 / 6,189 11,555 / 14,337

size 2,279 / 2,644 3,285 / 3,408 1,685 / 2,586 3,467 / 3,870 2,597 / 2,928 2,761 / 3,093 3,727 / 4,097

cxxfilt 3,329 / 4,786 7,424 / 8,020 3,883 / 5,237 7,632 / 8,756 4,906 / 5,278 6,125 / 7,352 6,847 / 7,393

djpeg 2,063 / 2,320 2,840 / 4,794 2,073 / 2,502 2,940 / 4,895 1,780 / 2,010 2,199 / 2,943 2,807 / 3,380

xmllint 3,385 / 3,591 6,114 / 6,435 3,886 / 4,347 6,864 / 7,573 4,732 / 6,268 5,742 / 6,259 6,304 / 7,062

gif2png 2,551 / 3,122 3,946 / 4,193 1,906 / 3,559 4,112 / 4,332 2,627 / 3,234 3,723 / 4,009 4,204 / 4,347

readpng 1,463 / 1,598 1,757 / 2,001 1,486 / 1,685 1,812 / 2,132 1,413 / 2,177 1,608 / 1,981 1,923 / 2,168

tcpdump 5,987 / 6,830 9,776 / 11,201 5,499 / 7,680 12,456 / 13,321 10,678 / 12,635 7,393 / 8,612 12,417 / 15,191

infotocap 2,849 / 3,914 5,428 / 6,433 4,089 / 4,794 5,507 / 7,136 3,388 / 4,668 4,932 / 5,831 5,443 / 6,240

jhead 482 / 513 527 / 551 511 / 545 524 / 552 496 / 521 528 / 556 577 / 619

magick 1000 / 1,164 4,379 / 5,623 1,891 / 2,230 5,132 / 5,567 2,853 / 3,948 3,116 / 3,739 5,268 / 5,873

bsdtar 2,691 / 2,823 6,367 / 6,906 2,139 / 4,148 6,490 / 7,648 3,292 / 4,395 2,536 / 4,081 7,006 / 7,581

is triggered in the process_DQT function in jpgqguess.c

and has been requested as CVE-2020-6624 by others. This

vulnerability was only found by EcoFuzz, FidgetyAFL and

AFLFast.new, thus proving that EcoFuzz is more efficient than

AFL and AFLFast in detecting vulnerabilities. In addition,

we recompiled and tested tcpdump with the ASAN model

of AFL. EcoFuzz found a memory leak in the copy_argv

function in tcpdump.c. Finally, we submitted these 5 vulnera-

bilities and obtain CVE-2019-17371 as the memory leak in

libpng. All vulnerabilities are listed in Table 8.

Table 8: The discovered vulnerabilities

Softwares File/Function Status

Binutils-2.32 cp-demangle.c/d_expression_1 CVE-2019-9070

Binutils-2.32 hash.c/bfd_hash_hash Acknowledged

Binutils-2.32 bfd.c/_bfd_doprnt CVE-2019-12972

Binutils-2.31 xmalloc.c/xmalloc Patched

Binutils-2.31 cplus-dem.c/string_append Patched

Binutils-2.31 cplus-dem.c/string_append_template_idx Patched

Binutils-2.31 cplus-dem.c/demangle_class_name Patched

gif2png-2.5.13 gif2png.c/writefile Submitted

gif2png-2.5.13 memory.c/xalloc Submitted

libpng-1.6.37 pngmem.c/png_malloc_warn CVE-2019-17371

tcpdump-4.9.2 tcpdump.c/copy_argv Acknowledged

jhead-3.03 jpgqguess.c/process_DQT CVE-2020-6624

SNMP deamon snmp/Context::createReply Patched

8.3 More Analysis of Experiments on LAVA-

M

In Section 5.5, we evaluate the performance of each technique

on LAVA-M in general. We also point out the comparison be-

tween EcoFuzz with Angora and VUzzer is not strict enough.

Now we do a more in-depth and detailed analysis.

We deployed EcoFuzz on the cloud server in Section 5.5.

We also run EcoFuzz with the same setting as in Section 5.5.

After validating the bugs detected by EcoFuzz during 5 times

of 5-hours runs, EcoFuzz found all listed and unlisted bugs on

base64, md5sum, and uniq, with 48(+4), 57(+4) and 28(+1)

bugs. For who, EcoFuzz found 1,966 bugs in total, with 1,750

listed and 216 unlisted bugs, which are both more than that

of Angora and VUzzer. In detail, EcoFuzz detected 1,139,

1,365, 1,377, 1,450 and 1,210 bugs on who in each run, re-

spectively. Since different environments have an impact on

the experimental results and there is non-negligible random-

ness in the experiment of fuzzing, it is not objective to deduce

that EcoFuzz can always outperform Angora on LAVA-M

from the results in our evaluation. In the origin paper, Angora

can find 1,541 bugs on who in one 5-hours run [10], which

states that Angora is still an efficient and state-of-the-art tool

in detecting the bugs in LAVA-M.

From these results, on base64, md5sum, and uniq, EcoFuzz

found all the listed and unlisted bugs, as same as FidgetyAFL

and AFLFast.new. Angora also performs well on these three

programs. Furthermore, these four tools all detected numerous

bugs in who.

Moreover, AFL-type fuzzers all perform well on LAVA-M

in the dictionary mode. In fact, the way to trigger the bugs

injected in LAVA-M is extremely simple, just satisfying the
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comparison of some four-byte magic bytes in some posi-

tions. However, AFL could not recognize magic bytes in the

conditional statement. Therefore, a comparison of four-byte

magic bytes will cost AFL too much energy to traverse. Some

techniques using taint tracking or symbolic execution outper-

form than AFL without a dictionary on LAVA-M [10, 38]. In

practice, the static analysis module of EcoFuzz has solved

the problem by extracting the hard-code and magic bytes in

LAVA-M. Therefore, it is an efficient way to combine the low-

overhead program analysis techniques (e.g., static analysis)

with the high-speed greybox fuzzing (e.g., AFL). Finally, all

unlisted bugs found by EcoFuzz in different environments are

listed in Table 9.

Table 9: The unlisted bugs found by EcoFuzz

Program IDs of the unlisted bugs found by EcoFuzz

base64 274, 521, 526, 527

md5sum 281, 287, 314, 499

uniq 227

who 2, 4, 6, 8, 20, 61, 63, 73, 77, 81, 85, 89, 117, 125, 165, 169, 173, 177,

181, 185, 189, 193, 197, 210, 214, 218, 222, 226, 294, 298, 303, 307,

312, 316, 321, 325, 327, 334, 336, 338, 346, 350, 355, 359, 450, 454,

459, 463, 468, 472, 477, 481, 483, 488, 492, 497, 501, 504, 506, 512,

514, 522, 526, 531, 535, 974, 975, 994, 995, 996, 1007, 1026, 1034,

1038, 1049, 1054, 1071, 1072, 1329, 1334, 1339, 1345, 1350, 1355,

1361, 1377, 1382, 1388, 1393, 1397, 1403, 1408, 1415, 1420, 1429,

1436, 1445, 1450, 1456, 1461, 1718, 1727, 1728, 1735, 1736, 1737,

1738, 1747, 1748, 1755, 1756, 1891, 1892, 1893, 1894, 1903, 1904,

1911, 1912, 1921, 1925, 1935, 1936, 1943, 1944, 1949, 1953, 1993,

1995, 1996, 2000, 2004, 2008, 2012, 2014, 2019, 2023, 2027, 2031,

2034, 2035, 2039, 2043, 2047, 2051, 2055, 2061, 2065, 2069, 2073,

2077, 2079, 2081, 2083, 2181, 2189, 2194, 2219, 2221, 2223, 2225,

2229, 2231, 2235, 2236, 2240, 2244, 2246, 2247, 2249, 2253, 2255,

2258, 2262, 2266, 2268, 2269, 2271, 2275, 2282, 2286, 2291, 2295,

2302, 2304, 2462, 2500, 2507, 2521, 2681, 2703, 2790, 2804, 2806,

2810, 2814, 2823, 2827, 2834, 2838, 2847, 2854, 2919, 2920, 2922,

3082, 3083, 3099, 3185, 3187, 3188, 3213, 3218, 3222, 3232, 3235,

3237, 3238, 3239, 3242, 3245, 3247, 3249, 3256, 3257, 3260, 3264,

3265, 3267, 3269, 3389, 3464, 3465, 3468, 3469, 3471, 3487, 3488,

3495, 3496, 3509, 3510, 3517, 3523, 3527, 3545, 3551, 3561, 3939,

4024, 4025, 4026, 4222, 4223, 4224, 4225, 4287, 4295

2324    29th USENIX Security Symposium USENIX Association


	Introduction
	Background
	American Fuzzy Lop
	Coverage-based Greybox Fuzzing as Markov Chain
	Multi-Armed Bandits Problem

	A Variant of the Adversarial Multi-Armed Bandit Model
	Coverage-based Greybox Fuzzing as the Variant of the Adversarial Multi-Armed Bandit Model
	Exploration vs Exploitation in VAMAB Model
	Challenges in VAMAB Model

	Implementation
	Main Framework of EcoFuzz
	Self-transition-based Probability Estimation Method
	Adaptive Average-Cost-based Power Schedule

	Evaluation
	Configuration of Evaluation
	Evaluation of Path Exploration and Energy-Saving
	Evaluating the Search Strategy and Power Schedule
	The Validity on Detecting Vulnerabilities
	Evaluation on LAVA-M
	Extended Application for EcoFuzz

	Discussion
	Related Work
	Scheduling Algorithms in Fuzzing
	Smart Seeds Generation or Selection
	Greybox Fuzzing with Optimizing Mutation Strategies

	Conclusion
	More Analysis of Average-Cost Evaluation
	Analysis of Vulnerabilities Detected by EcoFuzz
	More Analysis of Experiments on LAVA-M


