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Special Issue: Ecological and evolutionary informatics

Ecoinformatics: supporting ecology as
a data-intensive science
William K. Michener1 and Matthew B. Jones2
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2National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, CA 93101, USA

Ecology is evolving rapidly and increasingly changing into

a more open, accountable, interdisciplinary, collaborative

and data-intensive science. Discovering, integrating and

analyzing massive amounts of heterogeneous data are

central to ecology as researchers address complex ques-

tions at scales from the gene to the biosphere. Ecoinfor-

matics offers tools and approaches for managing

ecological data and transforming the data into informa-

tion and knowledge. Here, we review the state-of-the-art

and recent advances in ecoinformatics that can benefit

ecologists and environmental scientists as they tackle

increasingly challenging questions that require volumi-

nous amounts of data across disciplines and scales of

space and time. We also highlight the challenges and

opportunities that remain.

Ecology as an evolving discipline

Ecology is increasingly becoming a data-intensive science

(see Glossary) [1,2], relying on massive amounts of data

collected by both remote-sensing platforms [3] and sensor

networks that are embedded in the environment [4–7].

New observatory networks, such as the US National Eco-

logical Observatory Network (NEON) [8] and Global Lake

Ecological Observatory Network (GLEON) [9], provide

research platforms that enable scientists to examine phe-

nomena across diverse ecosystem types through access to

thousands of sensors collecting diverse environmental

observations. It has been postulated that data-intensive

science represents the fourth scientific paradigm following

the empirical (i.e. description of natural phenomena), the-

oretical (e.g. modeling and generalization) and computa-

tional (e.g. simulation) scientific approaches, and

comprises an approach for unifying theory, experimenta-

tion and simulation [2].

Ecologists increasingly address questions at broader

scales that have both scientific and societal relevance.

For example, the 40 top priorities for science that can

inform conservation and management policy in the USA

rely principally on a sound foundation of ecological re-

search [10]. As ecology expands its scope, it is becoming

more collaborative and network and team based [11–13].

For example, research at individual long-term ecological

research (LTER) sites in the USA is conducted collabora-

tively by teams consisting of an average of 18 cooperating

investigators and 20 graduate students; inter-site and

network-wide studies add further to the scope and scale

of the LTER research enterprise [14].

Ecology is also affected by changes that are occurring

throughout science as a whole. In particular, scientists,

professional societies and research sponsors are recogniz-

ing the value of data as a product of the scientific enterprise

and placing increased emphasis on data stewardship,

data sharing, openness and supporting study repeatability

[15–17].

The changes that are occurring in ecology create chal-

lenges with respect to acquiring, managing and analyzing

the large volumes of data that are collected by scientists

worldwide. One challenge that is particularly daunting lies

in dealing with the scope of ecology and the enormous

variability in scales that is encountered, spanning micro-

bial community dynamics, communities of organisms inha-

biting a single plant or square meter, and ecological

Review

Glossary

Cloud computing: provision of computing cycles, storage resources and

software as a service that is accessible from the Internet via a standardized

approach that treats these shared resources as a commodity utility.

Data-intensive science: a transformative, new way of doing science that entails

the capture, curation and analysis of massive amounts of data from an array of

sources, including satellite and aerial remote sensing, instruments, sensors

and human observation.

Data life cycle: the data life cycle encompasses all facets of data generation to

knowledge creation, including planning, collection and organization of data,

quality assurance and quality control, metadata creation, preservation,

discovery, integration, and analysis and visualization.

Faceted search: faceted search or faceted browsing enables users to discover

specific data products by filtering a set of available descriptors. Each facet

corresponds to the array of possible values of a property that is common to a

set of data products, such as author, data center where the data are stored,

sensors used to collect the data, and ecosystem or habitat type where the data

were collected.

Metadata: documentation describing all aspects of the data (e.g. who, why,

what, when and where) that would allow one to understand the physical

format, content and context of the data, as well as possibly how to acquire, use

and cite the data.

Ontology: a formal representation or classification of concepts and their

relationships within a domain of interest.

Provenance: in science, data provenance refers to the ability to track data from

creation through all transformations, analyses and interpretations, enabling

full understanding of the processes used to create derived scientific products.

Quality assurance/quality control (QA/QC): refers to the mechanisms for

preventing errors from entering a data set that are used a priori to ensure high

data quality before collection and to monitor and maintain data quality during

and after the data collection process.

Semantic annotation: ascribing links from data to classes in an ontology.

Scientific workflow system: a computational platform that is designed to

compose and execute a series of data acquisition, data processing and

analytical steps as part of a workflow, in a scientific application.
Corresponding author: Michener, W.K. (william.michener@gmail.com)
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processes occurring at the scale of the continent and bio-

sphere. The diversity in scales studied and the ways in

which studies are carried out results in large numbers of

small, idiosyncratic data sets that accumulate from the

thousands of scientists that collect relevant biological,

ecological and environmental data [18]. Such heterogene-

ity can be attributed, in part, to methodological specializa-

tion to address specific scientific hypotheses, but also to a

lack of standard protocols for acquiring, organizing and

describing data and language barriers and cultural differ-

ences across disciplines, institutions and countries.

In the remainder of this paper, we define ecoinformatics,

describe existing tools and approaches, and highlight re-

cent advances. We then identify remaining challenges and

opportunities and recommend approaches for better incor-

porating ecoinformatics into the research enterprise.

What is ecoinformatics?

Ecoinformatics is a framework that enables scientists to

generate new knowledge through innovative tools and

approaches for discovering, managing, integrating, analyz-

ing, visualizing and preserving relevant biological, envi-

ronmental, and socioeconomic data and information. Many

ecoinformatics solutions have been developed over the past

decade, increasing scientists’ efficiency and supporting

faster and easier data discovery, integration and analysis;

however, many challenges remain, especially in relation

to installing ecoinformatics practices into mainstream

research and education.

The data life cycle

Knowledge is derived through the acquisition of data and

the transformation of those data into information that can

be incorporated into the corpus of scientific facts, principles

and theories. Figure 1 illustrates the different stages that

data might progress through during the processes that

lead to new information and knowledge. Two stages are

reflected in this depiction of the data life cycle. First,

projects that include collection of new data typically pro-

ceed through steps 1–5 (i.e. plan, collect, assure, describe

and preserve) and then can proceed directly to step 8 (i.e.

analysis). Second, synthesis efforts or meta-analysis can

initially start at step 6 (i.e. discover relevant data) and

proceed to step 7 (i.e. integration of data from various

sources) and, finally, to step 8 (i.e. analysis). The stages

are not necessarily exclusive and the steps need not be

sequential. For instance, a synthesis effort would probably

include step 2 (i.e. assure) after step 6 (i.e. discover) and

before step 7 (i.e. integrate). Ecoinformatics tools and

techniques associated with each step of the data life cycle

are described below.

Step 1: plan

Data management planning is often underappreciated and

underutilized in project design, yet it can save time, en-

hance research efficiency and, importantly, satisfy require-

ments of research sponsors that increasingly require

explicit data management plans as part of research pro-

posals. Although practical guidelines for data management

have been outlined [19,20], there is a need for more com-

prehensive planning to support open science. In response

to these community needs, a data management planning

tool (i.e. DMP Tool; http:/dmp.cdlib.org/) was designed to

aid researchers in creating, reviewing and revising data

management plans, recognizing that data management

plans should be living documents that change in response

to project needs and availability of new technologies. The

DMP Tool is based on a similar tool developed by the

Digital Curation Centre in the UK (http://www.dcc.ac.uk/)

and includes five components that should ideally be

addressed in a comprehensive data management plan

(Table 1) [21,22].

Step 2: collect

Ecological data are collected and organized in many differ-

ent ways, including manual recording of observations in

the laboratory and field via hand-written data sheets, tape

recorders and hand-held computers; automated data col-

lection via laboratory and field instrumentation; satellites

and aerial platforms; and, increasingly, sensor networks

that are embedded in the environment. Decreases in the

size, cost and power requirements of sensors have revolu-

tionized their use to monitor biota and environmental

processes [4,5] and provide access to those data in real

or near-real time [9]. New environmental observing sys-

tems, such as NEON [8] and the Ocean Observatories

Initiative (OOI) [23], will provide access to data collected

by aerial, ground-based and underwater sensor networks

encompassing tens of thousands of sensors that, when

combined, will generate terabytes to petabytes of data

annually.

Many different approaches and tools are presently used

for data organization and management, ranging from

spreadsheets and statistical software to relational data-

base management systems to geographic information sys-

tems. Each approach has advantages and disadvantages.

(i) Plan

(ii) Collect

(iii) Assure

(iv) Describe

(v) Preserve

(vi) Discover

(vii) Integrate

(viii) Analyze

TRENDS in Ecology & Evolution 

Figure 1. The data life cycle includes the following steps: (i) plan; (ii) collect; (iii)

assure (i.e. quality assurance and quality control); (iv) describe (i.e. ascribe

metadata); (v) preserve (i.e. deposit data in a secure data repository; (vi) discover

(i.e. identify data that might be needed to answer a question); (vii) integrate (e.g.

merge data from multiple data sources); and (viii) analyze (e.g. statistical analysis,

visualization). Modified after Figure 1 in [22] with the permission of C. Strasser.
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For instance, it is easy to introduce errors into spread-

sheets, as one can mix diverse types of data within a single

column (e.g. dates, numeric values and text) and data

summaries are frequently conflated with raw data. By

contrast, in using relational databases, one can employ

constraints on the types of data that can be entered

(e.g. data typing), which can be used to assure data integ-

rity [24]. Within the US LTER Program, relational data-

bases play a key role in data entry and metadata

preparation as well as facilitating data integration and

analysis [25]. Statistical software tools support many of the

functions available through spreadsheet programs and

provide the added benefit of supporting robust calcula-

tions, data analysis, quality assurance, visualization and

data sub-setting. We anticipate that many existing bound-

aries among data management tools will increasingly be-

come blurred as spreadsheets (or spreadsheet add-ons)

enforce data typing and adopt other procedures commonly

found in relational databases, and as relational databases

provide greater support for geospatial data.

Step 3: assure

Quality assurance and quality control (QA/QC) refers to the

mechanisms for preventing errors from entering a data set

that are used a priori to ensure high data quality before

collection and to monitor and maintain data quality during

and after data collection. Prior to data collection, QA can

consist of defining standards for formats, codes, measure-

ment units and metadata (see Step 4), as well as assigning

responsibility for data quality to a specific individual or team.

Quality control activities range from using two individuals to

independently enter data and then compare results and

rectify differences (i.e. ‘double entry’), to using database

approaches that allow one to minimize the number of times

that data must be entered repeatedly, to enforce data typing

and to incorporate easily illegal value filters and range

checks. Many software packages, such as R and SAS, provide

algorithms and procedures that allow one to visualize easily

data and identify extreme values and potential outliers.

One active area of research lies in integrating QA/QC

with data and metadata management systems and scien-

tific workflow systems so that well-documented data can be

automatically assessed for metadata completeness and

data quality [25–29]. For instance, the LTER Network

Information System (NIS) is designed so that data pro-

ducts are evaluated, processed and classified according to

five categories, ranging from raw or minimally modified

site data (Level-0) to data that are gap filled and semanti-

cally adjusted to meet the needs of specific synthetic data

products (Level-4) [25].

Step 4: describe

Metadata provide sufficient documentation so that one is

able to understand the content, format and context of a

data product. Metadata typically describe: (i) who created,

collected and managed the data; (ii) the data content and

format; (iii) when the data were collected; (iv) where

the data were collected and stored; (v) how the data were

generated, processed, assured and analyzed; and (vi) why

the data were generated (i.e. the study context) [30–32].

Table 1. Summary of components that should be described in a comprehensive data management plana

Component Description and examples

Information about data and data format Types of data that will be produced (e.g. experimental, observational, raw or derived,

physical collections, models, images, etc.)

When, where and how the data will be acquired (e.g. methods and instruments used)

How the data will be processed (e.g. software, algorithms and workflows)

File formats (e.g. csv, tab-delimited or naming conventions)

QA/QC procedures used

Other sources of data (e.g. origins, relationship to one’s data and data integration plans)

Approaches for managing data in the near-term (e.g. version control, backing up, security

and protection, and responsible party)

Metadata content and format Metadata that are needed

How metadata will be created or captured (e.g. lab notebooks, auto-generated by

instruments, or manually created)

Format or standard that will be used for the metadata (e.g. EML or ISO 19115)

Policies for access, sharing and re-use Requirements for sharing (e.g. by research sponsor or host institution)

Details of data sharing (e.g. when and how one can gain access to the data)

Ethical and privacy issues associated with data sharing (e.g. human subject

confidentiality or endangered species locations)

Intellectual property and copyright issues

Intended future uses for data

Recommendations for how the data can be cited (e.g. citation and DOI)

Long-term storage and data management Identification of data that will be preserved

Repository or data center where the data will be preserved

Data transformations and formats needed (e.g. data center requirements and

community standards)

Identification of responsible parties

Budget Anticipated costs (e.g. data preparation and documentation, hardware and

software costs, personnel costs and archive costs)

How costs will be paid (e.g. institutional support or budget line items)

aSee http://cdlib.dmp.org.
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Critically, metadata enable a scientist to understand and

use the data; this is particularly important for study

reproducibility and for synthetic efforts, such as meta-

analysis, where the goal might be to integrate and compare

data across many studies, looking for general trends or

emergent properties as the scale of study expands. Various

metadata standards and tools have been developed to

provide consistency in the content and format of metadata,

and to facilitate the creation and management of metadata

(see the supplementary material online) [33,34].

Step 5: preserve

Data preservation encompasses the deposition of data and

metadata in a data center or data repository where the

data can be verified, replicated and actively curated over

time (e.g. including migration of data to new storage media

as old media are replaced or become outdated) [35,36].

Data centers support different levels of data verification,

replication and curation, because of the costs involved and

the difficulty in automating many of these procedures.

Data centers can be associated with governmental and

nongovernmental organizations, universities, libraries,

environmental observatory networks, and commercial

and non-profit enterprises. Frequently, a data center sup-

ports a specific community of practice that can be associ-

ated with a particular research sponsor, home institution,

or thematic area. User help-desk support, peer-review of

data products and assignment of Digital Object Identifiers

(DOIs) to data products so that they can be uniquely

identified and cited, represent some of the services that

data centers can offer to their stakeholders. The Oak Ridge

National Laboratory Distributed Active Archive Center for

Biogeochemical Dynamics, for example, assigns DOIs to its

data products and tracks the usage of data products as a

service to the data providers and research sponsor [37].

Step 6: discover

Data discovery remains one of the greatest challenges facing

environmental scientists as they attempt to scale up re-

search to broader spatial and temporal scales. On the one

hand, many valuable and relevant data products are not

readily available as they are stored on laptops and compu-

ters in the offices of individual scientists, projects and insti-

tutions. In essence, these data reside in thousands of data

silos disconnected from the web, requiring one to learn of

their existence through word-of-mouth. On the other hand, a

simple search for a particular type of environmental data,

such as ‘wave height’, ‘soil carbon’, or ‘caribou’, might result

in millions of ‘hits’, of which only a small fraction are perti-

nent. The first problem can be addressed as scientists and

organizations recognize that data are valuable products of

the scientific enterprise and, accordingly, describe, preserve

and make those data available for broader use [17,38]. The

second challenge is being addressed through projects such as

DataONE. These projects support sophisticated, user-

friendly search tools that enable scientists to search by time

and space and also drill down further using faceted search

techniques that allow one to filter the results by parameter,

sensor employed, author and other properties of the data, as

well as data-subsetting tools for extracting only those data

that scientists desire [39]. In addition, the use of controlled

vocabularies and community thesauri are useful for assign-

ing key words to data products and can facilitate discovery of

desired data [40]. Observational data models and ontologies

will be central to achieving even more precise discovery of

specific data [41–43]. For example, by annotating observa-

tional data to ontology concepts, searches can be automati-

cally expanded to search for related terms (e.g. a search for

biomass would also discover variables associated with dry

weight, wet weight and other pertinent descriptors).

Step 7: integrate

Collaborative, large-scale synthesis studies in ecology re-

quire the integration of data from many disparate studies

and disciplines (e.g. population studies, hydrology and

meteorology). Integrating source data from such studies

is labor intensive and time consuming, because it requires

understanding methodological differences, transforming

data into a common representation, and manually convert-

ing and recoding data to compatible semantics before

analysis can begin. Data integration for crosscutting stud-

ies is generally a manual process and can consume the

majority of time involved in conducting collaborative re-

search [1,11]. Although data integration is challenging, a

set of approaches is emerging that explicitly encodes the

semantics of observational data and then reasons across

these semantics to semi-automate the process of data

integration [44,45]. In these approaches, semantic models

are built from the bottom up by explicitly capturing the

semantics of measurements, which are generally well un-

derstood but rarely explicitly captured. Both the Extensi-

ble Observations Ontology (OBOE) and the Observations

and Measurements specification provide compatible mod-

els of data semantics that capture these measurement

semantics and that can be used to streamline data inte-

gration (Box 1) [41,46]. By contrast, ecologists have tradi-

tionally used tools such as Excel to manipulate and convert

data manually for integration; however, this process is

error-prone and is not reproducible because of the lack

of provenance regarding these operations. Scripted analy-

sis environments, such as R and Matlab, improve this by

providing a record of data manipulations, but are still

largely a record of procedural manipulations of data. Sev-

eral approaches are emerging that capture a provenance

trace that describes the precise derivation of data objects

[29,47,48], thereby linking transformation processes to the

source and derived data that they produce, and enabling

open and reproducible scientific studies.

Step 8: analyze

Ecological systems exhibit high variability and are inter-

connected in complex ways, thereby stimulating the need

for various forms of statistical and geospatial analyses and

modeling to distinguish significant ecological processes

from background variability. These analytical processes

are fundamental to most published results in ecology.

Ecologists use a wide variety of programming and gener-

al-purpose statistical tools along with a variety of specialty

tools and custom built simulation and analytical models to

reach conclusions about significant ecological processes

(see the supplementary material online) [49–56]. Ironical-

ly, these analytical processes are also rarely documented
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with sufficient detail to enable meaningful reproduction;

journal articles typically contain a brief overview that

names statistical and modeling approaches but does not

capture the details of what was done or how analyses were

implemented. Research and development in ecoinfor-

matics focuses on improving this situation through new

approaches to documenting the entire set of processes used

to reach scientific conclusions [57–64]. Scientific workflow

systems, such as Kepler, Taverna, VisTrails and Pegasus

[57,59–61,63,64], provide an executable and complete de-

scription of analytical procedures that allows scientists to

link together processes drawn from multiple different

analytical systems. The Kepler scientific workflow system

[57] is one such system that has been specialized for use in

ecological research (Box 2, Figure I). For example, it

includes specific components for accessing data described

in the ecological metadata language (EML), has special

components for incorporating access to ecological sensor

Box 1. Ontology-mediated data integration

Ecological synthesis is labor intensive in large part owing to the

difficulty of integrating heterogeneous data for use in analysis.

Crosscutting studies typically involve combinations of data spanning

multiple disciplines (e.g. ecology, hydrology and atmospheric

science) and tremendous variability in the structure and semantics

of data within disciplines [73]. Although sensor- and satellite-derived

data sets are often fairly uniform, many relevant studies collect data

using customized methods and experimental designs meant to

address particular hypotheses. Meta-analysis techniques allow for

combining even highly specialized experimental studies. For exam-

ple, meta-analytical techniques have been used effectively to under-

stand cross-system results regarding consumer control of

productivity, but data compilation involved manual extraction and

coding of data from 191 experiments in 83 individual journal papers

[74]. Thus, for synthesis to be more efficient, capabilities for semi-

automated data integration need to be massively improved.

One approach to this problem is being developed by the Scientific

Observations Network (SONet), a collaboration attempting to define

a core model of scientific observations that can be used for

advanced data discovery and integration operations. In this model,

scientists formally annotate data sets with semantically precise

terms drawn from an ontology to specify the semantics of the data.

These annotations can then be used to reason about the compat-

ibilities and incompatibilities across source data sets, and then

transform those compatible data sets to a common target structure

and format to be used in downstream data analysis. The transfor-

mations can include unit conversions to a common set of scientific

units, alignment and concatenation of semantically compatible

variables, downscaling and upscaling to a targeted scale, and

calculation of derived values that might be present in one data set

but not another.

The example in Figure I illustrates the semi-automated process of

integrating two source data sets (b,c) into a common target data set

(d) by using an ontology (a) to clarify the semantics of measurements.

The ontology follows the OBOE model [41] in modeling Entities

(things on which observations are made), Characteristics (the proper-

ties of those things that are measured) and Standards (the allowable

values for observations). Each of the source data sets makes

observations of the size of samples of populations of two salmon

species, Oncorhynchus tshawytscha (king or chinook salmon) and

Oncorhynchus kisutch (coho or silver salmon) at various life stages.

By annotating both data sets against a common ontology, it is

possible to determine that the highlighted cell in source data set 1 is a

Number (Standard) representing a PopulationCount (Characteristic)

of a KingPopulation (Entity), all indicated by green solid arrows.

Source data set 2 is similar, except that the Characteristic is explicitly

a SmoltPopulationCount. Because it is known that all SmoltPopula-

tionCount measurements are also PopulationCount measurements,

the requisite knowledge is available to transform the data by using

this along with annotations of the other columns in the data sets to

produce the desired integrated data set (d).

Ontology-driven data integration is among the most promising

approaches for streamlining the laborious process of assembling and

transforming data in preparation for cross-cutting synthesis studies.
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Figure I. Ontology-driven integration occurs when semantically explicit scientific terms from an ontology (a) are linked to source data sets (b,c) and then used in a

reasoning process to transform the source data sets to an integrated product (d). In the Extensible Observations Ontology (OBOE) model, linkages between source data

explicitly define the Entity being observed, the Characteristic of that Entity that is being measured, and the Standard used to interpret the measured values.
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networks, and allows scientists to incorporate commonly

used analytical tools, such as R and Matlab [28]. Kepler

and other workflow systems also capture provenance in-

formation about scientific analyses; each workflow repre-

sents a precise record of the processes used in an analysis,

and the systems record the provenance of derived products

of the analysis, allowing others to understand fully the

relationship between data, processing and results, signifi-

cantly improving the replicability of scientific findings.

Ecological models can also be computationally demanding,

but ecologists are rarely able to take advantage of ad-

vanced computing resources because their models often

are constrained by built-in user interfaces and lack the

modularity to be incorporated into other execution frame-

works. By designing analytical components that can be

executed in scientific workflow systems, scientists signifi-

cantly improve documentation of their processes, tame

complexity of the models and enable the models to be

Box 2. Adaptive management using Kepler scientific workflows

Benefits of reproducible science are pronounced in areas where

ecological and environmental research are applied to issues of

societal importance. Past examples, such as the East Anglia climate

research controversy, demonstrate the negative impact that can occur

when scientific processes are insufficiently open [75]. In South Africa,

water policy has a critical impact on ecological systems in Kruger

National Park. Local policy dictates that municipalities upstream of

the national park provide sufficient water flow in terms of both total

throughput and peak flow events, but traditionally the data for

monitoring have been managed in a way that they are unavailable for

automated analysis. Park management at Kruger has worked with

scientists to establish well-defined Thresholds of Potential Concern

(TPCs) that, when exceeded, trigger management evaluation of the

state of the system that leads to management action and possibly to

changes to monitoring protocols in an iterative adaptive management

cycle. Until recently, the data for these TPCs were manually collated

and analyses were performed manually in a labor-intensive process.

By using a scientific workflow system that captures the complete

process of calculating the water flow TPC, provides a mechanism for

accessing data from a park-wide repository and periodically executes

the workflow on current data, park managers can readily calculate

TPCs efficiently and view visualizations of historical performance.

In Figure I, the scientific workflow encapsulates a complex set of

analyses and models but communicates the analytical flow in an

intuitive way. The workflow can be scheduled to run on an

appropriate daily or weekly schedule to produce a visualization that

highlights in red the time periods during which the minimum flow

threshold has been exceeded. Whenever these conditions occur, park

managers can be automatically notified, allowing them to evaluate

the reasons for the issue and act accordingly, either by modifying the

TPC, the monitoring system, or by contacting municipal authorities

about flow issues. In addition, the workflow system provides a

complete provenance trace linking the exact versions of data used for

the analysis, the analytical procedures executed and the output

results, thereby allowing an open and transparent view of the science

that is used to guide resource management. Scientific reproducibility

as enabled by workflow systems is fundamental to the successful

incorporation of science in applied policy and management.
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Figure I. The Kepler scientific workflow system can be used to capture a complete analytical procedure, even when multiple statistical analysis and modeling systems

are in use. This scientific workflow encapsulates all of the processes used to model and visualize water flow characteristics over time, and effectively communicates

periods when system thresholds have been exceeded so that adaptive management processes can be employed.
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run on powerful distributed computing systems. For ex-

ample, Kepler includes facilities for easily executing mod-

els on pre-existing computing grids, in cloud-computing

environments and in ad hoc networks of workflow systems

[65,66], while capturing a full provenance trace of the

process; and VisTrails is built to generate effectively sci-

entific visualizations while also capturing the provenance

of the analysis [61].

Supporting the full data life cycle

New ground, aerial and satellite-based environmental ob-

serving systems coupled with the rapid growth in the use of

in situ environmental sensor networks for field research and

monitoring, as well as an ever-growing number of citizen-

science programs, will soon push ecology and the environ-

mental sciences into a new era where petabytes of data are

being collected annually. Powerful informatics platforms

will be required to support scientists as they move into this

age of data-intensive science. Several such platforms are

being designed and built at various scales, including the

LTER NIS, the DataONE Federation, LifeWatch, NEON,

GLEON and OOI.

The US LTER Network is presently building a network

information system that will support synthetic science by:

(i) using standardized metadata management and access

approaches; (ii) providing middleware programs and work-

flow solutions that facilitate the creation and maintenance

of integrated LTER data sets; and (iii) supporting stan-

dardized applications that facilitate discovery, access and

use of LTER data [25,67].

DataONE represents a new type of research platform

that is specifically designed to support the full data life

cycle and to enable new, data-intensive science. It is a

federated network providing infrastructure and services

for environmental science, enabling new science and

knowledge creation through anytime, anywhere access

to data about life on Earth and the environment that

sustains it [39]. DataONE comprises three principal com-

ponents. First, DataONE Member Node organizations

provide data, computing resources and services, such as

data replication. These organizations include data reposi-

tories, libraries, universities, research networks, govern-

mental and nongovernmental agencies, computing centers

and commercial enterprises. Second, DataONE Coordinat-

ing Nodes support network-wide services that enhance

interoperability of the Member Nodes and support index-

ing and replication services. Coordinating Nodes make it

easy for scientists to discover data wherever archived,

make it easy for data repositories to replicate their data

and make Member Node data and services more broadly

available to the international community. Third, the

DataONE Investigator Toolkit provides tools that are

familiar to scientists and that can support them in all

aspects of the data life cycle.

LifeWatch is a platform similar to DataONE that is

being designed in the EU. NEON [8] and OOI [23] are

terrestrial and oceanic observational programs, respective-

ly, that also include integrated informatics infrastructure.

We envision that a Federation of such platforms will be

needed to support data-intensive, cross-domain research at

the biosphere scale. Moreover, the data underlying such

research must be openly available and the approaches used

in deriving scientific findings must be transparent to en-

sure that science and society maximally benefit (Box 3).

Remaining challenges

Despite the emergence of ecoinformatics solutions that

enable science, several technical and sociocultural chal-

lenges and research opportunities remain. First, from the

technical side, it is difficult to transport terabyte- and

petabyte-sized data sets. Possible solutions include adding

computing capabilities to data repositories so that data sets

can be processed prior to transport and colocating high-

performance computing with large data resources. Second,

new visualization approaches and technologies are needed

to reduce the time and costs associated with generating

visualizations of increasingly large and complex data rela-

tionships [68]. Third, little attention has been paid to pre-

serving the algorithms and workflows that scientists use in

assuring, analyzing and visualizing data (i.e. activities that

support reproducible research) [69–71]. myExperiment was

developed as a site where scientific workflows may be stored

and shared [72]. However, many standard data center ser-

vices, such as replication, verification, and migration and

conversion to new technologies are more challenging for

algorithms and workflows. Finally, despite the promise of

semantic technologies, data integration for large-scale stud-

ies is still largely manual and time consuming.

Sociocultural challenges can exceed the difficulty of the

technical challenges. First, ecoinformatics must be incul-

cated into mainstream ecological research. Two problems,

in particular, need to be addressed: (i) increasing applica-

tion awareness (i.e. making ecologists aware of the infor-

matics tools and approaches that are available; and

(ii) increasing application literacy (i.e. showing ecologists

how to use tools properly). Ecoinformatics is, in essence,

the ‘new statistics’ and should be included in undergradu-

ate and graduate curricula, as well as training workshops

at professional society meetings. Second, funding agencies

can play an important role as they are key stakeholders in

the scientific enterprise. Requiring data management

Box 3. Open science for society

Global problems require open access to global data from many

disciplines. Such data arise from scientific disciplines that often

have very different cultures with respect to data sharing, develop-

ment and adoption of standards, and practice of good data

stewardship. Incentives from research sponsors, societies and

institutions (e.g. requiring data management plans) combined with

the availability of new informatics tools and platforms, such as

DataONE, will be necessary to facilitate data intensive science. Three

avenues of research and development offer particular promise:

(i) automated provenance-tracking mechanisms that allow scientists

to understand and replicate scientific findings fully [76]; (ii) advanced

visual analytics that enable scientists to interpret complex, large

data volumes more rapidly [68]; and (iii) usability analysis and

software engineering support that enable scientists to use advanced

ecoinformatics tools more easily.

Tracking the provenance of scientific results is particularly

important as advances in environmental science are applied to

issues important to society. Open data provide the feedstock on

which good science is based, replicable analysis and modeling

practices lead to robust findings, and open-access publication

disseminates these critical results to the broadest audiences,

ensuring the greatest impact of open science for society.
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plans is a necessary first step in the short-term, but must

be matched by a long-term commitment to sustain data

repositories and coordinating organizations [15] and to

further encourage data sharing and data stewardship

throughout the entire project lifecycle.

Concluding remarks

In a manner analogous to the transformation undertaken

in the physics domain, new environmental observational

systems are moving ecology into the realm of big science,

whereby scientists and institutions share observation plat-

forms, accumulate and analyze massive amounts of data,

and collaborate across institutions to address environmen-

tal grand challenge questions. NEON, GLEON, OOI and

other observational platforms play a key role in this scien-

tific transformation, much like telescopes, supercolliders,

gravitational observatories, and other shared facilities

have for physicists. Nevertheless, ecological understand-

ing will, for the foreseeable future, continue to depend

upon data collected across a wide range of scales by both

individuals and large teams from all countries. New inte-

grative informatics platforms, adoption of standard infor-

matics protocols and good data stewardship practices, as

well as sociocultural changes such, as promoting informat-

ics literacy, data sharing, and scientific transparency and

reproducibility are central to understanding the nature

and pace of ecological and environmental change. The

alternatives are for ecological data to remain largely hid-

den from view in a myriad of disconnected data silos and for

ecology to be destined to generate a huge assortment of

conclusions from local studies with little way to judge how

general or idiosyncratic those scientific findings might be.
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