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Ecological Advanced Driver Assistance System for

Optimal Energy Management in Electric Vehicles
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Abstract—Battery Electric Vehicles have a high potential in
modern transportation, however, they are facing limited cruis-
ing range. The driving style, the road geometries including
slopes, curves, the static and dynamic traffic conditions such
as speed limits and preceding vehicles have their share of
energy consumption in the host electric vehicle. Optimal energy
management based on a semi-autonomous ecological advanced
driver assistance system can improve the longitudinal velocity
regulation in a safe and energy-efficient driving strategy. The
main contribution of this paper is the design of a real-time risk-
sensitive nonlinear model predictive controller to plan the online
cost-effective cruising velocity in a stochastic traffic environment.
The basic idea is to measure the relevant states of the electric
vehicle at runtime, and account for the road slopes, the upcoming
curves, and the speed limit zones, as well as uncertainty in the
preceding vehicle behaviour to determine the energy-efficient
velocity profile. Closed-loop Entropic Value-at-Risk as a coherent
risk measure is introduced to quantify the risk involved in
the system constraints violation. The obtained simulation and
field experimental results demonstrate the effectiveness of the
proposed method for a semi-autonomous electric vehicle in terms
of safe and energy-efficient states regulation and constraints
satisfaction.

I. INTRODUCTION

THE development of the Internal Combustion Engine

(ICE) vehicle is clearly one of the most important

achievements of modern technology for transport purposes.

However, like in most other technologies, modern vehicle

technology is also associated with its own challenges in safety,

energy consumption and environmental contamination. The

large number of ICE vehicles in use is leading to serious prob-

lems for the environment and human life around the world, and

air pollution and global warming are problems of predominant

concern. Therefore, it is well recognised that Battery Electric

Vehicles (BEV) have one of the most promising powertrain

technology for a sustainable future transportation [1].

A. Background Information

A BEV uses one or more electric motors for propulsion and

electricity as the only source of propulsion energy. The BEV

has relatively interesting features in comparison to other ICE
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vehicle alternatives. First of all, the efficiency of the BEV is

far better than the ICE’s efficiency. The BEV roughly have

80% to 95% efficiency while the ICE vehicles have 10% to

25% efficiency which means that only 10 to 25 units of energy

are transferred to the wheels of the vehicle. Additionally, the

BEVs offer the same or even better performance in comparison

to the ICE vehicles, thanks to high torque at low speed of the

electric motor. Furthermore, BEVs offer the opportunity to use

different renewable energy resources. Despite the fact that also

power plants have a contribution to carbon emissions, there

are still different choices of getting true zero-emission electric

from renewable energy resources. Introduction of the BEVs

into the market has extended the opportunities for sustainable

mobility and a new technological era which influences the

driver behaviour patterns [2].

Environment-friendly BEVs are highly demanding for effi-

cient utilisation of energy resources and reduction of energy

consumption in road networks [3]. However, improvement of

performance and energy efficiency is a challenging task where

three energy conversion steps are generally investigated for

the energy efficiency of the transportation. On the grid level,

improvements could target at the grid-to-tank conversion that

comprises the transfer of electric energy from the stationary

distribution nodes of the grid to the onboard storage system.

Considering the component or system control level, the tank-

to-wheel conversion of onboard energy to mechanical energy

could be improved. Related reviews on the latest development

in BEV technologies, impacts of BEV roll out and opportuni-

ties brought by BEV deployment are presented in [4]. Finally,

the wheels-to-distance conversion considers the influence of

the vehicle parameters and the driving strategy on the energy

efficiency and is the main focus of this study.

A wide variety of factors such as the driving style, the BEV

energy consumption characteristic map, its aerodynamic drag,

the road slope with upcoming curves, traffic speed limits, the

road visibility, dynamic of traffic flow, temperature, as well

as weather conditions have a significant impact on the energy

consumption of a BEV. Therefore, the goal of economical

(eco-) driving is to adapt the driving strategy to an energy-

aware driving strategy. The Eco-driving is considered to be one

of the most cost-effective methods in Intelligent Transportation

System (ITS) to improve the road safety and energy efficiency

of transportation. Improving the wheels-to-distance efficiency

by controlling the driving profile reveals its potential when

considering that it does not require structural changes to

the system [5]. Eco-driving has the potential to enhance the

capability of an automatic longitudinal control by minimising

the energy consumption and emissions of the vehicle [6].
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Encouraging drivers towards eco-driving can reduce energy

consumption. In order to achieve an energy efficient drive

strategy, a driver has to consider different factors such as the

BEV dynamics, its energy consumption characteristic map,

the road slopes, the curves, and the traffic situations in an

anticipatory driving manner. However, drivers do not always

and under all circumstances drive ecologically. Moreover, a

mental focus on eco-driving might even lead to a distraction

of the driver. On the other hand, utilising automatic Advanced

Driver Assistance Systems (ADAS) can support drivers in

various driving tasks. Herein, the anticipatory driving based

Eco-ADAS can reduce the energy consumption by predicting

earlier future situations. Several concepts attempt to implement

the predictive Eco-driving in a more rigorous framework. In

these concepts, the Eco-driving is regarded as an Optimal Con-

trol Problem (OCP) where the driving commands minimise the

energy consumption for a given trip [5]. An overview on the

different options to support the driver to reduce its energy

consumption was provided in [7]. Model Predictive Control

(MPC), also known as receding horizon optimal control, has

been an attractive approach in comparison with alternative

methods of multivariable control [8]. In MPC, the OCP is

solved repeatedly in a receding horizon principle and the first

element in a sequence of finite control actions is applied to

the system at each sampling time.

Several works have been proposed in the literature to min-

imise the energy consumption of the vehicle. Speed advisory

systems had been proposed in [9] for connected vehicles in

order to minimise energy consumption over a planned route.

In [9], the behaviour of the preceding vehicle was taken into

account for a safe- and eco-driving system. Estimating and

predicting traffic situations over time is an essential capability

for sophisticated driver assistance systems and autonomous

driving [10]. An efficient vehicle driving system, based on

detailed anticipation of surrounding traffic with the aims of op-

timizing driving performance was proposed in [11]. A review

of fundamental goals, development and future perspectives of

driver assistance systems was provided in [12].

B. Related Works in the Literature

Cruise Control (CC), Adaptive Cruise Control (ACC) and

Cooperative Adaptive Cruise Control (CACC) systems are the

well-established ADAS that automate the throttle and brake

control of the vehicle to retain the pre-set longitudinal velocity

while maintaining a safe distance from the preceding vehicles.

The vehicle under control of an Eco-ACC system minimises

energy consumption in addition to other control objectives of

the conventional ACC systems. Several contributions related

to the application of predictive control in Eco-CC, Eco-

ACC, and Eco-CACC systems can be found. For instance,

a novel energy-efficient MPC was designed for the BEVs

Eco-CC system by [13] and [14]. A linear real-time MPC to

reduce the online computational burden by combining a move

blocking strategy with a constraint-set compression strategy

was introduced in [15].

Nonlinear Model Predictive Control (NMPC) is distin-

guished by the use of non-linear system models in the OCP

to improve performance specifications (see e.g. [16]). An

exemplary work of the NMPC, where an energy-efficient

NMPC was introduced to drive a vehicle on roads with

varying traffic and signals at intersections was introduced in

[3]. An NMPC for a fuel-saving ACC system to improve the

performance on tracking accuracy and fuel consumption by

simultaneously considering the road elevation information and

nonlinear powertrain dynamics was presented in [17]. An Eco-

ACC system for plug-in hybrid electric vehicles to improve the

total energy consumption and vehicle safety was introduced

in [18]. Parametric uncertainties and exogenous disturbances

are pervasive features of complex dynamical systems. Robust

Model Predictive Control (RMPC) has been effectively utilised

for systems with uncertainties (see e.g. [19]). An RMPC

approach that regulates a minimum safe distance between

vehicles taking into account the overall system delays and

braking capacity of each vehicle was for instance proposed

in [20].

In RMPC, the worst-case based design may lead to conser-

vative control actions and low system performance. Stochastic

Model Predictive Control (SMPC) has been introduced as a

stochastic alternative to address the shortcomings of RMPC.

The SMPC is based on the stochastic uncertainty of a process

model and generally formulated as an expectation of the objec-

tive function with probabilistic constraints, so-called chance-

constraints (see e.g. [21]). Applied to an ACC systems, a

scenario-based SMPC with driver behaviour learning capabil-

ity for improving the powertrain performance was designed in

[22]. A CACC system using stochastic, linear MPC strategies

with the goal of minimising the fuel consumption in a car-

following scenario was presented by [23]. Another example

of a SMPC for the ACC and CACC systems under uncer-

tainty based on the constant time gap policy were introduced

in [24]. A real-time Stochastic Nonlinear Model Predictive

Control (SNMPC) with probabilistic constraints and Risk-

sensitive Nonlinear Model Predictive Control (RSNMPC) were

presented in [25] and [26] to compute a safe and energy-

efficient cruising velocity profile online.

C. Risk-sensitive Predictive Optimal Energy Management

Although the conventional CC, ACC and CACC systems

can assist the human driver to have a safe driving experience

and improve the overall performance in an ITS, these are

so far not capable of dealing with curvy roads and traffic

signs information in an energy-efficient manner. In addition,

even though the SNMPC has been introduced to improve

the shortcoming of the SMPC and seems to be promising

in terms of balancing conservatism in decision making and

robustness to uncertainties, it has received relatively little

attention in the literature so far, due to its limitation for real-

time applications. Moreover, most of the mentioned SNMPCs

are based on risk-neutral performance measures which may

not be a suitable control strategy for the safety-critical ACC

and CACC systems.

In order to achieve a sophisticated Eco-ADAS for appli-

cation in ITS, it is required to develop an advanced Eco-

ACC system with extended functionalities which is capable
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of operating on twisty roads rather than highways and dealing

with a stochastic traffic environment. The main objective

of this paper is to design an Eco-ACC platform with an

advanced stochastic optimal control algorithm to meet the

specific requirements of a semi-autonomous BEV to extend

its cruising range. This paper presents an enhanced Eco-ACC

system capable of dealing with road curvatures, speed limit

zones, and uncertain behaviour of a preceding vehicle in a

risk-sensitive manner. Herein, a real-time RSNMPC to plan the

online safe and cost-effective cruising velocity with enhanced

dynamic models is developed. The driving performance and

energy efficiency depend on the accurate prediction of the

deterministic parts such as the road geometry and statistically

accurate anticipation of the stochastic parts of the system such

as the uncertain preceding vehicle behaviour.

Based on the developed model, the BEV state informa-

tion and plausible velocity profile of the preceding vehicle

are propagated through the prediction horizon. The chance-

constraints evaluate the uncertain states trajectories. The main

contribution of this paper is the introduction of a close-loop

Entropic Value-at-Risk (EVaR) as a coherent risk measure to

quantify the risk involved in the constraint violations. The

inequality constraint handling method for the state inequality

constraints are based on a semi-smooth transformation of

Nonlinear Complementary Functions (NCF). The performance

of the proposed concept in terms of real-time state regulation

and constraint fulfilment is evaluated by simulation and field

experimental tests. The achieved results demonstrate a signif-

icant improvement in energy consumption and safety of the

BEV controlled by the RSNMPC.

The remainder of this paper is structured as follows: The

system model is introduced in Section II. The RSNMPC

formulation, risk management with inequality constraints are

presented in Section III. Section IV includes a simulation-

based evaluation as well as an experimental validation of

the proposed concept in real driving tests, followed by the

conclusion and description of future work in Section V.

D. Notation

Throughout this paper, Rn denotes the n-dimensional Eu-

clidean space. R+ := [0,∞). N = {1, 2, . . .} is set of

natural numbers. N+ := N ∪ {0}. Z[a,b] := {a, a + 1, . . . , b}
is set of integers from a to b. E denotes expectation and

Ex[·] := E[·|x(0) = x] is the conditional expectation. Pr

denotes probability, and Prx[·|x(0) = x] is the conditional

probability distribution of random variable(s) x.

II. SYSTEM MODELS

The fundamental Eco-ADAS concept proposed in this paper

for a semi-autonomous BEV that extends the functionalities

of an Eco-ACC system is presented in Fig. 1. Similar to

the conventional ACC systems, the driver pre-sets the de-

sired velocity with preferred safe distance from the preceding

vehicle. The semi-autonomous Eco-ACC system predictively

regulates the velocity with respect to the longitudinal motion

of the host vehicle dynamics (BEV), its energy consumption,

road geometry and traffic sign information, as well as the

Host Vehicle Dynamics,

Energy Consumption, and

Position Information

Road, Traffic, and

Uncertain Preceding

Vehicle Information

Risk-sensitive Nonlinear

Model Predictive Controller
Traction

Input

Host Vehicle,

[sh, vh, eh]

Preceding Vehicle,

[sp, vp]

RADAR

GPS

Fig. 1. Extended Eco-ACC Concept for a Semi-autonomous BEV

plausible motion of the preceding vehicle. While the driver

still manually handles the steering control of the vehicle, this

system should plan and realise a proper safe and energy-

efficient cruising velocity profile autonomously for the entire

trip without requiring the driver’s intervention. In addition, this

system should be able to operate at full-range speed assistance

and to handle cut-in/out scenarios.

A. Vehicle Dynamics

The electric propulsion subsystems of the BEV include

vehicle traction control inputs (throttle and brake pedals), a

power electronic converter, an electric machine, a generally

single-gear mechanical transmission, and the driving wheels.

The energy source subsystem involves a battery package, an

energy management-monitor unit, and an energy recharging

entity. The auxiliary subsystem consists of the power steering,

the cabin climate control, and the auxiliary supply units (for

more details, see [1]).

The position (sh) and velocity (vh) along the longitudinal

motion of the BEV can be expressed by Newton’s second law

of motion, where the vehicle is assumed to be a point mass at

the centre of gravity as follows:

ṡh = vh, (1)

v̇h = (Ftrac − Fres)/M. (2)

Herein, M , Ftrac(t), and Fres(t) are the equivalent mass of

the vehicle, the traction force, and the total motion resistive

forces, respectively. The equivalent mass can be calculated by

an empirical relation as M = m(1+δ1+δ2i
2
g), where m is the

kerb mass of the vehicle, δ1 represents the total angular inertial

moment of the wheels, δ2 represents the effect of the power-

plant-associated rotating parts, and ig is the single transmission

ratio [1].

The traction force depends on the equivalent mass and con-

trol input as Ftrac(t) :=Mu(t). The control input is bounded

by the physical limits of the traction force that the wheel-

road contact can support without slip (umin(vh) ≤ u(t) ≤
umax(vh)) [1]. The main total resistive force (Fres) including
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aerodynamic drag force (Fard), gradient force (Fgrd), and

rolling resistance force (Frr) is represented by:

Fres = Fard + Fgrd + Frr, (3)

Fard =
1

2
ρAfCD(d)v2h, (4)

Fgrd =Mg sin(θ(sh)), (5)

Frr = Crr(vh)Mg cos(θ(sh)), (6)

where ρ, Af , g, θ(sh), and Crr(vh) are the air density, the

vehicle frontal area, the gravitational acceleration, the road

slope angle as a function of the host vehicle position, and the

velocity dependent rolling resistance coefficient, subsequently.

The rolling resistance coefficient for passenger vehicles on a

concrete road can be approximated as Crr(v) = 0.01(1 +
v/576) [1]. The CD(d) is the aerodynamic drag coefficient

that depends on the nominal aerodynamic drag coefficient,

CD0, and the relative distance between the preceding and host

vehicles, d = sp−sh. Vehicle drag reductions arise from close

spacing with the preceding vehicle [27].

B. Road Geometry and Static Traffic Models

For any Eco-ADAS corresponding to safety and energy

management applications it is advantageous to include more

detailed information about the road geometries and static

traffic regulations. The road slopes, road curves, and traffic

speed limit zone data are modelled as continuous and differ-

entiable functions in [28]. In that method, the road slope profile

(fslp(θ(s))) is proposed to be the sum of quadratic functions of

the vehicle’s position representing each road segment’s slope

data as follows:

fslp(θ(s)) :=

Nsgm
∑

n=1

Hn
(s−sn−1)

(ans
2+bns+cn)H

n
(s−sn)

, (7)

where Nsgm is the number of road segments, Hn
(s−sn−1)

and

Hn
(s−sn)

are hyper-functions of the nth road segment. These

functions represent the data points in each segment of the

road utilising the hyper-function concept to interconnect the

estimated segments of the road at the positions, sn−1 and sn
of the boundaries. The hyper-functions may be represented by

the approximate Heaviside’s functions at the boundary position

values sn−1 and sn.

The road curves and profiles of the traffic speed limits are

modelled in a similar way [28]. The resulting curve fcrv(δ(s))
that is used to express the overall road curve profile is obtained

as:

fcrv(δ(s)) :=

Ncrv
∑

n=1

Hn
(s−sent)

∣

∣

∣

∣

1

Rcrvn(s)

∣

∣

∣

∣

Hn
(s−sext)

, (8)

where Ncrv is the number of road curves, and Rcrvn is the

radius of a circle valid for the curve’s arc length with two

position points, sent and sext, at the respective entrance and

exit positions. The Rcrvn(·) for a straight road segment can be

considered as a large numerical value. Furthermore, the traffic

speed limit profile (flmt(s)) can be modelled as:

flmt(s) :=

Nlmt
∑

n=1

Hn
(s−sstr)

(vlmt − vmax)H
n
(s−send)

+ vmax,

(9)

where Nlmt is the number of speed limit zones, and vlmt

is the specified speed limit value at positions starting from

sstr up to the end of the zone send. The velocity vmax is

the maximum speed value of the host vehicle. This method to

model the road geometry and static traffic data improve the

trade-off challenge between model complexity and accuracy

(high and low-fidelity models) for the Eco-ADAS application

[25], [28].

C. Energy Consumption Dynamics

Energy consumption of a BEV depends on a number of

factors including the driven velocity, the acceleration profile,

geometric characteristics of roads, and traffic situations. The

energy consumption could have a wide variation depending

on different operating points of the electric machine [1]. For

a given velocity at a given traction force, the operating point

of the electric machine and the related power consumption or

regeneration could be determined [28].

The power consumption during cruising at constant speed is

equal to the resistive power. This can be approximated through

a curve-fit process of measured data by a polynomial of the

velocity in the form fcruise(v) = b3v
3
h+b2v

2
h+b1vh+b0 (for

more details, see [3] and [28]). The acceleration of the vehicle

considering only the regenerative energy zone in the hybrid

(regenerative and friction) brake system can be approximated

by a similar process with measured data using a polynomial of

the control input as fa(u) = a2u
2+a1u+a0. Therefore, at any

given velocity and control input, a linear relation of the traction

power-to-mass ratio can describe the energy consumption of

the BEV as:

ėh = fa(u) (ptrac/M) + fcruise(v), (10)

where ptrac denotes the traction power. This model is capable

of capturing the full-range energy consumption of a BEV

based on the velocity and the control input [28].

Fig. 2 shows the power consumption model of a Smart

Fortwo Electric Drive (Smart-ED) commercial BEV based on

traction input and velocity. Each contour line represents the

related power consumption (in kW ). At the higher traction

input and velocity, a positive amount of energy is consumed

at a higher rate. In contrast, in regenerative braking zones at

different velocity, a limited amount of energy can be recovered.

This novel model is capable of representing the regenerative

braking effect for the full-range velocity and traction input

limits. This way, the power consumption of the BEV can be

estimated by modelling a traction-velocity characteristics map

of the electric machine. Considering equation (10) and the

measured data from a two-axles dynamometer test with the

Smart-ED, the proposed model for the energy consumption

is approximated through the curve-fit process with 98.46%
coefficient of determination (R-squared).
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Fig. 2. Power consumption of the Smart-ED [28]

D. Preceding Vehicle Physical-Statistical Motion Model

Knowledge representation of dynamic traffic including a

prediction model of a plausible motion of the preceding

vehicles improves the performance of decision-making pro-

cesses in Eco-ADAS applications. However, high entropy

in the traffic system leads to a challenging task to derive

a computationally efficient and tractable model. Research

related to anticipating the possible trajectory of the preceding

vehicle into the near/far-term future has a long track in the

ADAS applications. For instance, a nominal case used for the

prediction model of the preceding vehicle (constant velocity),

where any change in the predicted velocity is considered as

a disturbance on the system. A Markov chain model with

the driver behaviour learning algorithm was proposed in [22].

A sigmoid-based function to estimate states of the preceding

vehicle within the prediction horizon was introduced in [3]. A

stochastic prediction method using Bayesian networks utilised

for near-term future prediction was presented in [23].

Although the proposed methods mentioned in works of lit-

erature are effective for near-term prediction, rapid divergence

can be experienced in far-term future prediction. A physical-

statistical motion model of the preceding vehicle robust to

far-term future prediction was developed in [25] and [26].

The proposed model is based on the 85th percentile speed

concept and road geometry information. The 85th percentile

speed is referred to as spot speed study, defined as the speed

at or below which 85th percent of vehicles travel a given

location based on free-flowing conditions over a time period

[29]. The free-flowing conditions refer to the motion of the

preceding vehicle that has at least three seconds time headway.

In addition, other factors such as road slope profile and traffic

speed limit zones information can be considered to estimate

a more accurate velocity trajectory. The preceding vehicle

position (sp) and velocity (vp) generally can be measured

by RAdio Detection And Ranging (RADAR) in the ACC

systems. Thus, the introduced dynamic model to propagate

the preceding vehicle position and velocity at time t can be

c© OpenStreetMap contributors

Start Point

1stCurve

2ndCurve

3rdCurve

4thCurve

s = 500

s = 850

Fig. 3. Test track, Centre de Formation pour Conducteurs [30]

determined as follows:

ṡp := vp, (11)

v̇p := X85th(1− (
vp
f85th

)4 −
sin(fslp(θ(sp)))

sin(π4 )
), (12)

f85th := min{ω85thv85th(fcrv(δ(sp))), flmt(sp)}, (13)

v85th(δ(sp)) := m1 exp
(−m2δ(sp)) +m3 exp

(−m4δ(sp)), (14)

where X85th is the acceleration of the preceding vehicle at

85th percentile assumed to lie in a normal distribution i.i.d.

X ∼ N (µp, σp) with the mean µp and variance σ2
p. The

ω85th ,m1, . . . ,m4 are tunable positive constants. The position

based function v85th(·), represents the 85th percentile curve

speed of the vehicles along the road curves with statistical

data adapted from [29]. To conclude, the introduced model is

continuous and differentiable that is capable of propagating a

plausible trajectory for the preceding vehicle motion along the

prediction horizon (for more details, see [25] and [26]).

The introduced physical-statistical motion model for the

preceding vehicle behaviour prediction has been evaluated on

a closed test track located at Colmar-Berg, Luxembourg (Fig.

3) [25]. This test track has a total length of 1.255 km and

includes curves, a speed limit zone with relative slope profile.

This track has four main curves including crv1 = 20 m,

crv2 = 25 m, crv3 = 15 m, and crv4 = 27 m radius. The

straight road segments are considered to have a nearly infinite

radius. In addition, a speed limit vlmt = 13.89 m/s zone is

assumed between positions 500 ≤ s ≤ 850. The test track

slope profile, fslp(θ(s)), is fitted within nine segments with

98.93% coefficient of determination [28]. Fig. 4 demonstrates

the preceding vehicle motion prediction based on the 85th

percentile speed concept considering the test track geometry

and speed limit zone information [25].

The measured data include seven different velocity profiles

of human drivers on the test track. The physical-statistical

motion model performance to foresee an expected velocity

profile based on road and traffic information demonstrate its

capability to anticipate the position and velocity of the preced-

ing vehicle without feedback measurement updates. Significant

statistical accuracy can be shown in term of the median and the

related variations from the practical experiments obtained by

the human drivers (H-#) and the proposed physical-statistical

motion model (PS-M) on the test track. The average velocity

of all human drivers is 11.68 m/s, and the average predicted

velocity of the physical-statistical motion model is 12.26m/s.
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III. RISK-SENSITIVE NONLINEAR PREDICTIVE CONTROL

For the sake of completeness, a general SNMPC formulation

and Entropic Value-at-Risk (EVaR) as a coherent risk measure

will be reviewed. The proposed risk-averse certainty equivalent

reformulation of the SNMPC based on minimum principle

with a close-loop inequality constraint handling method will

be introduced. In addition, the risk-averse certainty equivalent

reformulation of the RSNMPC with its application for the Eco-

ACC system will be presented.

A. Stochastic Nonlinear Model Predictive Control (SNMPC)

Consider a general stochastic, discrete-time system:

xt+1 = f(xt, ut, ωt), (15)

where t ∈ N+; xt ∈ R
nx is the system states vector and

ut ∈ U ⊂ R
nu is a non-empty measurable set for the inputs.

ωt ∈ R
nω is disturbances vector that is unknown at the

current and future time instants. The ωt is composed of i.i.d.

random variables within the known sample space Ω, the set

of events (σ-algebra) F , and the allocations of probabilities,

P to events (exogenous information). The f(·) is a nonlinear

Borel-measurable vector of functions that describes the system

dynamics [21].

Let N ∈ N be the both state and control prediction horizon.

Define an N-stage feedback control policy as:

πππ := {π0(·), π1(·), . . . , πN−1(·)}, (16)

where the Borel-measurable function πi(·) : R(i+1)nx → U,

for all i = 0, . . . , N − 1 is a general state feedback control

law [21]. The control input ui is selected as the feedback

control law ui = πi(·) at the ith stage of the control policy.

In receding horizon optimal control, the cost function of the

OCP is commonly defined as:

VN (xt,πππ) := Ext
[

N−1
∑

i=0

Jc(x̂i, ui) + Jf (x̂N )], (17)

where Jc : R
nx ×U → R+ and Jf : Rnx → R+ are the cost-

per-stage function and the final cost function, respectively. The

x̂i denotes the predicted states at time i given the initial states

x̂0 = xt, control law {πi(·)}
i−1
i=0, and disturbance realizations

{ωi}
i−1
i=0 [21].

A general form of chance-constraints is defined by:

Prxt
[gj(x̂i) ≤ 0] ≥ βj , for all j ∈ Z[1,s], i ∈ Z[1,N ], (18)

where gj : R
nx → R is a Borel-measurable function, s is the

total number of inequality constraints, and βj ∈ (0, 1) denotes

the lower bound for the probability gj(x̂i) ≤ 0 that needs

to be satisfied. Different probability levels βj are assigned

for different inequality constraints. The conditional probability

Prxt
indicates the probability of gj(x̂i) ≤ 0 holds based on

initial states x̂0 = xt; please note that the predicted states x̂i
depend on disturbances {ωi}

i−1
i=0 [21].

Using the cost function (17) and the individual chance-

constraint (18), the OCP for (15) is formulated as follows:

V ∗
N (xt) := minimise

π
VN (xt,πππ) (19a)

subject to:

x̂i+1 = f(x̂i, πi, ωi), for all i ∈ Z[0,N−1], (19b)

πi(·) ∈ U, for all i ∈ Z[0,N−1], (19c)

Prxt
[gj(x̂i) ≤ 0] ≥ βj , for all j ∈ Z[1,s], i ∈ Z[1,N ], (19d)

ωi = (Ω,F ,P), for all i ∈ Z[0,N−1], (19e)

x̂0 = xt, (19f)

where V ∗
N (xt) denotes the optimal value function under the

optimal control policy πππ∗. The OCP in receding horizon

principle involves applying the first element of the control

action sequence ut = πππ∗
0(·) repeatedly to the system at each

sampling time.

Generally there is no exact solution to the stochastic OCP

(19) due to i) the arbitrary form of the feedback control

laws; ii) the nonconvexity and general intractability of chance

constraints; iii) the computational complexity associated with

uncertainty propagation through complex system dynamics;

iv) the risk-neutral expectation assessment of future random

outcomes for safety-critical systems where one desires to

regulate the control actions so that they are robust enough

to uncertainties [31].

The next subsection presents the EVaR concept as an open-

loop assessment of the chance-constraint. In this paper, closed-

loop EVaR chance-constraint evaluation is introduced as the

proposed contribution of the subsection.

B. Closed-loop Entropic Value-at-Risk (EVaR)

Several approximations have been developed to obtain a

feasible solution rather than an exact solution for the OCP

(19). In this section, the challenges ii) and iv) are addressed

for solving approximately the stochastic OCP. An alternative

objective to risk-neutral (17) can be a control policy sensitive

to nonlinear risk defined as:

κρ(VN (xt,πππ)) := ρ−1logExt
[exp(ρVN (xt,πππ))], (20)

where ρ ∈ R \ {0} is a risk-sensitivity parameter that

determines the controller’s attitude toward uncertainty: ρ < 0
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indicates risk-seeking and ρ > 0 implies risk-averse policy

[31]. Generally, it is straightforward to find Taylor series

expansion around the point ρ = 0, where it was usual to

quantify risk in terms of the variance [32]. This leads to

various forms of stochastic OCPs such as the well-known

Markowitz mean-variance approach. However, the current

more sophisticated paradigm for risk measurement, mainly

interested in downside risk, goes beyond the variance [32]. In

addition, the (20) also known as entropic risk measure with

parameter ρ which can be represented by mean of a coherent

risk measure that is computationally tractable if the objective

function can be computed efficiently [33].

A coherent risk measure satisfies the transitional invariance,

sub-additivity, monotonicity, and positive homogeneity proper-

ties. The Value-at-Risk (VaR) and Conditional VaR (CVaR)

are the most popular and widely used risk measurements.

The VaR and CVaR intuitively evaluate the expectation and

conditional expectation of (18) respectively on a tail part of its

distribution (βj-percentile). However, the VaR does not satisfy

the sub-additivity property while CVaR cannot be computed

efficiently. In order to address these limitations, the coherent

Entropic Value-at-Risk (EVaR) has been recently introduced

[33]. The EVaR provides the tightest upper bound one can find

using the Chernoff inequality for the VaR and CVaR with the

same confidence levels [33]. The EVaR with confident level

(βj = 1− αj) is defined as follows:

EV aR1−αj
(gj(x̂i)) := inf

z>0
{z−1ln(Mgj(x̂i)(z)/αj)}, (21)

where Mgj(x̂i) = Ext
[exp(zgj(x̂i))] is the moment-generating

function of gj(x̂i).

The properties of coherent the risk measure have intuitive

interpretations in the financial industry, which can be extended

to energy management systems [32]. In the case of the

Eco-ACC system, for instance, the relative distance can be

interpreted as a portfolio of energy consumption and travel

time. The higher risk of rear-end collision cause closer car

following situations with shorter travel time (higher probability

of constraint violation). The lower risk, on the other hand,

leads to a longer travel time (lower expected reward) with a

lower risk of rear-end collision or constraint violation. The

motivation for the risk-sensitive optimal controller is to find a

tradeoff between the expected profit (desired pre-set velocity

tracking) and the risk. One may minimise the OCP given by

(19) based on approximate coherent risk measure EVaR or

minimise the OCP with the risk-sensitive cost function (20).

Although the solution of both approaches is not necessarily

equivalent, it is possible to obtain similar results by properly

tuning the risk-sensitivity parameter [32].

In the case of the risk-averse control policy, the pro-

posed closed-loop confidence level {βi(t)}
0
m−1 is estimated

based on a Two-pass algorithm to compute the standard

deviation using the Exponential Moving Average of the past

{p(tm−1), p(tm−2), . . . , p(0)} M -measurement vector. In this

method, the samples moving average is calculated by:

p̄ =

∑m−1
j=0 xj

M
. (22)

Afterwards, the unbiased estimation for the variance of sam-

ples can be computed based on the Bessel’s correction given

by:

Var(P ) := σ2 =

∑m−1
i=0 (pi − p̄)2

M − 1
, (23)

where σ is the corrected sample standard deviation (σ =
√

Var(P )). This algorithm is numerically stable if M is small

(for more details see [34]). Generally, the standard deviation

is considered as a tuning parameter in works of literature.

A larger value results in conservative but robust behaviour

while a small value could lead to high performance but more

frequent constraints violation. However, the proposed method

to estimate the standard deviation utilises the advantages of

feedback to reduce the conservative behaviours of the risk-

averse chance-constraints and improves the trade-off between

the performance and robustness.

The next subsection presents the minimum principle with a

real-time numerical method to solve the OCPs. The certainty

equivalent control policy based on rolling disturbance estima-

tion is the proposed contribution in the following subsection.

C. Risk-averse Certainty Equivalent Minimum Principle

In this subsection, the challenges i) and iii) are addressed

for solving approximately the stochastic OCP given by (19).

The main idea is based on a suboptimal control policy so-

called certainty equivalence principle with rolling disturbance

estimation. In this method ω̂i is interpreted as the prediction of

expected disturbance values, ω̂i = E[ωi], for the uncertainty

propagation. Hence, the proposed method emphasizes on early

detection and reduction of large recourse, rather than the com-

pensation of non-optimal decisions. The ω̂i generally might be

obtained by various methods such as conditional expectations,

statistical models, etc. The expected disturbance may also be

approximated by continuous dynamics. Consequently, the sys-

tem function (15) can be rewritten as deterministic surrogate

form as:

x̄t+1 = f̄(x̄t, ut), (24)

where ˆ̄xt ∈ R
nx+nω denotes the predicted nominal states

including auxiliary states ω̂i. The i.i.d random variables as-

sumption of the ωi is no longer required. Therefore, the

stochastic OCP cost function defined by (17) reduces to

certainty equivalent form as:

VN (x̄t,πππ) :=

N−1
∑

i=0

Jc(ˆ̄xi, ui) + Jf (ˆ̄xN ), (25)

where Jc : R
nx+nω × U → R+ and Jf : Rnx+nω → R+.

The risk-averse certainty equivalent OCP can be obtained

by substituting the Eq. (17) with (25), the Eq. (15) with (24)
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and the chance-constraints given by (18) with its EVaR upper

bound Eq. (21) based on initial nominal states ˆ̄x0 = x̄t.

V ∗
N (x̄t) := minimise

π
VN (x̄t,πππ) (26a)

subject to:

ˆ̄xi+1 = f(ˆ̄xi, πi), for all i ∈ Z[0,N−1], (26b)

πi(·) ∈ U, for all i ∈ Z[0,N−1], (26c)

EV aR1−αj
(gj(ˆ̄xi)) ≤ 0, for all j ∈ Z[1,s], i ∈ Z[1,N ], (26d)

ˆ̄x0 = xt. (26e)

It is noteworthy that the obtained certainty equivalent policy

is a quite computationally efficient strategy, while accounts

the effects of system uncertainty or risk association with the

planning of future control actions.

Numerical methods to solve the OCPs are generally classi-

fied into three main categories. Dynamic Programming (DP)

breaks the problem into smaller sub-problems. It is based on

Bellman’s principle of optimality to propagate the cost-per-

stage function. This approach generally leads to the Hamilton-

Jacobi-Bellman (HJB) equation where it is mainly solved

backwards in time, from the end of prediction horizon t = N
to the beginning t = 0. Due to the curse of dimensionality,

the HJB is in general computationally expensive and is only

applicable to systems with low dimensions. An alternative

approach is Direct methods that are based on the numerical

solution of a finite dimensional OCP which corresponds to a

discrete approximation of the original continuous-time OCP.

The solution interval is divided into smaller intervals which

the initial value problem in each smaller intervals is solved.

A matching condition forms the final solution on the entire

interval.

In addition, Indirect methods based on Pontryagin’s Mini-

mum Principle (PMP) relate closely to the Dynamic Program-

ming (DP) scheme, but they are more efficient in solving the

OCP which satisfy the necessary conditions for the optimality.

The achieved nonlinear Two-Point Boundary-Value Problem

(TP-BVP) can then be solved numerically. The closed-loop

OCP for Mechatronic systems controlled with a sampling

period in the order of milliseconds leads to a TP-BVP in

receding horizon control principle which need to be solved in

real-time. Therefore, this study focuses on the indirect methods

based on PMP for the real-time OCP.

Let’s consider the achieved surrogate dynamic of the sys-

tem (24) with initial nominal states. The constraints on the

system dynamics can be adjoined to the Lagrangian Jc(·)
by introducing the time-varying Lagrange multiplier vector

λ ∈ R
nx , where its elements are also known as the co-states

of the system. Equality constraints can also be imposed over

the prediction horizon. This motivates the construction of the

Hamiltonian (H) defined as Lagrangian duality as follows:

H(x̄, u, λ, µ) := Jc(x̄, u) + λT f(x̄, u) + µTC(x̄, u), (27)

where λT denotes the transpose of λ and µ is Lagrange multi-

pliers of equality constraints. The C(·) ∈ R
nc is the equivalent

vector-valued equality constraints function. Reformulating the

Lagrangian as a Hamiltonian, in which case the solutions are

local minima for the Hamiltonian is known as Pontryagin’s

Minimum Principle (PMP). The solution can be global minima

if the (27) have convex structure.

The first-order necessary conditions for the optimal state

trajectory x̄∗, optimal control input u∗, corresponding co-

state multiplier vector λ∗, and optimal Lagrange multipliers

µ∗ should satisfy:

Hu(x̄
∗(t), u∗(t), λ∗(t), µ∗(t)) = 0, (28a)

λ̇∗(t) = −HT
x̄ (x̄

∗(t), u∗(t), λ∗(t), µ∗(t)), (28b)

λ∗N (t) = Jfx̄(x̄
∗
N (t)), (28c)

where Hu and Hx̄ are the Jacobian matrix of Hamiltonian with

respect to the control inputs and system states, respectively.

Let’s define a vector of the control inputs and Lagrange

multipliers as follows:

U(t) := [u∗
T

0 (t), µ∗T

0 (t), . . . , u∗
T

N−1(t), µ
∗T

N−1(t)] ∈ R
nN , (29)

where n := nu + nc. Considering the initial condition,

(24), (28), and equivalent equality constraints, the necessary

optimality conditions can be regarded as one equation as

follows:

F (U, x̄, t) :=















HT
u (x̄

∗
0(t), u

∗
0(t), λ

∗
1(t), µ

∗
0(t))

C(x̄∗0(t), u
∗
0(t))

...

HT
u (x̄

∗
N−1(t), u

∗
N−1(t), λ

∗
N (t), µ∗

N−1(t))
C(x̄∗N−1(t), u

∗
N−1(t))















= 0.

(30)

Generally one may solve the (30) using costly iterative meth-

ods such as Newton’s methods. However, solution of the

(30) can be obtained utilising the Continuation and Gener-

alized Minimal RESidual (C/GMRES) method proposed in

[35]. The main idea is based on choice of U(0) so that

F (U(0), x̄(0), 0) = 0 and determine U̇ such that:

Ḟ (U, x, t) = AsF (U, x, t), (31)

where As is a stable matrix introduced to stabilise F (·) = 0. If

FU is nonsingular, a differential equation for U can be written

as:

Ḟ (U, x̄, t) = F−1
U (AsF − Fx̄ ˙̄x− Ft), (32)

which can be regarded as a linear algebraic equation with

a coefficient matrix FU to determine U̇ for given U , x̄, ˙̄x,

and t. The solution U(t) of F (U(t), x(t), t) = 0 can be

updated without iterative optimisation method by integrating

(32) in real-time using continuation method [3]. In practical

applications, U(0) that satisfies F (U(t), x(t), t) = 0 must

be found through the numerical method and ˙̄x in (32) must

be approximated by finite difference [35]. For further details

about the C/GMRES, its error analysis, and proof see [35].

The next subsection presents the various inequality con-

straints handling methods. The proposal to utilise the Fischer-

Burmeister (FB) function to handle inequality constraints for

the C/GMRES algorithm is the contribution of the following

subsection.
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D. Inequality Constrains Handling Method

Indirect methods are known to show fast numerical conver-

gence in the neighbourhood of the optimal solution. However,

handling of inequality constraints via PMP is in general

non-trivial, due to the overall structure of the TP-BVP that

depends on the sequence between singular/nonsingular and

unconstrained/constrained arcs (if the respective constraint is

active or not) as well as a prior knowledge of the OCP structure

[36]. There are several works of literature to systematically

transform a general inequality constrained OCP into a surro-

gate equality constrained OCP by various methods.

Let’s consider the deterministic inequality constraint

g(x, u) ≤ 0 which the equivalent equality constraint (C(x, u))
based on the Auxiliary Variable method was proposed in [35].

The main idea is based on the introduction of an additional

optimisation variables to transform inequality constraints into

equality constraints as follows:

C(x, u) := g(x, u) + η2 = 0 (33)

where η ∈ R
s denotes a vector of auxiliary variables which has

to impose to (29) as optimisation variables. In order to avoid

the singularity, a small dummy penalty is added to the cost

function (25). For more details about inequality constraints

handling using this method see e.g. [3], [28], and [35]. The

main draw back in this method is that if the solution of the

OCP is very close to the constraint boundary, the optimisation

problem becomes ill-conditioned [37].

For the sake of simplicity, let’s consider the nonlinear OCP

(26) with deterministic constraints (βj = 1). A part of the

first-order necessary conditions for a solution to be optimal

are based on Karush-Kuhn-Tucker (KKT) conditions which

are also known as Nonlinear Complementarity Problem (NCP)

given by:

gj(ˆ̄x
∗) ≤ 0, (34a)

µ∗
j ≥ 0, (34b)

µ∗
jgj(ˆ̄x

∗) = 0, for all j ∈ Z[1,s]. (34c)

Conditions (34c) are also called complementary slackness con-

ditions. It can be interpreted as if the jth inequality constraint

of the primal problem is inactive at the optimum solution

gj(ˆ̄x
∗) ≤ 0, then the jth dual variable has to be zero (µ∗

j = 0).

In order to account the complementary condition (34) in

the necessary condition (28) and to avoid the ill-conditioning,

a semi-smooth transformation is utilised in this paper. Two

important and most widely used examples of complementarity

functions are the natural residual function given by:

ψ(µ∗
j , gj(ˆ̄x

∗)) = max{µ∗
j , gj(ˆ̄x

∗)}, (35)

and the FB function which is used in this paper as follows:

ψFB(µ
∗
j , gj(ˆ̄x

∗)) =
√

µ∗2

j , gj(ˆ̄x
∗)2 − (µ∗

j − gj(ˆ̄x
∗)). (36)

Complementarity functions provide a convenient tool for con-

verting problems that involve complementarity conditions into

equations [38]. The complementarity conditions are satisfied

if and only if the following condition using the FB function

is satisfied:

ψFB(µ
∗
j , gj(ˆ̄x

∗)) = 0, (37)

for each jth element of inequality constraints [39]. Therefore,

the FB transformation converts the inequality constrained

OCPs into an equivalent equality constrained OCP.

E. Case Study: Energy Management for Extended Eco-ACC

The state vector for the Extended Eco-ACC concept is

defined as xt = [sh, vh, eh]
T ∈ R

3; the control input is the

traction input with the modelled delay of the power plant

applied on the host vehicle as ut = u ∈ U ⊂ R. The

volatility of the preceding vehicle velocity and its position can

be extremely wide, therefore regulating relative safe distance

in an energy efficient method is of fundamental importance to

the Extended Eco-ACC system. The measurable disturbance

(e.g., Radar-based system) is defined as position (sp) and

velocity (vp) of the preceding vehicles. Note that we refer the

risk as the uncertainty related to the future values of relative

distance d̄ := s̄p − s̄h and all states are measurable which the

measurement noise is negligible. The disturbances as auxiliary

states are concatenated with the system state vector to form the

nominal state vector. From Eqs. (1), (2), (10), (11), and (12),

the extended state vector is: x̄t = [ṡh, v̇h, ėh, ˙̂sp, ˙̂vp]
T ∈ R

5.

The cost-per-stage function for the Extended Eco-ACC

system is defined as:

VN (xt,πππ) :=

N−1
∑

i=0

‖ x̂i − xref ‖2Q + ‖ ui − uref ‖2R +Cx̂Ti ,

(38)

with corresponding weights (Q,R,C). The control input is

limited by:

umin(v) ≤ u ≤ umax(v) (39)

where umin(v) and umax(v) can be identified based on the

traction-velocity map of the BEV [28].

The state inequality constraints are lateral acceleration

constraint as comfort level, speed limit constraint respecting

the traffic regulation, relative distance constraint as safety

constraint. In addition, a funnel constraint is introduced for the

velocity of the host BEV as well as the energy consumption

of the BEV should be limited to a certain level. The lateral

acceleration of the host vehicle should be lower than the

comfort level (Ψref ) almost surely (β1 = 1) as follows:

PrΨt
[g1(ŝhi

, v̂hi
) := v̂2hi

/fcrv(δ(ŝhi
)) ≤ Ψref ] ≥ β1. (40)

The velocity of the host vehicle almost surely (β2 = 1) should

also be lower than speed limit zones as:

Prst [g2(ŝhi
, v̂hi

) := v̂hi
≤ flmt(ŝhi

)] ≥ β2. (41)

The spacing policy to define the safe strategy in following the

preceding vehicle is based on Time-Headway (for more detail

see e.g., [40]). The relative distance should be larger than the

reference space (dref := d0 + vhthw) with closed-loop β3
confident level as follows:

Prdt
[g3(d̂i) := dref ≤ d̂i] ≥ β3. (42)

Furthermore, the velocity should be within the standstill and

the reference set-point almost surely (β4 = 1) given by:

Prvht
[g4(v̂hi

) := 0 ≤ v̂hi
≤ (vhref

+ vhrlx
)] ≥ β4, (43)
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TABLE I
FEATURES OF THE SMPC, DNMPC, RSNMPC

SMPC

[22]

DNMPC

[3]

RSNMPC

Road slope - X X

Curvatures - - X

Speed Limit - - X

Risk

Sensitive

- - X

Preceding

Vehicle

Model

Markov

Chain

Intuitive

Model

Physical-

statistical

Model

Constraints

Handling

Method

Implicit

Quadratic

Implicit

Primal

Barrier

Primal-dual

Fischer-

Burmeister

where vhref
is the reference set-point. The vhrlx

is the relaxed

amount of velocity for the host vehicle to overspeed whenever

it is required such as cruising a downhill scenario to take

advantage of the gravity. The energy consumption of the BEV

should be less than the permitted maximum amount almost

surely (β5 = 1) as follows:

Prvht
[g5(êhi

) := êhi
≤ (ehref

+ ehrlx
)] ≥ β5, (44)

where ehref
and ehrlx

are the reference energy consumption

and its relaxed value, respectively.

Table I shows a brief features of the proposed RSNMPC in

comparison with the mentioned state-of-the-art methods for

the case study. The proposed RSNMPC is compared with

the deterministic NMPC (DNMPC) introduced in [3] and the

SMPC presented in [22].

IV. SYSTEM EVALUATION

The proposed Extended Eco-ACC system has been evalu-

ated with numerical simulations using realistic values of the

parameters and practical field experiments on the test track.

Obtained results demonstrate the effectiveness of the proposed

method for a semi-autonomous BEV in terms of safe and

energy-efficient states regulation and constraints satisfaction.

A. Simulation Results

A third generation Smart-ED commercial BEV is available

for simulation and practical experiments. The parameters of

the Smart-ED dynamics model are derived from data sheets

and field measurements as m = 975 kg, δ1 = 0.04,

δ2 = 0.0025, ig = 9.922 : 1, ρ = 1.2041 kg/m3,

Af = 2.057 m2, CD0 = 0.35, and g = 9.81 m/s2. The main

specifications of the Smart-ED are summarised in [13] and

[14]. A dynamometer test has been conducted for the energy

consumption model parameters, (10) which is identified as

a2 = 0.01622, a1 = 0.244, a0 = 1.129, b3 = 0, b2 = 0.02925,

b1 = 0.257, and b0 = 1.821 with 98.46% coefficient of

determination (R-squared) [28]. The prediction horizon for the

predictive controller is set to T = 10 s to cover upcoming road

geometry, traffic speed limit zones and the preceding vehicle

motion prediction with N = 20 discretized steps.
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Fig. 5. Performance of RSNMPC vs. PNMPC for (a) Velocity regulation, (b)
Relative distance regulation, and (c) Inverse Time To Collision (TTC−1)

Fig. 5 shows the simulation results of the proposed RSN-

MPC for the optimal energy management of the BEV on a

realistic hilly and curvy road of the test track. In this setup,

the BEV follows the preceding vehicle with the close spacing

setting as d0 = 6m and thw = 1.5 s which could improve

traffic flaw microscopically. Performance of the RSNMPC is

compared with a Perfect NMPC (PNMPC) which the uncer-

tainty of the preceding vehicle is exactly known in advance

along the prediction horizon.

Fig. 5a shows the BEV velocity profile. The BEV speeds

up to until the first and second curves (20 ≤ t ≤ 40) where

it has to slow down where the lateral acceleration constraint

should be satisfied. As it is shown, the RSNMPC is faster

than the PNMPC controller due to lack of knowledge from the

preceding vehicle behaviour and assuming that the preceding

vehicle will speed up. However, during the first and second

curves, the RSNMPC and PNMPC show similar behaviour due

to more accurate prediction. Fig. 5b shows the relative distance

regulation performance where the RSNMPC is more aggres-

sive than PNMPC in this part of the test track. This is due

to the constant velocity profile of the preceding vehicle with

perfect measurement in a simulation environment which leads

to low variance estimation in relative distance measurement.

Therefore, the EVaR evaluation cause the chance constraint

(42) to be treated almost surely. Afterwards, the controllers

increase velocity again up to the point where the third and

fourth curves are in its prediction horizon (83 ≤ t ≤ 109)

where both controllers slow down to fulfil the relative distance

and the lateral acceleration constraints on curves. Since the

RSNMPC is not aware of the future realised velocity profile
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of the preceding vehicle, it shows less optimum behaviour in

comparison to the PNMPC. However, the RSNMPC shows

similar behaviour close to the PNMPC performance within

66 ≤ t ≤ 106. Finally, both controllers speed up once

more to reach the starting point while satisfying the relative

distance safety constraint. Fig. 5c shows the performance

of the RSNMPC in comparison to PNMPC in terms of

Inverse of Time To Collision (TTC−1 :=
vp−vh

d
) probability

distribution. The TTC−1 is a direct and continuous indicator

for the collision risk. The lower values indicate the more

dangerous situations while zero implies the preserving trend.

The RSNMPC shows sharper velocity and relative distance

regulations which could increase its energy consumption.

However, due to the statistically accurate prediction model

of the preceding vehicle and considering the upcoming road

geometries with energy consumption map of the Smart-ED, the

RSNMPC is approximately +89% as energy-efficient as the

PNMPC on the test track despite unknown preceding vehicle

behaviour.

In order to demonstrate the performance enhancements and

compare the proposed approach with the mentioned state-of-

the-art methods in a fair and informative manner, the European

Urban Driving Cycle (EUDC) is used to represent the preced-

ing vehicle velocity profile (vp). The proposed RSNMPC is

compared with the deterministic NMPC (DNMPC) introduced

in [3], the SMPC presented in [22], and distributionally Robust

SNMPC (RNMPC) presented in [25] which is configured with

worst case scenario. The cruising velocity reference is fixed

to vhref
= 26m/s for all of the controllers with the same

values for d0 = 4m and thw = 3 s considered in [22].

Fig. 6a shows the performance of different controllers in

terms of velocity regulations. The DNMPC, RNMPC, and

RSNMPC track the preceding vehicle and cruising reference

with less overshoot compared to the SMPC. The proposed

RSNMPC benefits from the closed-loop inequality constraints

handling method, compared to the DNMPC using the conven-

tional soft constrained penalty method as well as the SMPC

using the quadratic cost function to handle the relative distance

inequality. Fig. 6b and Fig. 6c show the relative distance

regulation performance and related histogram information

around the violation region. The DNMPC hardly minimises

the constraint violation while the SMPC regulates the rel-

ative distance irrespective of the violation of the reference

tracking. The RNMPC shows a too conservative behaviour,

where the RSNMPC satisfies the chance constraint perfor-

mance requirement. Note that in Fig. 6c, the positive values

denote the constraint satisfaction while the negative values

represent the constraint violation. The OCP calculation time

for the proposed RSNMPC is 5.3ms, compared to the SMPC

with 1 s; the RNMPC with 3.5m, and the DNMPC with

2.2ms. Although the DNMPC is faster than the RSNMPC

and RNMPC, it has suffered from the low fidelity preceding

vehicle motion model. Furthermore, the more steady velocity

profile with proper constraints satisfaction which is generated

by the RSNMPC provides a better drive comfort with lower

energy consumption. Energy consumption and average com-

putation time of the OCP can be concluded from Table II.

The proposed RSNMPC is approximately +1% more energy
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Fig. 6. Performance of controllers for (a) Velocity and (b) Relative distance
regulations, with (c) probability distribution of chance constraint around
violation region

TABLE II
ENERGY CONSUMPTION AND COMPUTATION TIME OF OCPS

SMPC DNMPC RNMPC RSNMPC

Eco. (kWh) - 1.4778 1.4770 1.4680
OCP (ms) 1000 2.2 3.5 5.3

efficient than the DNMPC method, thanks to proper relative

distance regulation. In the carried out simulations, the road

is assumed to be flat and straight with no speed limit zones.

Thus, there are few potentials to save energy which is achieved

by accounting the energy consumption dynamics. In other

words, for longer trips with more hilly and curvy roads, the

proposed method has higher potential to save energy. The next

subsection confirms the claim in field experimental tests.

B. Field Experimental Results

In order to validate the proposed concept, the RSNMPC

is experimentally implemented on the Smart-ED BEV and a

city vehicle Peugeot 108 is chosen to represent the preceding

vehicle. The Extended Eco-ACC system is tested on the closed

track (Fig. 7).

The position of the host BEV is updated by the Global

Positioning System (GPS) sensor. The velocity and energy

consumption of the vehicle including the battery current and

voltage information is updated by the Controller Area Network

(CAN-bus) through the On-Board Diagnose (OBD) interface.

A 77GHz Electronically Scanning Radar (ESR) is installed on

the BEV to measure the position and velocity of the preceding

vehicle (Fig. 8). The onboard computational resource for
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Fig. 7. Extended Eco-ACC System for Semi-autonomous BEV on Test Track

Fig. 8. Installed Electronically Scanning Radar (ESR) on Smart-ED

the Extended Eco-ACC system is foreseen by the Robot

Operating System (ROS) on the Intel R© Core
TM

i7 with a

memory of 7.7 GiB PC and connection panel. The connection

panel is developed for the system power supply and actuators

communication (Fig. 9).

The control input of the proposed RSNMPC is realised

by actuating either the accelerator pedal or brake actuator.

The accelerator pedal is replaced by an electronic board (E-

accelerator) to manipulate the required acceleration and to

imitate the electric signals generated by the original accelerator

pedal of the Smart-ED. The brake actuator is manipulated by

an electric stepper motor that is connected to the brake pedal

by a planetary gearbox and flexible cable. The automatic brake

actuation is designed in a way that preserves the possibility

for the driver to brake in emergency cases. Fig. 10 shows the

configuration of the E-accelerator and brake actuators for the

Extended Eco-ACC system.

Fig. 9. Robot Operating System (ROS) operated PC with Connection Panel

Fig. 10. Automatic E-Accelerator and Brake Actuators
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Fig. 11. Performance of RSNMPC vs Human Driver for (a) Velocity
regulation, (b) Probability distribution of relative distance, and (c) Inverse
Time To Collision (TTC−1)

The reference velocity is fixed to maximum vhref
=

100 km/h with spacing setting d0 = 6m and thw = 1.5 s.
The human driver of the preceding vehicle is cruising at

vp = 50 km/h as often as possible. Fig. 11a shows the

performance of the human driver in comparison to the RSN-

MPC in terms of velocity regulations. Fig. 11b and Fig. 11c

demonstrate the performance of relative distance regulation

and its TTC−1 as risk of rear-end collision, respectively. The

relative distance chance constraint is satisfied with minimum

violation in comparison to the human driver.

Fig. 12a shows the performance of power consumption

by the human driver and the RSNMPC. It is shown that

the variance of the power consumption by the RSNMPC is

lower than the one of the human driver for similar situations

which lead to approximately +21% more energy efficiency

in comparison to the human driver. Fig. 12b and Fig. 12c

demonstrate the performance of the actuated E-accelerator and
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Fig. 12. Performance of RSNMPC vs Human Driver for (a) Probability
distribution of Power consumption, (b) E-accelerator, and (c) Brake pedal
actuations

brake pedal, respectively. It is shown that the RSNMPC has

applied a lower amount of acceleration and relatively similar

brake actuation in comparison to the human driver which

improves the BEV energy consumption.

In this paper we have evaluated field experiments of the

cut-in and cut-out scenarios in order to demonstrate the

performance of the RSNMPC for unforeseen situations such as

cut-in, cut-out or Emergency Braking (EB) (for more details

see [41]). In this practical test, the BEV is cruising along

the track while the preceding vehicle cuts-in the lane of the

BEV after having overtaken it. Fig. 13 shows the velocity and

relative distance regulations, receptively. It is shown that the

RSNMPC can manage the unexpected cut-in situation. Fig.

13a shows a smooth reduction in velocity of the BEV to adapt

to the preceding vehicle. Furthermore, Fig. 13 demonstrates

the relative distance regulation with the reference relative

distance to preserve a safe distance to the preceding vehicle.

In addition, the cut-out test scenario is carried out to demon-

strate the performance of the RSNMPC for the unforeseen

situation. In this practical test, the BEV is cruising in a car-

following situation. The preceding vehicle cuts-out the driving

lane of the BEV. Fig. 14 shows the velocity and relative

distance regulations, receptively. It is shown that the RSNMPC

is able to handle the unexpected cut-out situation. Fig. 14a

shows a smooth increase in velocity of the BEV to reach

the desired velocity after the cut-out situation. The relative

distance after the cut-out event reach to the maximum value

indicating the free-flowing condition.
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Fig. 13. Performance of RSNMPC in Cut-in scenario for (a) Velocity and
(b) Relative distance regulations
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Fig. 14. Performance of RSNMPC in Cut-out scenario for (a) Velocity and
(b) Relative distance regulations

V. CONCLUSION AND FUTURE RESEARCH

A real-time risk-sensitive nonlinear model predictive con-

troller for optimal energy management of an electric vehicle

has been proposed in this paper. The system accounts for

upcoming road slopes, curves, speed limit zones, as well as

uncertainty in the preceding vehicle behaviour to determine the

optimal efficient drive strategy in an anticipated manner. Op-

timal energy consumption based on a semi-autonomous eco-

logical advanced driver assistance system has been designed

to improve the longitudinal velocity regulation in a safe and

energy-efficient driving manner. The computation time for the

proposed stochastic nonlinear predictive controller was found

to be a real-time algorithm by using a closed-loop coherent risk

measure to quantify the risk involved in the chance constraints.

Obtained simulation and field experimental tests have been

evaluated and compared with state-of-the-art methods as well

as a human driver. The energy efficiency of the risk-sensitive

predictive control is found to be approximately +21% more

energy efficient in comparison to the human driver in similar

situations. The performance of the proposed method has shown

significant improvement in safety and energy efficiency which
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extend the limited cruising range of the electric vehicle.

Further practical experiments will be conducted to validate

the proposed method in more complex scenarios. In addition,

extending the perception capability of the proposed system

with a vision system or connected vehicles technology has

high potential to improve the overall system performance.
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