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Ecological and financial strategies provide complementary benefits for

smallholder climate resilience: insights from a simulation model
Tim G. Williams 1, Gunnar Dressler 2, Anne Elise Stratton 3 and Birgit Müller 2

ABSTRACT. Researchers and development organizations regularly grapple with competing ecological and financial strategies for

building climate resilience in smallholder agricultural systems, but rarely are such approaches considered in tandem. Using a social-

ecological simulation model, we explored how different combinations of legume cover cropping, an ecological insurance, and index-

based crop insurance, a financial insurance, affect the climate resilience of mixed crop-livestock smallholder farmers over time. The

model simulates interactions between soil nutrient dynamics, crop yields, and household wealth, which is carried solely in the form of

livestock. We assume legume cover cropping provides biological nitrogen fixation, thereby increasing soil fertility and productivity over

time, whereas microinsurance gives payouts in drought years that provide ex-post coping benefits. Our model results indicate that the

benefits of cover cropping to mean household income strongly complement the shock-absorbing benefits of microinsurance. Specifically,

we found: (1) insurance always provides larger benefits during and in the wake of a drought, while cover cropping progressively reduces

poverty in the medium- to long-term; (2) the use of crop insurance solely as an ex-post coping strategy may not reduce the incidence

of poverty; and (3) legume cover cropping offers larger relative benefits in more degraded environments and for poor farmers. These

results underscore the complementary roles that ecological and financial strategies could play in building resilience in smallholder

agricultural systems. The stylized model constitutes an important social-ecological foundation for future empirical research to inform

agricultural innovation and sustainable development priorities.

Key Words: complementarity; legume cover cropping; microinsurance; resilience; simulation modeling; smallholder agriculture; social-

ecological systems

INTRODUCTION

How to support climate resilience in smallholder agricultural

systems remains a topic of uncertainty and debate among

researchers and development organizations (Hansen et al. 2019,

Tomich et al. 2019a). Institutional interventions such as

microinsurance schemes have recently gained traction as tools for

agricultural development and poverty reduction in the Global

South (Hazell et al. 2010, SwissRe 2013, Kramer et al. 2019).

Simultaneously, there is an increasing drive for ecological

intensification to sustain or enhance both livelihoods and natural

resources (Bommarco et al. 2013, FAO 2018, HLPE 2019). Such

financial and ecological strategies both act as a form of insurance

by reducing risk in agricultural production, yet they function

through distinct mechanisms: ecological insurance improves

ecological functioning to stabilize and increase production over

time, whereas financial insurance stabilizes agricultural income

on a seasonal basis against climate shocks. Given these distinct

mechanisms, ecological and financial strategies may provide

benefits for smallholder systems that are heterogeneous both

throughout the population and over time. Thus, when considered

together, these disparate strategies may be complementary. To

make progress toward sustainable development therefore requires

an integrated perspective on the benefits of ecological and

financial development strategies. We aim to provide a valuable

contribution toward this goal by conducting a rigorous

comparative assessment of how two particular ecological and

financial strategies may affect smallholder climate resilience.  

Microinsurance is a form of low-sum financial insurance

specifically targeted at low-income households. In recent decades,

it has gained traction in the international agricultural community

as a resilience-enhancing strategy (SwissRe 2013, Müller et al.

2017, Kramer et al. 2019). By providing financial compensation

during droughts, microinsurance directly builds the ex-post

coping capacity (i.e., following the occurrence of a shock event)

of smallholder households. Additionally, by reducing production

risk, microinsurance can provide ex-ante benefits that enable risk-

averse households to engage in different production activities and

potentially escape poverty traps (Barrett et al. 2007, Carter et al.

2018). Index-based insurance, which gives payouts based on a

predetermined climate index (e.g., rainfall) has been advocated as

a tool for sustainable development because it helps to overcome

some of the “moral hazard” issues associated with conventional

indemnity-based insurance, i.e., the tendency for insured

households to reduce their own risk management and increase

costs for insurers (Hazell et al. 2010).  

Farm management practices based on ecological principles take

a different approach to smallholder climate resilience. By

increasing ecosystem functions and diversity, they provide

farmers a form of natural insurance (Finger and Buchmann 2015,

Valente et al. 2019, Schaub et al. 2020). In particular, planting of

nitrogen (N)-fixing leguminous cover crops to be incorporated

into the soil as green manure builds resilience by increasing soil

organic matter (SOM) and nutrient availability, which help to

maintain or increase crop yields over time without other external

inputs (Drinkwater et al. 1998, Snapp et al. 2005, Blanco-Canqui

et al. 2012, Bommarco et al. 2013). Use of legume cover crops as

green manures is receiving increasing attention (in the academic

literature, from governments, and from non-profit and

development organizations) as an approach for building

smallholder resilience through conservation agriculture,
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regenerative agriculture, and agroecology (Florentín et al. 2011,

Kaye and Quemada 2017, Wittwer et al. 2017, FAO 2018, HLPE

2019).  

Despite their benefits, both microinsurance and legume cover

cropping exhibit potential tradeoffs that may affect their relative

performance. For example, insurance often does not incentivize

sustainable management practices (O’Connor 2013) and may even

lead to maladaptive outcomes in socio-environmental systems

(Müller et al. 2017). In contrast, adopting legume cover cropping

may lead to short-term losses in labor or yields as farmers transition

to new management practices and build soil fertility (Martini et

al. 2004). The structure of the payouts that these strategies provide

may also contribute to divergent effects; although both entail

annual costs, the ex-post benefits of index-based microinsurance

are only experienced during shock years in which the index is

triggered, whereas cover cropping provides a more consistent,

though likely smaller, economic benefit (Rosa-Schleich et al. 2019).

When considered together, it is therefore possible that

microinsurance and cover cropping provide complementary

benefits (Hansen et al. 2019).  

However, it remains a challenge to understand the conditions (i.e.,

when, where, and for whom) under which each of these strategies

may be most beneficial to smallholder climate resilience. A deeper

understanding of their benefits can help to inform and target

agricultural research and development and contribute to the debate

on the relative merits of financial and ecological development

approaches (Tomich et al. 2019b). Given the nascence of research

on the impacts of both microinsurance and legume cover cropping

on the global agricultural stage, observational datasets do not exist

to evaluate their relative or complementary effects. In addition,

both strategies involve feedbacks between household assets and

underlying ecological systems, necessitating an integrated social-

ecological perspective.  

Process-based simulation models are powerful tools for extending

the understanding of these relationships and feedbacks beyond

existing empirical datasets, as well as exploring changes in

conditions and processes that would be impossible to control for

in the field (Magliocca et al. 2013). Simulation models that combine

social and ecological processes (henceforth social-ecological

simulation models) have been extensively used to explore questions

related to resilience and smallholder agricultural livelihoods

(Kremmydas et al. 2018, Dressler et al. 2019, Egli et al. 2019). In

the context of microinsurance, an agent-based model (ABM) was

used to show that there can exist long-term maladaptive feedbacks

related to livestock insurance in pastoral systems (John et al. 2019).

Models incorporating soil nutrient dynamics have shown that

access to credit, fertilizer, and improved seeds can help to reduce

poverty but does not guarantee long-term social-ecological

sustainability (Schreinemachers et al. 2007). Process-based models

have been used to explore the effects of different policies to mitigate

N losses (Kaye-Blake et al. 2019) and to assess the emergence of

poverty traps (Stephens et al. 2012). However, despite the

suitability of social-ecological simulation models to investigate

short- and long-term tradeoffs and to compare disparate resilience-

enhancing strategies across a population, such temporal and

distributional effects are rarely studied (Williams et al. 2020).  

For this study, we developed a household-level, social-ecological

simulation model of a mixed crop-livestock smallholder

agricultural system. Rather than being calibrated to a specific

location, the model was purposely stylized and represented the

general characteristics of many mixed crop-livestock systems in

the Global South. As such, the model is intended as a tool for

generating hypotheses to be empirically tested by researchers in

specific contexts, as well as for illustrating key social-ecological

dynamics relevant for informing future interventions, programs,

or public policy directed at poverty alleviation.  

Using the model, we address the following questions:  

1. What are the relative effects of planting legume cover crops

as green manure and index-based crop insurance on

smallholder households’ climate resilience? 

2. Are there short- and long-term complementarities in these

effects? 

3. How do these strategies differentially affect rich and poor

households? 

In answering these questions, we operationalized the concept of

resilience using measures of household wealth and income. In the

model, these economic measures were mediated by ecological

capital (i.e., soil nutrients). Our perspective is therefore an

ecological-economic one. We hypothesized that financial

insurance provided greater benefits to resilience in the short-term,

but that over time the benefits of cover cropping for SOM would

provide equal or superior resilience benefits. Thus, when applied

together, the strategies will demonstrate complementarity over

time. Additionally, because cover cropping constitutes a

progressive ecological adaptation of the agroecosystem, we

expected its benefit to be strongest for poor households with

degraded soil fertility.

METHODS

Our model description generally follows the Overview, Design

Concepts, Details, and Decisions (ODD+D) format (Müller et

al. 2013). We provide the full protocol in Appendix 1. The model

was implemented in Python and code is available at CoMSES.net

(refer to Data Availability Statement).

Model purpose

The social-ecological simulation model was developed to

investigate climate resilience in smallholder mixed crop-livestock

systems, which are prevalent in many dryland regions in the

Global South, in which crop growth is limited by rainfall (Powell

et al. 2004, Thornton and Herrero 2015). To more easily

disentangle the key social-ecological dynamics, we sought to limit

model complicatedness (Sun et al. 2016). As such, the model does

not draw from extensive empirical data to represent a specific

location, but we draw several parameters from Ethiopian data

sources to define the relative scales of model elements (e.g., crop

and livestock prices). We affectionately named the model

SMASH: Stylized Model of Agricultural Smallholder

Households.  

Our model analysis examined the general mechanisms through

which selected household-level adaptation strategies affect

climate resilience. Because of the model’s stylized nature, we did

not seek to directly generate policy-relevant recommendations

through the model analysis. Rather, our assessment intends to (1)

generate hypotheses that can be tested by researchers in future

empirical studies and (2) provide theoretical grounding for future

https://www.ecologyandsociety.org/vol26/iss2/art14/
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agricultural development and poverty reduction programs to

integrate ecological and economic adaptation strategies.

Entities, state variables, and scales

The model (Fig. 1) represents a population of smallholder

households that engage in agriculture and carry wealth solely in

the form of livestock. Each household is defined by static land

holdings and consumption requirements and has dynamic income

and wealth. Livestock are grazed on a combination of on-farm

crop residues and an external rangeland, which is not explicitly

modeled. Each household’s land (or “field”) has an evolving level

of organic and inorganic nutrients, the dynamics of which

influence crop yields. The model is spatially implicit, no

environmental feedbacks beyond the household scale are

represented, and households do not interact.

Fig. 1. Conceptual diagram of the stylized model of

agricultural smallholder households (SMASH) showing the

main interactions. Triangles pointing inward (/outward)

indicate points at which nutrients are added to (/lost from) the

system.

Process descriptions

The model operates at an annual time step. Each year of the

simulation involves calculation of (1) soil nutrient flows, (2) crop

yields, and (3) household income and wealth.

Nutrient dynamics

The model represents two pools of soil nutrients: organic and

inorganic. The organic pool represents SOM and soil organic N

together in a stylized manner, with fluxes primarily corresponding

to the organic N portion of SOM. Although crop yields are also

limited by other nutrients, we focused on N because it is generally

the most limiting nutrient for crop growth (Robertson and

Vitousek 2009). We henceforth refer to this pool as SOM, though

we note that we quantify it using kg N/ha rather than as a

percentage of bulk soil. Each year, inorganic nutrients are

mineralized from both added organic matter and from the SOM

pool (Fig. 1). These inorganic nutrients are available to that year’s

food crop.  

There are several points at which nutrients enter and leave the

system (Fig. 1). First, a fraction of the mineralized nutrients is

lost through leaching. This fraction is higher with lower levels of

SOM (Drinkwater et al. 1998, Bommarco et al. 2013). Second,

all nutrients contained in the harvested component of the crop

are exported from the modeled system. Third, 10% of the crop

residues are assumed to be lost or removed (Assefa et al. 2013).

Nutrients enter the system through livestock manure, which

qualitatively represents nutrient import from external grazing

land. Hence, households with larger livestock herds have larger

SOM additions, and consistent cropping with no replenishment

of SOM will slowly degrade soil fertility over time (Reeves 1997).

In many mixed crop-livestock systems, households apply

inorganic fertilizers to supplement in-soil nutrients for crop

growth. However, inorganic fertilizer was not included in this

version of the model. Including fertilizer would require additional

assumptions about household decision making related to

fertilizer use and livestock nutrient management, as well as

complicate the model dynamics. We interpreted our results in light

of this assumption.

Climate and crop yields

We modeled crop yields using the yield gap concept, in which

yields are reduced from a maximum potential value through water

and/or nutrient limitations (Tittonell and Giller 2013). We first

simulated the regional climate condition, which was the same over

all households and was independently sampled each year from a

normal distribution. Using this, we calculated field-level water

reduction factors. Here, field-level SOM helps to reduce drought

sensitivity (Bommarco et al. 2013). Next, if  the available field-

level inorganic N was insufficient to produce this water-

constrained yield, production was limited by the available

inorganic N. Finally, the resulting value was perturbed by a field-

level, normally distributed stochastic error term. This term

conceptually represents all uncontrollable factors affecting crop

yields and other positive or negative household-level shocks, as

well as local variability in the observed climate conditions within

a region containing a population of smallholder households.

Household income and wealth

The model makes several assumptions with respect to household

income and wealth. First, households do not have access to

financial savings and instead use livestock as a bank account.

Hence, wealth and livestock are equivalent in the model. Second,

we do not consider non-farm employment markets. Third,

households cannot purchase fodder for their livestock under

baseline conditions, making livestock a risky wealth stock. These

conditions are characteristic of many mixed crop-livestock

systems in the Global South (Powell et al. 2004, Thornton and

Herrero 2015), in which livestock are the primary savings

mechanism. We interpreted our results in the light of these

assumptions.  

Households have a fixed annual consumption requirement. They

earn income solely from harvested crops, which are sold each year

at a constant price. If  net income is in surplus, households add to

their wealth stores by purchasing livestock. If  net income is in

deficit, households sell the required amount of livestock as a

coping measure (Bellemare and Barrett 2006, Moyo and

Swanepoel 2010). If  income is in deficit and the household has

no available wealth stores, we assume that they can perfectly

reduce their consumption (i.e., wealth cannot be negative, and

households do not exit the modeled system). Finally, we do not

model livestock reproduction or mortality.  

https://www.ecologyandsociety.org/vol26/iss2/art14/
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The ability for households to accumulate wealth is constrained

by fodder availability for livestock (Valbuena et al. 2012, Assefa

et al. 2013); we assume that a fixed percentage of livestock feed

requirements must come from on-farm crop residues and that

households cannot keep livestock that they cannot feed. Hence,

households with larger land area (i.e., producing a greater

quantity of crop residue) have larger wealth capacities.

Additionally, this implies that in a year of complete crop failure,

households lose all livestock that were dependent on crop residues.

Feedback loops

The structure of the model implies the existence of a feedback

loop; surplus income enables accumulation of livestock,

providing additional organic matter, which both decreases

drought sensitivity and increases future crop yields and income.

A household’s ability to experience this positive feedback cycle is

mediated by a combination of random and non-random factors;

households’ attributes such as land endowment and SOM

determine their wealth-generating ability and hence predispose

them to certain trajectories. In addition, stochasticity through

household-level random yield effects introduces a degree of path

dependence into the model; a household that is unlucky one year

(i.e., has a large, negative random effect in their crop yields) may

be pushed into a poverty trap (Tittonell 2014, Haider et al. 2018)

with decreasing livestock herds, SOM, crop yields, and income.

Calibration and specification of household types

Given our interest in exploring the distributional effects of

resilience strategies, we specified the model with three types of

households that differ exclusively in their land endowment. We

referred to these types as: land-poor, middle, and land-rich. We

used pattern-oriented modeling (POM; Grimm et al. 2005) to

estimate values for unknown model parameters that lead to a set

of desired emergent model behaviors. To qualitatively represent

both chronic and transitory poverty dynamics (Barrett 2005), we

selected baseline parameters such that the land-poor households

were “always poor” (i.e., never maintain positive levels of wealth

throughout the simulation), the middle households were

“sometimes poor,” and the land-rich households were “never

poor”. Additionally, we required that SOM never increased to a

maximum value under baseline conditions and that the middle

households could recover from shocks. See further details in

Appendix 1.

Resilience-enhancing strategies

We represented both microinsurance and legume cover cropping

in the model as scenarios, rather than as an outcome of an explicit

decision-making process. Thus, we did not focus on the question

of “how” to expand the use of these strategies. Instead, we

explored what the potential benefits might be “if” each strategy

is taken up, when these benefits may be experienced, and by whom.

We therefore assumed that households always engaged in a given

strategy, regardless of their previous experiences or wealth.  

We included a representation of index-based crop insurance. A

household with insurance must pay an annual premium to

participate and receives a payout in any year that the climate

condition is below a pre-specified threshold (e.g., the 10th 

percentile). The payout rate is the same for all households and is

equivalent to the crop yield under average climate conditions,

assuming a nutrient limitation factor of 0.5. Insurance payouts

supplement the households’ income and, in contrast to regular

income, can be used to buy fodder for livestock. Thus, the

insurance de-risks the wealth stock and represents a form of asset

protection rather than replacement (Carter et al. 2018). Because

we did not model fertilizer or other agricultural production

investments, we considered only the ex-post coping effects of

microinsurance and not its ex-ante risk-reducing benefits.  

Legume cover crops are grown in the fallow season and

incorporated into the soil as green manures. Through biological

N
2
 fixation and production of high-N biomass, green manures

provide additional organic N inputs to the soil. Livestock are not

grazed on the cover crops. We assume that the cover crops’ growth

declines under adverse rainfall conditions in the same way as crop

yields; thus, in a year with no rainfall, cover crops fail and no N

is fixed (Serraj et al. 1999). We assumed an annual financial cost

equal to the annual cost of insurance. By assuming that the labor

required for cover cropping would otherwise be applied to other

income-generating activities, this financial proxy for labor is

appropriate.

Outcome measures: poverty reduction and shock absorption

We operationalized climate resilience in two distinct ways. We

conceptualized both of these as nested within “development

resilience,” which describes “the capacity over time...to avoid

poverty in the face of various stressors and in the wake of myriad

shocks” (Barrett and Constas 2014). The first measure represents

the longer-term capacity of households to avoid poverty (i.e.,

retain positive livestock holdings) in the presence of climate

variability and evolving SOM levels.  

We referred to this resilience measure as the “poverty-reducing”

capacity, Rpov: 

R pov=P(wealtht=T pov
>0 )

P (CC≻ Ins)pov=P(RCC
pov>R Ins

pov)

Rshock= ∑
t=T shock

T shock+Tassess
incomet

P (CC ≻ Ins )shock=P(RCC
shock>RIns

shock)

(1)

(2)

(3)

(4)

pov

  

where the probability is evaluated over 300 model replications at

time T
pov

 (e.g., T
pov

 = 50 years). We conducted a convergence

analysis to determine the appropriate number of model

replications that ensured our estimates were not strongly

influenced by model stochasticity (Appendix 2).  

To compare a household’s poverty-reducing capacity under cover

cropping (CC) and insurance (Ins), we calculated: 

R pov=P(wealtht=T pov
>0 )

P (CC≻ Ins)pov=P(RCC
pov>R Ins

pov)

Rshock= ∑
t=T shock

T shock+Tassess
incomet

P (CC ≻ Ins )shock=P(RCC
shock>RIns

shock)

(2)

(3)

(4)

  

where the ! sign is read as “is preferable to.”  

The second resilience measure assesses the shorter-term capacity

of a household to maintain or increase its income in the wake of

a drought. We referred to this as the “shock-absorbing” capacity,

Rshock. Its measurement requires some explanation. First, we

simulated the system under randomly generated climatic

variability with a single-year “shock” (i.e., drought event) imposed

in year T
shock

. We measured the drought’s severity by its percentile

in the climate distribution. For example, a 5% drought represents

a 1 in 20-year event. The drought interacted with the model

through its effect on food crop and cover crop yields in the same

year, as well as any possible insurance payout (Fig. 1). This could

have long-term implications if  the household was required to sell

livestock because this both reduces their future buffering capacity

and reduces organic N inputs to their field.  

≻
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Table 1. Simulation parameters under each experiment.

 

Experiment T
pov

T
shock

T
assess

Cover crop Microinsurance Complementarity Other

parameters

N
2
 fixation

(kg N/ha)

Cost factor
‡

% of years

with

payout
|

Cost factor

1: shock absorption - 1-50 1-15 95
†

1 10 1 Yes Baseline

2: poverty reduction 50 - - 95
†

1 10 1 Yes Baseline

3: strategy

characteristics

20 10 3 40-200 0.1-4 1-30 0.1-4 No Baseline

4: social-

environmental

characteristics
§

50 20 5 95
†

1 10 1 No Varied

†
 Drawn from empirically measured values in temperate settings (Badgley et al. 2007). See Appendix 1, Figure A1.3.

‡
 This represents the annual cost of cover cropping relative to the baseline value for microinsurance.

§
 We used different T

pov
 and T

assess
 in this experiment for visual clarity in the plotting. We verified that this does not affect the shape of the relationships.

|
 See Chantarat et al. (2017).

To investigate the temporal dynamics of the shock-absorbing

capacity, we ran experiments that differed across two dimensions.

The first dimension represents the point in time at which the shock

occured in the simulation (T
shock

). Because both strategies

(microinsurance and cover cropping) are applied in every year,

T
shock

 is equivalent to the amount of time the given strategy has

been in use. The second dimension represents the period of time

over which the effects of and recovery from the shock are assessed

(T
assess

).  

Thus, we calculated: 

R pov=P(wealtht=T pov
>0 )

P (CC≻ Ins)pov=P(RCC
pov>R Ins

pov)

Rshock= ∑
t=T shock

T shock+Tassess
incomet

P (CC ≻ Ins )shock=P(RCC
shock>RIns

shock)

(3)

(4)

  

To compare the shock-absorbing capacity of a household under

the two strategies, we calculated: 

R pov=P(wealtht=T pov
>0 )

P (CC≻ Ins)pov=P(RCC
pov>R Ins

pov)

Rshock= ∑
t=T shock

T shock+Tassess
incomet

P (CC ≻ Ins )shock=P(RCC
shock>RIns

shock) (4)

  

To investigate complementarities between the two strategies, we

compared the resilience outcomes with both strategies

implemented together (i.e., the households engage in both

microinsurance and cover cropping and paying the costs for both)

against the outcomes of each strategy in isolation. We considered

complementarity as a situation in which engaging in both

strategies yielded additional benefits above that derived from

engaging in one strategy alone (either cover cropping or

microinsurance) and a tradeoff as a situation in which engaging

in both strategies was less beneficial than engaging in a single

strategy. Tradeoffs may occur, for example, if  the benefits of

adding microinsurance to complement cover cropping do not

offset the increased cost for the insurance premiums.  

For both measures of resilience, our focus on wealth and income

may appear to represent solely economic outcomes and not

ecological ones. However, because a household’s wealth- and

income-generating abilities are mediated over time by SOM, we

indirectly incorporated ecological capital into our resilience

measures. Additionally, through our dual resilience measurement,

we combined stability properties with the ability to resist or

undergo qualitative changes in structure (Holling 1973). Thus, a

resilient household can both cope with drought-induced

disturbance and resist entering a social-ecologically degraded

“poor” state. However, because we did not focus on household

decision-making or landscape-level processes, we did not consider

facets of resilience related to adaptive responses or transformative

system-level transitions (Folke 2016, Walker 2020).

Simulation experiments

We structured our analysis into four main experiments (Table 1).

The first and second experiments respectively examined the

shock-absorbing capacity (Rshock) and the poverty-reducing

capacity (Rpov) of households under a range of time horizons. In

these two experiments, we examined resilience under cover

cropping and microinsurance, as well as with both strategies

implemented together. In the third experiment, we tested how

different assumptions about the costs and benefits of the two

strategies affected the resilience comparisons (i.e., P(CC ! Ins)
shock and P(CC ! Ins)pov) to identify “robust regions” within the

parameter space (Lempert 2002). Here, we systematically varied

the annual costs of both microinsurance and cover cropping, the

microinsurance “strike rate” (i.e., percent of years with a payout),

and the amount of N fixed by the cover crops. When the

microinsurance cost factor is one, the insurance is actuarially fair.

A cost factor less than one represents subsidized insurance and a

factor greater than one implies net profits to the insurer.  

In the final experiment, we explored how the resilience

comparisons changed under different socio-environmental

conditions. To do this, we conducted a sensitivity analysis on the

parameters of the model. We employed a meta-modeling

approach for global sensitivity analysis (Iooss and Lemaître 2015)

in which we first ran our model under a wide range of perturbed

parameter configurations and then fit a non-parametric

regression model to explain how both resilience assessments

changed over the perturbed parameter space. From the meta-

model, we constructed a measure of “partial dependence,” which

describes the relationship between each parameter and the

resilience measures as assessed by the meta-model. We described

this methodology in Appendix 3.

≻ and  P(CC ≻ Ins)pov )
(P(CC ≻ Ins)shock

to identify "robust regions"  within

different assumptions about costs and benefits of the two strate-

gies affected the resilience comparisons (i.e., P(CC ≻ Ins)shock

and  P(CC ≻ Ins)pov )  to  identify  “robust regions”  within  the
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RESULTS

Model dynamics

Before presenting the results of our main experiments, we first

illustrate the representative behavior of the model under three

simulations: baseline conditions with regular climate variability

(Fig. 2A), in the wake of a drought (Fig. 2B), and with the two

strategies (Fig. 2C). To most effectively demonstrate the relevant

characteristics of the model, we assessed a different time period

and different outcome measures in each representative simulation.

Fig. 2. Model dynamics under representative simulation runs.

Part A shows the evolving wealth and soil organic matter

(SOM) of the three household types under baseline conditions

(i.e., without insurance or cover crops) and regular climate

variability. Each line represents a single household. Birr is the

Ethiopian currency. B shows the average effect of an imposed

10% shock in year 15 on the middle household type under

baseline conditions. C shows the average effect of the two

strategies on the middle household type under regular climate

variability. The vertical lines in C indicate years in which

insurance payouts are triggered.

First, as specified by the calibration approach, under baseline

conditions and regular climate variability, the land-poor

households do not earn enough income to satisfy their

consumption requirements and so always become poor (i.e., have

zero wealth), whereas the middle households sometimes become

poor and the land-rich households are never poor (Fig. 2A). The

divergent outcomes for the middle households emphasize the path

dependence in the model; all middle households begin the

simulation in the same condition, but the randomness in the

calculation of crop yields leads to divergent trajectories,

particularly when droughts cause some households to either

irrevocably lose their wealth reserves or to experience transitory

poverty. Households with positive wealth reserves, through

external nutrient input from livestock manure, are able to

maintain their SOM, but SOM steadily declines for households

with no wealth reserves (Fig. 2A). An imposed drought leads to

a decline in wealth that persists for several years (Fig. 2B). Due

to the wealth-SOM feedback in the model, this results in a

marginally lower SOM than the drought-free counterfactual (Fig.

2B).  

Microinsurance and cover cropping affect the model dynamics in

several ways. Microinsurance premiums, which cost 10% of

average yields, slightly decrease income under regular years, but

the insurance payouts buffer the effects of drought when payouts

are received (Fig. 2C). Cover cropping’s benefit to income in

general increases over time and is strongest in years with higher

rainfall (Fig. 2C). These effects are due to the higher inorganic

nutrient availability (from decomposition of cover crop residues)

that reduces the extent to which nutrients inhibit crop yields.

Because nutrient availability is more critical in high-rainfall years

when water is not a constraining factor, the largest benefits are

therefore experienced at these times.

Shock absorption

Our results conform with our main hypothesis, showing that

insurance as an ex-post coping strategy is preferable in the short-

term recovery from a drought, but that there is a time at and

beyond which cover cropping provides larger benefits (Fig. 3).

This is not a single point, however, but a line of (T
shock

, T
assess

)

pairs. When assessing the effects solely in the year of the shock

(T
assess

 = 1), insurance is the preferable strategy (i.e., P(CC ! Ins)

< 0.5) in 100% of the simulations over all time. After 15 years of

legume cover cropping, it takes approximately 5 years following

a shock for the cumulative benefits of cover crops to outweigh

the benefit of the insurance payout (i.e., transition to red in Fig.

3). After 25 years of cover cropping, this decreases to 3. These

effects are qualitatively consistent for each of the three household

types (Appendix 4, Fig. A4.3), showing that all types of

households strongly benefit from insurance in the wake of a

shock. However, when the drought is not severe enough to trigger

an insurance payout, cover cropping consistently provides

superior shock absorption benefits (Appendix 4, Fig. A4.4).  

Because of the strong power of microinsurance in buffering the

effects of drought, adding microinsurance to complement cover

cropping always increases shock-absorbing capacity (Fig. 4A). In

contrast, adding cover cropping to complement microinsurance

leads to tradeoffs in the short-term (black region in Figure 4B).

This is for two reasons. First, in the year of the drought (i.e., T
assess

 

= 1), crop yields are constrained by water availability rather than

nutrient availability, so cover cropping provides little or no direct

benefit to offset its costs. Second, it takes time for cover cropping

to build SOM and, consequently, the water retention capacity of

the soil. Thus, tradeoffs are stronger when T
shock

 is lower.

Nevertheless, as the amount of time for which cover cropping is

practiced increases (i.e., as T
shock

 increases), its direct benefits to

water retention enabled through higher SOM lead to

complementary effects even in the year of the shock (Fig. 4B).

Similarly, as T
assess

 increases, cover cropping provides

progressively larger benefits that lead to long-term

≻
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complementarity. Additional experimentation reveals that the

long-term benefits of microinsurance and legume cover crops are

greater than the sum of both strategies in isolation, i.e., they are

synergistic (Appendix 5).

Fig. 3. Comparison of strategies’ shock-absorption benefits.

Probability that cover cropping provides larger benefits to

shock absorption (P(CC ! Ins)shock) as a function of the year at

which the shock occurs (T
shock

) and the number of years over

which the effects are assessed (T
assess

). Red areas represent

situations in which cover cropping provides larger benefits than

microinsurance. This shows the outputs for a middle household

(i.e., “sometimes-poor”). The outputs for other household types

were qualitatively consistent and are shown in Appendix 4.

Fig. 4. Complementarity of strategies for shock absorption.

Probability that implementing both strategies together provides

greater shock absorption benefit than (A) cover cropping in

isolation and (B) insurance in isolation. Green areas indicate

complementarity, black indicates tradeoff.

Poverty reduction

Under regular climate variability, legume cover cropping reduces

poverty (Fig. 5). The effect is strongest for the land-poor

households, who after 50 years of cover cropping are 21% more

likely to avoid poverty. For the middle households, cover cropping

almost eliminates poverty altogether. These strong effects are

explained by the ecological feedback that cover cropping enables;

higher SOM increases the productive ability of the households,

thus increasing income over time (Appendix 4, Fig. A4.1A).

However, there is a one- to two-year period in which the costs of

cover cropping outweigh the benefits, resulting in decreased

income for all household types (Appendix 4, Fig. A4.1A).  

The results show a very different effect for insurance; for both the

land-poor and middle households, insurance (modeled with ex-

post coping benefits only) is not effective as a poverty alleviation

mechanism (Fig. 5). Despite reducing income variability, the

lower mean income in non-drought years because of required

insurance premium payments leads to lower mean levels of wealth

and SOM (Appendix 4, Fig. A4.1). This demonstrates that

although the insurance scheme is actuarially fair, the required

premium payments can enable an ecological feedback in the

model whereby the payouts in shock years do not adequately

compensate the income losses in regular years.  

With respect to complementarity, for both land-poor and middle

households, adding cover cropping to complement microinsurance

successfully reduces poverty (Fig. 5). However, particularly for

the land-poor households, the converse is not true; adding

microinsurance to complement cover cropping increases poverty

above the levels seen with cover cropping by itself. Hence, under

the conditions of the model, increasing mean incomes, in this case,

through cover cropping, is a more effective strategy for poverty

alleviation than reducing income variability.  

The measure of poverty reduction assessed in Figure 5 is not

relevant for the land-rich households because they are not at risk

of poverty under baseline conditions. Supplementary

experimentation reveals that, in contrast to land-poor and middle

households, microinsurance enables a positive ecological

feedback with higher levels of wealth and SOM (Appendix 4, Fig.

A4.1). Thus, households not vulnerable to poverty derive some

benefit from the reduced income variability provided by

microinsurance. To examine this more deeply for a land-rich

household, in Appendix 6 we assessed the strategies’ effects on a

measure of risk-averse utility. Over a range of levels of risk

aversion, microinsurance provides welfare benefits to land-rich

households. This benefit is initially greater than that of cover

cropping, but over time cover cropping’s utility benefit surpasses

microinsurance’s.

Influence of insurance and cover crop characteristics

The superiority of microinsurance for shock absorption is robust

to changes in the assumed strategy characteristics (Figs. 6B, 6D).

When evaluating shock absorption over a three-year recovery

period, insurance provides on-par or superior benefits to cover

cropping up to cost factors of around two (i.e., a case in which

the annual premium is twice the expected annual payout). Cover

crops would need to be both freely available through household

production (i.e., cost factor of zero) and fix very high levels of N

to provide benefits equivalent to insurance (top-left of Fig. 6B).

When effects are assessed only during the year of the shock (i.e.,

T
assess

 = 1), insurance remains strongly preferable for shock

absorption under all conditions in which a payout is received

(Appendix 4, Fig. A4.5).  

The superiority of cover crops for poverty reduction is also robust

(Figs. 6A, 6C). Only at high cover cropping costs and low N
2
 

fixation rates does insurance become preferable (Fig. 6A).

Similarly, the cost factor for microinsurance generally has to be

lower than one for it to reduce poverty more than cover cropping

(Fig. 6C). Interestingly, more frequent microinsurance payouts

appear to provide better poverty reduction benefits (top-left of

Fig. 6C). Additional experimentation with the microinsurance

payout frequency revealed a tradeoff: providing more regular

≻
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Fig. 5. The effects of the ecological and financial strategies on poverty reduction. P(wealth > 0) represents the probability that a

household has positive wealth reserves. This probability was calculated for each household type at each time step as the average

household poverty status across all simulation replications. We ran a 10-year burn-in period before implementing the strategies to

reduce the sensitivity to initial wealth levels.

payouts effectively buffers income losses from moderate shocks

but requires a higher annual premium that leads to increased

vulnerability during more extreme shocks even when payouts are

received (Appendix 7).

Fig. 6. Influence of ecological and financial strategy

characteristics on the resilience comparisons. The black dots

represent the baseline settings used in other experiments. For

cover cropping (A and B), the cost factor represents the annual

cost of cover cropping relative to the baseline annual cost of

insurance. For insurance (C and D), the cost factor represents

the ratio of the annual premium to the expected annual payout.

When this equals one, the insurance is actuarially fair. The

vertical axis for insurance represents the percent of years in

which an insurance payout is received. In all cases, we show

only the results for the middle household type; additional

results are shown in Appendix 4, Figure A4.5 and Figure A4.6.

Sensitivity to socio-environmental characteristics

We use the sensitivity analysis (Fig. 7) both to assess the sensitivity

of the model to its parameters and to draw insights about which

resilience-enhancing strategy may be more preferable in different

socio-environmental contexts. In Figure 7, the slopes of the lines

give an indication of the magnitude and direction of the sensitivity

of the P(CC ! Ins) assessments for each parameter. Because this

was generated under a single set of settings for T
assess

, T
shock

, and

T
pov

 (Table 1), in this section we are more interested in the slopes

of the lines than the absolute P(CC ! Ins) values.  

As consumption requirements (i.e., household living costs) are

increased in the model, cover cropping becomes a better strategy

for poverty reduction (i.e., the dashed line is upward sloping in

Fig. 7A). This complements the results of Figure 5; higher

consumption requirements result in more households becoming

poor (Appendix 4, Fig. A4.7A), thus accentuating the poverty-

reducing effects of cover cropping and further demonstrating

cover cropping’s pro-poor benefits. Other household-level

parameters do not exert considerable influence on the

comparisons (Figs. 7B, 7C), and this low sensitivity provides

strength to our results in the above sections.  

Changes to the average climate condition have divergent and

nonlinear effects on the resilience strategy comparisons (Fig. 7D).

Cover cropping provides the largest relative poverty reduction at

moderate climate conditions. This is because under low climate

conditions (i.e., low rainfall), cover crops fix less N and so do not

provide long-term SOM benefits (Appendix 4, Fig. A4.7B),

reducing their relative ability as a poverty reduction strategy.

Conversely, with high climate conditions (i.e., more rainfall), more

households have livestock and so are able to maintain SOM in

their fields without cover crops (Appendix 4, Fig. A4.7B), also

reducing cover crops’ relative poverty reduction effect. For shock

absorption, microinsurance is more beneficial than cover

cropping under drier conditions (i.e., lower climate mean). Here,

cover cropping more effectively buffers shocks under conditions

of higher average rainfall because of SOM stabilizing yields

during the more moderate shocks.  

Under higher climate variability, cover cropping provides larger

relative benefits to resilience (Fig. 7E). This is because cover

cropping, through building of SOM, moderates the relationship

between climate variability and yield variability. Although

microinsurance provides payouts when climate conditions fall

below the threshold, it does not buffer against climatic variability

in non-payout years. Thus, when climate variability is higher,

microinsurance has a lower relative benefit on average.  
≻

≻
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Fig. 7. Sensitivity of the resilience assessments to changes in model parameters. “x” marks indicate the default parameter values used

in the other experiments. Uncertainty bands represent 95% confidence intervals from 100 bootstrapped replications of the model

outputs. The method used to generate these plots is described in Appendix 3. The regional climate variable characteristically

represents the combined effect of water and temperature on crop yields, where a value of 1 indicates no climate-induced crop yield

stress. We plot only four land parameters, which were selected based on sensitivity and social-ecological relevance.

Cover cropping offers larger relative benefits to resilience under

more adverse land characteristics, including situations with low

external rangeland availability (Fig. 7F), low soil fertility returns

from livestock (Fig. 7G), low soil fertility (Fig. 7H), and low yield

potential (Fig. 7I). This result is not surprising because cover

cropping progressively builds the system’s natural capital.

Relationships are qualitatively consistent between the two

resilience measures.

DISCUSSION

Microinsurance alone may not reduce poverty

Our results suggest that, when used solely as an ex-post risk coping

strategy, microinsurance alone may not help households to escape

poverty (Figs. 5, 6). The premium payments required for

microinsurance pushed poor households into poverty traps,

thereby increasing poverty relative to baseline conditions. The

lack of benefit for poor households highlights potential concerns

regarding equity (Fisher et al. 2019) and is in accordance with

some empirical research on index-based livestock insurance

(Chantarat et al. 2017). In addition, we found that the vulnerable

non-poor (i.e., middle) households also experienced higher

poverty levels with the insurance alone. In part, this result is

explained by our exclusion of ex-ante effects of insurance that

would enable risk-averse households to engage in higher

productivity livelihood activities, e.g., fertilizer use, crop choice,

and other drought management strategies (Müller et al. 2011,

Mobarak and Rosenzweig 2013, Karlan et al. 2014, Cole et al.

2017, Kramer et al. 2019). Inclusion of these effects may change

the outcomes for the middle households. Nevertheless, the

potential for microinsurance to cause vulnerable non-poor

households to enter (transitory or chronic) poverty warrants

further consideration in models with more complex household

behavioral representations, including issues of moral hazard and

interaction with other behavioral adaptations (O’Hare et al.

2016), as well as empirical investigation in different socio-

environmental contexts.

Ecologically based farm management enhances resilience over

time

The robustness of the relative benefit of legume cover cropping

for poverty reduction in our model is largely because of its
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assumed long-term benefits for agricultural productivity, which

enable poor households to “step up” out of poverty (Dorward

2009). Other production technologies, such as improved crop

varieties, cropping system diversification, irrigation, or

conservation agriculture practices, may offer similar risk- and

productivity-related benefits to cover cropping (Lin 2011, Hansen

et al. 2019). Additionally, other studies have argued for fertilizer

subsidies to break soil quality poverty traps (Barrett and Bevis

2015). Future research could evaluate and compare the resilience

effects of such productivity-enhancing technologies and policies.

However, our analysis highlights the value of an integrated social-

ecological perspective. Our results show that legume cover

cropping, i.e., investing directly in soil fertility itself, offers

substantial combined potential for long-term environmental

improvement and poverty reduction for smallholder farms, which

may not exist with non-ecological technologies like inorganic

fertilizer. Beyond the modeled effects, ecologically based

management strategies offer numerous benefits to field- and

landscape-level ecosystem services (Bommarco et al. 2013,

Dainese et al. 2019), as well as reduce dependence on external

inputs (Shennan 2008). Reduced externalities and ancillary

benefits may be difficult to quantify and slow to build, but

ultimately contribute to social-ecological synergies and resilience

of a more “general” nature than the “specified” version assessed

by our model (Cabell and Oelofse 2012, Jacobi et al. 2018, Stratton

et al. 2020, Weise et al. 2020). Thus, we recommend that future

policies, projects, and programs for smallholder poverty reduction

empirically examine the benefits of integrated ecological and

economic approaches (Müller and Kreuer 2016, Beck et al. 2019).

Our results revealed a one- to two-year period before cover

cropping provided net benefits, i.e., a transition period (Martini

et al. 2004, Lamine and Bellon 2009, Stratton et al. 2021). We did

not focus on decision making or barriers to cover cropping

adoption, but these results highlight that liquidity constraints and

large time discounting rates could make households unable or

unwilling to forgo these short-term losses to engage in cover

cropping or similar practices (Quaas et al. 2019). Thus, a long-

term view may not be pragmatic if  focusing exclusively on cover

crops. Capacity building, educational opportunities, and

subsidies for cover crop seeds and labor during the transition

period may help to overcome this barrier (Baumgärtner and

Quaas 2010, DeLonge et al. 2016, Duff et al. 2017). Integration

of dynamic decision making and interactions with other

institutional structures are avenues for future research on

ecological resilience-enhancing strategies.

Harnessing ecological and financial complementarities for

climate resilience

Our results illustrate the strong complementarity of

microinsurance and cover cropping: when implemented together,

the strategies can provide greater benefit than either in isolation

(Fig. 4). Climate resilience and poverty reduction programs,

development agendas, and empirical studies could further test this

complementarity and investigate bundling of adaptation

strategies (Kramer and Ceballos 2018, Kramer et al. 2019, Wong

et al. 2020). Our study demonstrates the promise of simulation

models, whether empirically calibrated to specific locations or

stylized as in this study, as tools for ex-ante examination of

resilience dynamics and interactions between strategies over long

timescales. Particularly in situations in which empirical evidence

is lacking, simulation modeling can provide important

information about time lags, barriers to adoption, and required

investments, which can help to inform the design of poverty

reduction programs and aid allocation.  

Different types of households may require different forms of

intervention; our results showed that chronically poor (i.e., land-

poor) households benefited greatly from the ecological strategy

of cover cropping, which acted as a necessary “cargo net” to

mitigate risk and increase asset bases (Barrett 2005), but that

adding microinsurance to complement cover cropping did not

provide complementary poverty reduction benefits (Fig. 5). Thus,

risk mitigation strategies such as cover cropping could be

emphasized for enabling chronically poor households to step up

out of poverty. However, because cover cropping alone did not

bring all land-poor households out of poverty (Fig. 5), bundling

with additional interventions, such as social protection measures

(Hansen et al. 2019), may be necessary and should be investigated

in future research. Bundled cover cropping and microinsurance

appears to offer the greatest benefit for the vulnerable non-poor

(i.e., middle) and non-poor (i.e., land-rich) households. For the

middle households, the bundled strategies reduced poverty by a

comparable amount to cover cropping in isolation (Fig. 5), as well

as provided long-term complementarity in the wake of a drought

(Fig. 4). For the land-rich households, particularly those with

higher risk aversion, the bundled strategies provided immediate

welfare improvements (Appendix 6).  

Environmental context can exert additional influences on the

appropriate combination of financial and farm-based strategies.

For example, legume cover cropping had a comparative advantage

in harsher and more degraded landscapes (Fig. 7). However,

annual cover cropping may not be an appropriate agricultural

practice in contexts with very low rainfall because this can limit

potential biomass accumulation and N fixation, as well as

potentially reduce soil moisture content and subsequent crop

yields (Unger and Vigil 1998). In these contexts, drought-tolerant

cover crops or other sustainable agriculture practices, such as

mulching or agroforestry (Shankarnarayan et al. 1987, Ewansiha

and Singh 2006, Bayala et al. 2012), may be more effective, both

in isolation and in combination with insurance. Additionally,

future case-based studies should target the insurance strike rate

to the given social-ecological context (Lybbert and Carter 2015,

Kramer et al. 2019) because context will affect climate-yield

relationships, cover cropping performance, and poverty

dynamics.

Generalizability of our results

We made several strong assumptions in our model that may

influence the generalizability of our results. Most importantly, a

critical component of our model is the wealth-based feedback

loop in which wealth (livestock) directly fosters organic nutrient

imports and improves crop productivity. In situations in which

financial resources other than livestock are available (e.g., savings

accounts), wealth would not be as strongly linked to field-level

nutrient import. Additionally, large areas of grassland may be

required to graze livestock to sustain nutrient applications on

cropland, which might be infeasible given social-political

constraints on land ownership and access (Dell’Angelo et al.
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2017). Furthermore, perfect import of nutrients from rangelands

is an optimistic assumption because of competing uses for

nutrients (Tittonell and Giller 2013, Berre et al. 2021). In all cases,

the implication is that the wealth-based feedback loop in our

model may be exaggerated and thus the strategies’ effects on

poverty overestimated. However, this exaggeration is the same

under each strategy, so by focusing on the relative benefits of the

two strategies, we reduced (though did not eliminate) the

implications of this bias for our assessment.  

Our modeled system most closely approximates an isolated rural

community in which non-farm employment opportunities do not

exist, use of fertilizer is low, and wealth is constrained by local

environmental conditions (i.e., no access to savings accounts or

fodder for purchase). Smallholder systems globally are

undergoing diverse structural transformations, leading to

increased livelihood diversification both within agriculture and

into non-agricultural activities, increased intensification, and

commodification and consolidation of land ownership (Barrett

et al. 2010, De Schutter 2011, Alobo Loison 2015). Inclusion of

such processes would affect our results. For example, including

inorganic fertilizer as another mechanism to increase productivity

would likely diminish the relative benefits of cover cropping,

though fertilizer does not directly build SOM. Moderate fertilizer

application and cover cropping could therefore be

complementary practices (Giller et al. 1997). Non-farm

employment opportunities may help to increase smallholder

resilience under baseline conditions by providing a means through

which the poor can step out of poverty (Hansen et al. 2019).

Additionally, households may be willing to buy fodder to smooth

their asset stocks even at the expense of their own consumption

(Morduch 1995), which would reduce the effects of drought on

asset stocks seen in our results. Future research could expand the

scope of this stylistic model to include additional livelihood

activities, behaviors, or exogenous drivers and better match it to

specific empirical contexts.  

Our study focused on potential benefits if  support systems existed

such that smallholders were able to adopt legume cover cropping

and microinsurance. We did not incorporate household decision

making with respect to uptake of the strategies or their spillover

effects on other management practices. In reality, there exist

financial, social, and informational barriers to the adoption of

both ecological and financial strategies that have led to limited

uptake in smallholder systems to date. Integrating decision

making and approaches from ecological economics with the

resilience perspective in this article is a promising avenue for future

research.

CONCLUSIONS AND RECOMMENDATIONS

We assessed the effects of microinsurance and legume cover

cropping on climate resilience in a stylized mixed crop-livestock

smallholder system. Our study offers a fresh, reconciliatory

perspective to the current debate on strategies for climate risk

management and poverty reduction (Hansen et al. 2019). Distinct

agricultural development communities and organizations

advocate for microinsurance and ecologically based management,

sometimes with strong ideological disagreements. By providing a

rigorous comparative assessment of these strategies, we hope to

bring these paradigms together, illuminate their complementarity,

and seed future collaborative empirical assessments and

integrated applications to programs and policies for sustainable

development.  

Our model results can be boiled down to this: insurance provides

an important buffering effect to climate shocks, whereas legume

cover cropping progressively decreases poverty and the impacts

of shocks over time. Together, these benefits underscore the

potential complementarity of economic and ecological

adaptation strategies for smallholder resilience. Future

development programs and empirical research could test this

complementarity in different socio-environmental contexts,

including how it develops over time and throughout a

heterogeneous population of households. Finally, development

resilience provides a useful conceptual framework for quantitative

resilience analyses that jointly consider the capacities for poverty

reduction and shock absorption (Dou et al. 2020). An integrated

approach to resilience assessment shows promise to mitigate

tradeoffs and harness complementarities so as to improve

smallholder livelihoods and social-ecological functioning.

Responses to this article can be read online at: 

https://www.ecologyandsociety.org/issues/responses.

php/12207
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APPENDIX 1 ODD+D model description 
A1.1    Overview 

A1.1.1 Purpose 

The model was developed to investigate the short- and long-term resilience of a smallholder 
agricultural farming system and the effects of different household-level adaptation strategies on 
this resilience. It is intended to be used by researchers interested in exploring long-term 
dynamics of agricultural adaptation options. The model represents a mixed crop-livestock 
agricultural system, designed to be generally representative of a smallholder agricultural system 
in the Global South. Given the interest in exploring the general mechanisms through which 
different adaptation options affect resilience, the model is intentionally stylized and does not 
draw from empirical data to be representative of a specific location. 
 

A1.1.2 Entities, state variables, and scales 

The model represents smallholder households that engage in agriculture and carry their wealth in 
the form of livestock. Each household is defined by a static land holding and has dynamic 
income and livestock holdings. Livestock are grazed on a combination of on-farm crop residues 
and an external rangeland, which is not explicitly modeled. The household’s land has an 
evolving level of organic nutrients, which represent SOM and soil organic N together in a 
stylized manner. The model is spatially implicit, no environmental feedbacks beyond the 
household scale are represented, and households do not interact with each other. 
 

A1.1.3 Process overview and scheduling 

The model operates at an annual time scale. Each year of the simulation involves calculation of: 
(1) soil nutrient flows; (2) crop yields; (3) household income; and (4) household wealth and 
coping measures (Figure A1.1). 
 



 
 

 
Figure A1.1: Overview of annual simulation process. 

A1.2    Design concepts 

A1.2.1 Theoretical and empirical background 

The model represents soil nutrient dynamics in a stylized way. It models slow-evolving stocks of 
SOM and faster-acting pools of mineralized nutrients. Our representation is consistent with soil 
representations in biogeochemical models (Manzoni and Porporato 2009) and is qualitatively 
comparable to other more complicated process-based models of soil nutrient dynamics used for 
agricultural applications (e.g., CENTURY (Metherell et al. 1993), DSSAT (Jones et al. 2003), 
and APSIM (Keating et al. 2003)). 
 
Our crop yield model assumes that yields are influenced jointly by climate and nutrient 
availability. This representation generally follows Liebig’s law of the minimum, which assumes 
that yields are influenced solely by the most constraining of these factors and plateau when each 
factor is above some threshold (Tittonell and Giller 2013, Ferreira et al. 2017) (i.e., the crop can 
be water- or nutrient-limited). Similar representations are used in other more complicated 
process-based models of crop yield (e.g., CENTURY (Metherell et al. 1993), STICS (Brisson et 
al. 2003)) and in other simulation models (Grillot et al. 2018). 



 
 

 
Together, our soil nutrient and crop yield representations exhibit the following qualitative 
characteristics: 

1) Consistent cropping without replenishment of organic matter will slowly degrade soil 
quality and hence crop yields over time (Giller et al. 1997, Reeves 1997, Bennett et al. 
2012); 

2) Soil quality can be maintained and built through organic inputs (e.g., manure or 
leguminous cover crops) (Giller et al. 1997, Drinkwater et al. 1998, Wittwer et al. 2017); 
and 

3) Soil organic matter has benefits for drought sensitivity and nutrient losses (Drinkwater et 
al. 1998, Bommarco et al. 2013). 

 
Household decision-making represents wealth accumulation and coping measures, and is 
modeled using a simple heuristic. This heuristic assumes that: (1) households store their wealth 
in the form of livestock and do not have cash savings; (2) livestock are sold if necessary to meet 
immediate cash needs (Bellemare and Barrett 2006, Moyo and Swanepoel 2010); and (3) total 
herd size is limited by feed availability (Valbuena et al. 2012, Assefa et al. 2013). 
 

A1.2.2 Individual decision making 

The household makes two decisions related to their livestock wealth reserves, both of which are 
governed by simple heuristics. First, if the household’s income in a given year is negative, they 
make up the deficit by drawing from their wealth reserves (a proxy for the selling of livestock). 
If wealth reserves are insufficient to make up the deficit, we assume that the household reduces 
their consumption. Both livestock selling and consumption reduction are considered as coping 
mechanisms. If, instead, their income is positive, they add this surplus to their wealth reserves (a 
proxy for the buying of livestock). This latter case is mediated by the second heuristic; if a 
household’s livestock herd (i.e., wealth reserves) is larger than could be fed by their crop 
residues (assuming some percentage of their herd is grazed on common pastures), they are forced 
to destock these animals that cannot be fed. Given that wealth can only be held in the form of 
livestock – i.e., we do not model financial resources – the household receives no monetary 
benefit for this destocking. 
 
These heuristics are not influenced by any other factors and there are no notions of beliefs, 
memory, learning, adaptation, or social or cultural norms.  
 

A1.2.3 Learning 

There is no notion of learning in the household’s decision-making. 
 



 
 

A1.2.4 Individual sensing 

Each year, the household observes its crop yields, residue production, and income, which 
influence the decision heuristics. 
 

A1.2.5 Individual prediction 

The household does not predict future conditions. 
 

A1.2.6 Interaction 

There are no interactions between households. Livestock are assumed to be partially grazed on 
common rangeland, which implies interactions with other households, but we do not explicitly 
model the rangeland dynamics, so this interaction is not endogenous to the model. 
 

A1.2.7 Collectives 

The household does not form collectives. 
 

A1.2.8 Heterogeneity 

The household is defined by its initial wealth reserves, initial soil quality, and land holdings. In 
our simulations, we consider only the implications of different levels of land holdings. Given that 
there are no interactions in our model, running the simulation for three households with 
heterogeneous land endowments is equivalent to running it three times separately with a single 
household. 
 

A1.2.9 Stochasticity 

There are two sources of stochasticity in the model: (1) the generation of yearly climate 
conditions, which is constant across all households; and (2) a household-level random effect in 
the calculation of crop yields. The household-level effect conceptually represents other non-
modeled factors that may influence crop yields, household-level (positive or negative) shocks, 
and household-level variability in the experience of the regional climate condition. Together, this 
requires us to simulate a set of hypothetical climate time series and, for each time series, run the 
model for a set of households that experience different random crop yield effects. Under the 
baseline model settings, the variability of the household-level effect is approximately half that of 
the region-level effect. The model therefore allows for considerable path dependencies 
introduced by household-level stochasticity. 
 

A1.2.10 Observation 

Model outputs include yields, income, wealth, soil organic matter, and mineralized nutrients. 
These are observed at the household level at an annual basis. 
 



 
 

A1.2.11 Emergence 

There exists a positive feedback loop, in which positive income enables accumulation of 
livestock (wealth reserves), providing additional soil organic matter, which in turn increases 
future crop yields and income. The ability for the household to experience this positive feedback 
cycle is mediated by their land endowment, initial soil organic matter, climate, and random yield 
effects. As such, household “trajectories” emerge as a combination of these random and non-
random factors. Given the importance of stochasticity, there exists a considerable degree of path 
dependence in the model; a household that is unlucky one year (i.e., has a large, negative random 
effect in their crop yields) may be pushed into a downward spiral of decreasing livestock herds, 
soil organic matter, crop yields, and income. We investigate the possibility for household 
adaptation options (cover cropping and insurance) to influence these trajectories and hence 
contribute to different emergent outcomes. 
 

A1.3    Details 

A1.3.1 Implementation details 

The model is implemented in Python 3.6. Code is available online at CoMSES.net: 
https://www.comses.net/codebases/ee47544a-7eb0-4482-8967-42d6b0c05060/releases/1.0.0/  
 

A1.3.2 Initialization 

The model is stylized and does not draw from any extensive empirical datasets. To initialize a 
single simulation, the climate time series is first generated, followed by a population of 
households with heterogeneous land endowments. Household initial wealth and soil organic 
matter levels are homogeneous and are specified by exogenous parameters (see section A1.3.3). 
As stated above, a single model with multiple households is functionally no different to multiple 
models with a single household, but we do it in this way both for computational efficiency 
(through vectorization of calculations) and simpler management of random number seeds. 
Within an experiment, the random number seed is the only factor that is varied upon 
initialization. 
 

A1.3.3 Input data and parameterization 

Model parameterization is achieved through a combination of information from literature and a 
pattern-oriented modeling calibration process. All model parameters are displayed in Table A1.1. 
The calibration process is described in section A1.3.5. Although we do not intend the model to 
be representative of any specific region or location, we chose to draw several of the parameters 
from Ethiopian data sources. Ethiopia’s population is primarily engaged in smallholder 
agriculture – many in mixed crop-livestock systems – and thus Ethiopia serves as a relevant 
setting from which to draw stylized information. This enabled us to represent the relative scales 
of different model elements (e.g., maximum crop yields and crop selling prices) without 
requiring these values to be determined by the calibration process, thus reducing the 
dimensionality of the uncertain parameter set.  



 
 

 
Additionally, although our representation of soil nutrient dynamics is stylized and we do not 
claim to realistically represent actual nutrient flows, we measure the SOM pool in units of 
kilograms of nitrogen per hectare (kg N/ha). This again allowed us to ground several parameters 
in empirically observed values (e.g., nitrogen-fixation of cover crops), reducing the number of 
uncertain parameters. However, we note that some values, particularly the C:N ratios, remain 
unrealistic in this model parameterization. 
 
The derivation of several parameters requires some explanation: 

• Initial and maximum SOM: In reality, baseline amounts of organic matter in a non-
degraded soil are sufficient to provide nutrients for moderate levels of crop yield. To 
parameterize the initial SOM, we used information from other parameters to give a rough 
estimate of a reasonable value. Specifically, we assumed that the soil itself would initially 
be able to provide 4,000 kg/ha crop yield (approximately 2/3 of the maximum yield) in 
the absence of other inputs. Using the C:N ratio in the crop (50), this is equivalent to 80 
kg N/ha of mineralized inorganic N that is produced solely through mineralization from 
SOM. With a mineralization rate of 0.02, this requires an initial SOM level of 4,000 
kg/ha. We then chose the maximum SOM level to be double the initial SOM level. 

• Wealth to nitrogen conversion: Using values from Newcombe (1987), we calculated that 
a cattle might produce 6,165 kg of fresh dung or, equivalently, 5,364 kg of dry matter per 
year. Assuming that 1.46% of the dry weight is nitrogen (also comparable to Lupwayi et 
al. (2000)), this equates to 78.3 kg N/cattle/year. Assuming a price of 3,000 birr (the 
Ethiopian currency) for a single animal, this is equivalent to 0.026 kg N/year/birr. 

• Land endowment: In reality, smallholder land holdings vary by a larger degree than we 
represent in the model. However, we assume that each household – regardless of their 
land endowment and wealth – has the same annual living costs. In reality, land-rich 
households might have more household members, and consumption also generally 
increases with wealth. For simplicity in the analysis, our households vary over a single 
dimension (land endowment), so we do not incorporate such secondary effects and hence 
parameterize the variability in land endowment from only 1 to 2 ha. These values 
respectively correspond to the 47th and 75th quantiles of household landholdings in the 
Ethiopia 2015 LSMS data. 

 
 

Table A1.1: Parameter values and sources. 

Parameter Symbol Value Unit Source Uncer-

tain† 

Sensit-

ivity 

analysis 

Description / notes 

Simulation settings        
 Number of 

households 
𝑁𝐴 200 -     

 Random seed 𝑠 0 -    Varied over simulation runs. 



 
 

Parameter Symbol Value Unit Source Uncer-

tain† 

Sensit-

ivity 

analysis 

Description / notes 

         
Households        
 Land 

endowment 
𝐿 {1, 1.5, 

2} 
ha    Varied over households. See text in 

section A1.3.3. 
 Initial wealth 𝑊0 36,165 birr    Proxy for livestock. 
 Cash 

requirement 
𝐶𝑅 6,001 birr    Annual cash requirement for 

consumption. 
         
Market        
 Crop sell price 𝑃𝑐𝑟𝑜𝑝 2.17 birr/kg FAO‡   Mean 2015 price for Maize in Addis 

Ababa. 
 Livestock price 𝑃𝑙𝑠 3,000 birr/head CSA§   Average 2015 price. 

         
Yields        
 Crop C:N 𝐶𝑁𝑐𝑟𝑜𝑝 50 gC/gN (Methere

ll et al. 
1993)  

  Carbon to nitrogen ratio in harvested 
crop. Value loosely taken from the 
CENTURY model description 
(Metherell et al. 1993).  

 Residue C:N 𝐶𝑁𝑟𝑒𝑠𝑖𝑑𝑢𝑒 196 gC/gN     Carbon to nitrogen ratio in crop 
residue. In (Elias et al. 1998) this is 
approximately four times the ratio of 
the harvested crop. 

 Maximum yield 𝑌𝑚𝑎𝑥 6,590 kg/ha LSMS|   95th percentile maize yield over 
Ethiopia in 2011, 2013, and 2015 

 Climate upper 
threshold 

𝐶𝑢𝑝𝑝𝑒𝑟 0.8 - (Methere
ll et al. 
1993) 

  Climate condition above which crop 
yields plateau 

 Climate lower 
threshold (low 
SOM)  

𝐶𝑙𝑜𝑤𝑙𝑜𝑤𝑒𝑟 0.3 -    Climate condition below which crop 
failure occurs with SOM is zero 

 Climate lower 
threshold (high 
SOM) 

𝐶ℎ𝑖𝑔ℎ𝑙𝑜𝑤𝑒𝑟 0 -    Climate condition below which crop 
failure occurs with SOM is at its 
maximum 

 Crop yield 
random effect 

𝜎𝑦 0.3 -    Standard deviation of the crop yield 
random effect, simulated as ~𝑁(1,0.3) 

 Residue loss 
factor 

𝑙𝑟𝑒𝑠𝑖𝑑𝑢𝑒  10 % (Assefa 
et al. 
2013) 

  Percentage of crop residues not 
returned to the soil or fed to livestock 

 Residue 
multiplier 

𝑚𝑢𝑙𝑡 2 - (Bogale 
et al. 
2008, 
Assefa et 
al. 2013) 

  Residue production per unit of 
harvested crop. 

         
Soil        
 SOM 

mineralization 
rate 

𝑘𝑠𝑙𝑜𝑤 2 %/year (Schmidt 
et al. 
2011) 

  50-year turnover time of bulk SOM  

 Applied organic 
matter 
mineralization 
rate 

𝑘𝑓𝑎𝑠𝑡 10 %/year    The percentage of applied organic 
matter (manure and/or crop residues) 
that mineralizes in the year of 
application. 

 Initial SOM 𝑆𝑂𝑀0 4,000 kg N/ha -   See text in section A1.3.3 
 Maximum SOM 𝑆𝑂𝑀𝑚𝑎𝑥 8,000 kg N/ha -   See text in section A1.3.3 
 Maximum 

leaching rate 
𝑙𝑁𝑚𝑎𝑥  25 % (Giller et 

al. 1997, 
Di and 
Cameron 
2002) 

  Rate of leaching of mineralized 
organic matter when SOM is zero. 



 
 

Parameter Symbol Value Unit Source Uncer-

tain† 

Sensit-

ivity 

analysis 

Description / notes 

 Minimum 
leaching rate 

𝑙𝑁𝑚𝑖𝑛 5 % (Di and 
Cameron 
2002) 

  Rate of leaching of mineralized 
organic matter when SOM is at its 
maximum. 

         
Livestock        
 Wealth:nitrogen 

conversion 
𝑊𝑁𝑐𝑜𝑛𝑣 0.018 kg 

N/year/bi
rr 

-   0.026 kgN/year/birr is the derived 
value for comparison (see text in 
section A1.3.3) 

 Percent crop 
grazing 

𝑐𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 52 % (Keftasa 
1988, 
Bediye et 
al. 2001) 

  Percentage of livestock food 
requirements that come from crop 
residues. The remainder comes from 
a non-modeled external rangeland. 

 Consumption 
requirement 

𝑐𝑓 2,280 kg DM/ 
TLU/ 
year ¶ 

(Amsalu 
and 
Addisu 
2014) 

  We assume all residues are dry 
matter 

         
Climate        
 Mean 𝜇𝑐 0.5 -     
 Standard 

deviation 
𝜎𝑐 0.2 -     

         
Adaptation option: 

insurance 

       

 Climate 
percentile 

𝐼𝑛𝑠𝑝𝑒𝑟𝑐 10 %    Climate threshold (percentile of 
cumulative distribution function) 
below which an insurance payout is 
received. 

 Payout 
magnitude 

𝐼𝑛𝑠𝑝𝑎𝑦𝑜𝑢𝑡 1 -    Insurance payout relative to the 
expected yield. For example, if this is 
1, the insurance payout will equal the 
income from an average year’s yields 
(assuming no nutrient limitations on 
crop growth). 

 Cost factor 𝐼𝑛𝑠𝑐𝑜𝑠𝑡 1 -    Fairness of insurance. A value of 1 
indicates an actuarially fair policy, 
where the annual cost is equivalent to 
the expected annual benefit. 

         
Adaptation option: 

cover crop 

       

 Nitrogen 
fixation 

𝐶𝐶𝑁 𝑓𝑖𝑥 95 Kg N/ha (Büchi et 
al. 2015, 
Wittwer 
et al. 
2017, 
Couëdel 
et al. 
2018) 

  Maximum value with no water 
limitation. 

 Cost factor 𝐶𝐶𝑐𝑜𝑠𝑡 1 -    Annual cost of cover cropping 
relative to the cost of insurance. 

         

† The values displayed for the uncertain parameters were calibrated using the pattern-oriented modeling process (section A1.3.5) 
‡ http://www.fao.org/giews/food-prices/tool/public/ 
§ CSA = Ethiopian Central Statistical Agency. Source = annual retail price sheets. 
| LSMS = Living Standards Measurement Study 
¶ DM = dry matter, TLU = tropical livestock unit 



 
 

A1.3.4 Sub-models 

A1.3.4.1 Soil nutrients 

The model contains two main pools of soil nutrients: organic and mineralized. The states of these 
pools are measured in kg N/ha. Each year, a portion of the organic pool of nutrients (𝑆𝑂𝑀) 
mineralizes according to a linear decay process. Organic nutrients applied to the soil (manure 
and crop residues; 𝑁𝑎𝑑𝑑𝑒𝑑) also are partially mineralized in the year of application (with a linear 
rate constant larger than that of the SOM), with the non-mineralized component added to the 
bulk SOM. We do not differentiate between the addition of “organic matter” and “nitrogen” and 
use a single variable to retain simplicity. 
 𝑁𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝑆𝑂𝑀 = 𝑘𝑠𝑙𝑜𝑤 𝑆𝑂𝑀𝑡 
 

(A1.1) 𝑁𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝑎𝑑𝑑𝑒𝑑 = 𝑘𝑓𝑎𝑠𝑡 𝑁𝑎𝑑𝑑𝑒𝑑 
 

(A1.2) 𝑁𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝑡𝑜𝑡𝑎𝑙 = 𝑁𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝑆𝑂𝑀 + 𝑁𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝑎𝑑𝑑𝑒𝑑  
 

(A1.3) 𝑆𝑂𝑀𝑡+1 = (𝑆𝑂𝑀𝑡 − 𝑁𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝑆𝑂𝑀 ) + (𝑁𝑎𝑑𝑑𝑒𝑑 − 𝑁𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝑎𝑑𝑑𝑒𝑑 ) 
 

(A1.4) 

 
After mineralization, a percentage of the mineralized nutrients is leached from the system. 
Higher levels of SOM contribute to lower leaching rates (Drinkwater et al. 1998). Specifically, 
we assume a maximum leaching rate with no SOM (𝑙𝑁𝑚𝑎𝑥) and a minimum leaching rate when 
SOM is at its maximum (𝑙𝑁𝑚𝑖𝑛), with a linear interpolation between these two points (see Table 
A1.1 for parameter values). 
 
Mineral N that remains after leaching is assumed to be fully available to the crop. If this is higher 
than the crop’s N requirements, any excess mineral N is assumed to be lost from the system via 
leaching (i.e., the mineral nutrient pool is reset each year). 
 
This nutrient balance is partial and we do not model soil erosion (Cobo et al. 2010), yet the loss 
pathways that we include represent the largest magnitude pathways in mixed cropping-livestock 
systems (Tittonell et al. 2006). However, in its stylization, our representation of soil nutrient 
dynamics contains a number of simplifying assumptions, namely: (1) no endogenous or dynamic 
representation of C:N ratios, (2) a single soil layer, (3) a single pool of organic nutrients with a 
single mineralization rate, (4) no explicit modeling of soil microbial biomass or other labile 
SOM pools, (5) no climate dependence in nutrient mineralization or leaching, (6) no nutrient 
dependence (e.g., N-limitations) in mineralization, (7) no differentiation between ammonium and 
nitrate as forms of inorganic N, and (8) no atmospheric losses of N through denitrification. 
Despite these assumptions, we believe that our representation provides a reasonable first-level 
approximation of more complicated soil dynamics and requires far less parameterization.  



 
 

 

A1.3.4.2 Climate 

Climate is represented through a single value, which is drawn each year from a normal 
distribution (parameters in Table A1.1) that is bounded between 0 and 1. This value does not 
represent a specific physical climate characteristic (e.g., rainfall), but a stylized notion of the 
“climate condition”. Under baseline conditions, the simulated climate values interact with the 
model solely through crop yields. Under the insurance scenario, payouts are received in years in 
which the climate condition is below the insurance index value, which is defined as some 
percentile of the cumulative distribution of the climate condition (i.e., a 10% index represents the 
10th percentile of the cumulative distribution). With cover cropping, the climate condition also 
affects cover crop nitrogen fixation. The climate value is qualitatively similar to the outputs of 
process-based methods that calculate ratios of actual evapotranspiration to potential 
evapotranspiration (e.g., applications of the FAO crop water requirements methodology (FAO 
1984, Allen et al. 1998, Block et al. 2008) and the CENTURY model (Metherell et al. 1993)), 
but requires far less parameterization. 
 

A1.3.4.3 Crop yields 

Crop yields can be reduced from a maximum potential value (𝑌𝑚𝑎𝑥) through water and/or 
nutrient limitations (Tittonell and Giller 2013). First, we calculate a water factor, 𝐶𝑤𝑎𝑡𝑒𝑟, with 0 ≤  𝐶𝑤𝑎𝑡𝑒𝑟 ≤ 1. It is assumed that (see Figure A1.2): (1) if the climate value is greater than 𝐶𝑢𝑝𝑝𝑒𝑟 (0.8 in the parameterized model), then 𝐶𝑤𝑎𝑡𝑒𝑟 = 1; (2) there is a critical climate value (≥0) at which 𝐶𝑤𝑎𝑡𝑒𝑟 = 0; (3) higher levels of SOM lead to higher drought tolerance and hence a 
lower critical climate value; and (4) 𝐶𝑤𝑎𝑡𝑒𝑟 scales linearly between the critical value and 𝐶𝑢𝑝𝑝𝑒𝑟. 
The maximum water-constrained yield (𝑌𝑤) is then assumed to be: 
 𝑌𝑤 = 𝐶𝑤𝑎𝑡𝑒𝑟 ∗ 𝑌𝑚𝑎𝑥 (A1.5) 
 

 
Figure A1.2: Effect of climate on crop yields. 



 
 

Second, we determine the maximum attainable nutrient-constrained crop yield (𝑌𝑁) given the 
available mineral N in the soil (𝑁𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝑡𝑜𝑡𝑎𝑙 ): 
 𝑌𝑁 = 𝑁𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝑡𝑜𝑡𝑎𝑙1𝐶𝑁𝑐𝑟𝑜𝑝 + 𝑚𝑢𝑙𝑡𝐶𝑁𝑟𝑒𝑠𝑖𝑑𝑢𝑒 (A1.6) 

 
This represents a partitioning of the 𝑁𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝑡𝑜𝑡𝑎𝑙  between the N in the harvested crop (adjusted 
by 𝐶𝑁𝑐𝑟𝑜𝑝) and the crop residues (adjusted by 𝐶𝑁𝑟𝑒𝑠𝑖𝑑𝑢𝑒 and multiplied by 𝑚𝑢𝑙𝑡). 

The actual yield (𝑌𝑜𝑏𝑠) is then calculated as  
 𝑌𝑜𝑏𝑠 = min(Yw, 𝑌𝑁) ∗ 𝜀 
 

(A1.7) 

 
where 𝜀~𝑁(1, 𝜎𝑦2) is a household-level stochastic effect with 𝜎𝑦 given in Table A1.1. 
 
In this stylized crop yield model, we omit or simplify several processes that are included in more 
detailed process-based crop yield models, for example: (1) our one-dimensional representation of 
the effects of climate proxies any non-linearities in relationships between climate and yield as 
well as potential interactions between rainfall and temperature; (2) we do not model solar 
irradiation and growth of leaf area; and (3) we do not model the partitioning of growth between 
above- and below-ground biomass. Given the modular nature of our yield model, additional 
reduction factors could be added (e.g., see (Schreinemachers et al. 2007)) or more sophisticated 
process-based calculations could replace the existing calculations of water and nutrient 
limitations. However, this increased complication would require a greater amount of data and 
calibration, as well as reduce transparency in how specific inputs and structures mechanistically 
influence yields and the broader model dynamics. 
 

A1.3.4.4 Cover crop N2 fixation 

As with vegetable crops, cover crops’ biomass generation, and thereby their soil organic matter 
contributions, is also constrained by rainfall (Ewansiha and Singh 2006). We assume that the N 
fixed by the cover crop follows the same water response function as vegetable crop yields (i.e., 
Figure A1.2). Thus, in a year with no rainfall, no N is fixed. We set the default upper bound on 
N2 fixation as 95 kg N/ha (Figure A1.3). 
 



 
 

 
Figure A1.3: Distribution of cover crop N fixation (kg N/ha) in temperate climates reported in 

Badgley et al. (2007). The median value is 95 kg N/ha. 

 

A1.3.5 Pattern-oriented modeling (POM) 

A1.3.5.1 Description 

We use latin hypercube sampling to generate 100,000 potential parameter sets, where each 
parameter is drawn uniformly from the ranges in Table A1.2. For each potential parameterization 
we run the model 10 times (to encompass climate variability) for a population of 100 households 
(to encompass variability induced by the random yield effect) for a period of 100 years. We 
choose only 10 model replications here due to computational reasons.  
 
We assess whether each simulation generates a set of qualitative “patterns” (Table A1.3). These 
patterns collectively represent desired model behavior under baseline simulation conditions. To 
evaluate a potential parameter set we: (1) measure which patterns are generated in each 
simulation, (2) calculate the probability that each pattern is generated over the 10 replications, 
and (3) sum these averages over all patterns. 
 

Table A1.2: Parameters included in the POM calibration 

 Parameter Symbol Minimum Maximum Notes 

1 Households: initial wealth 𝑊𝑜 5,000 50,000  
2 Households: annual cash requirement 𝐶𝑅 5,000 30,000 Median annual expenditure in 2015 

LSMS is 17,261 birr 
3 Yields: climate lower threshold (low SOM) 𝐶𝑙𝑜𝑤𝑙𝑜𝑤𝑒𝑟  0 0.5  
4 Yields: residue C:N  𝐶𝑁𝑟𝑒𝑠𝑖𝑑𝑢𝑒  25 200 Bounding the crop C:N ratio 
5 Livestock: percent crop grazing 𝑐𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 0.5 1 Livestock are often grazed primarily 

on crop residue (e.g., (Keftasa 1988, 
Bediye et al. 2001)) 

6 Livestock: wealth:nitrogen conversion 𝑊𝑁𝑐𝑜𝑛𝑣 0.01 0.05 Bounding the empirically-derived 
value 

7 Soil: applied organic matter mineralization 
rate 

𝑘𝑓𝑎𝑠𝑡  0.05 0.95 Must be faster than the SOM 
mineralization 

8 Soil: maximum leaching rate 𝑙𝑁𝑚𝑎𝑥 0.05 0.95  



 
 

 

Table A1.3: Patterns used for the POM calibration 

 Pattern Requirements 

1 Divergent household 
wealth trajectories 

(a) All land-rich households finish the simulation with positive wealth AND 
(b) All land-poor households finish the simulation with no wealth AND 
(c) 20%-80% of the middle households finish the simulation with positive wealth. 

2 Households can 
recover from shocks 

There is at least one middle household that: 
(a) Has no wealth at some point during the simulation AND 
(b) Has positive wealth at the end of the simulation. 

3 No saturation of 
SOM 

There are no households consistently at the maximum level of SOM throughout the 
last 10 years of the simulation. 

4 Some households 
can build SOM 

At least 10% of households finish the simulation with a higher SOM than the initial 
value 

 

A1.3.5.2 Results 

Of the 100,000 parameter sets, three generated on average 3.2 of the four patterns (Figure A1.4). 
We retained one of these parameterizations for the analysis presented in this paper. 
Experimentation with the other two parameterizations yielded qualitatively similar results that do 
not affect the conclusions drawn in this paper. 
 

 
Figure A1.4: Scaled parameter values of the resultant POM parameterizations. The red line 

represents the selected parameterization. Blue lines represent the other parameterizations that 
reproduced the same number of patterns. Grey lines show parameterizations that were within 

20% of the best. 
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APPENDIX 2 Convergence analysis 
The goal of the convergence analysis was to estimate how many replications of the model are 
required to generate model outputs that are not significantly influenced by stochasticity within 
the model. We refer to this number of replications as 𝑟∗. In our case, the quantity of interest is 𝑃(𝐶𝐶 ≻ 𝐼𝑛𝑠)𝑠ℎ𝑜𝑐𝑘. We expect that this probability will vary considerably with both 𝑇𝑠ℎ𝑜𝑐𝑘 and 𝑇𝑎𝑠𝑠𝑒𝑠𝑠. Hence, we choose 𝑟∗ = max(𝑟𝑇𝑠ℎ𝑜𝑐𝑘,𝑇𝑎𝑠𝑠𝑒𝑠𝑠∗ ) , ∀(𝑇𝑠ℎ𝑜𝑐𝑘, 𝑇𝑎𝑠𝑠𝑒𝑠𝑠) over 𝑇𝑠ℎ𝑜𝑐𝑘 ∈{5,10,20} and 𝑇𝑎𝑠𝑠𝑒𝑠𝑠 ∈ {1,3,5,7,9,11,13}. 
 
Our approach for estimating each 𝑟𝑇𝑠ℎ𝑜𝑐𝑘,𝑇𝑎𝑠𝑠𝑒𝑠𝑠∗ was as follows: 

1. Run a large number of model replications (1000). 
2. Assume the estimated 𝑃(𝐶𝐶 ≻ 𝐼𝑛𝑠)𝑠ℎ𝑜𝑐𝑘 over these replications (�̂�1000) is the “true” 

value. 
3. For each 𝑟 ∈ {1, … ,1000}, calculate the absolute error (AE) from the true value. For 

example, 𝐴𝐸50 = | �̂�1000 − �̂�50 |, where �̂�50 represents 𝑃(𝐶𝐶 ≻ 𝐼𝑛𝑠)𝑠ℎ𝑜𝑐𝑘 calculated 
over the first 50 replications. 

4. Choose 𝑟∗ as the number of replications at which the absolute error in the estimated 
probability falls below 5%, i.e.,   𝑟∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑛(𝐴𝐸𝑛 > 0.05). 

 
The threshold of 5% was chosen as we do not require highly precise estimates of 𝑃(𝐶𝐶 ≻ 𝐼𝑛𝑠) 
for our assessment. We acknowledge that our approach is relatively ad-hoc and not formally 
statistically grounded. However, it captures the essence of what we desire: estimates of 𝑃(𝐶𝐶 ≻𝐼𝑛𝑠) that are robust to within-model stochasticity. We considered using the approach presented 
in Abreu and Ralha (2018), but the coefficient of variation (i.e., the standard deviation of 𝑃(𝐶𝐶 ≻ 𝐼𝑛𝑠) divided by the mean) is unstable with estimates near zero. Additionally, we 
considered the approach presented in Law (2008) (pg. 502), but because our model is not 
computationally intensive it was feasible to run a large number of simulations and calculate �̂�𝑛 ∀𝑛 and we adopted the approach described above. 
 
The results indicate that 𝑟∗ = 188 is sufficient (Figure A2.1). To be conservative, we run the 
model at least 300 times for all experiments. For some figures we used a higher number of 
replications to improve visual clarity. 



 
 

 
Figure A2.1: Absolute error in the estimate of 𝑃(𝐶𝐶 ≻ 𝑖𝑛𝑠) as the number of model replications 
is increased. Each black line represents a unique (𝑇𝑠ℎ𝑜𝑐𝑘, 𝑇𝑎𝑠𝑠𝑒𝑠𝑠). The red lines show the point at 

which the absolute error falls below 0.05 for all (𝑇𝑠ℎ𝑜𝑐𝑘, 𝑇𝑎𝑠𝑠𝑒𝑠𝑠). 
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APPENDIX 3 Sensitivity analysis methodology and additional results 
A3.1    Parameter sampling 
We conducted a global sensitivity analysis on the majority of the parameters of the model (see 
Table A1.1 in the ODD+D description for the selected parameters). To generate perturbed 
parameter sets we employed the following procedure: 

1. Generate a random deviation 𝑎𝑖 for each of the 𝑃 parameters (𝒂 = 𝑎1, … , 𝑎𝑃), allowing 
the deviation to be 30% upwards or downwards:  𝒂 ~ 𝑈(0.7, 1.3)𝑃 

2. Perturb each parameter from its baseline value 𝑋𝑖 (𝑿 = 𝑋1, … , 𝑋𝑃 ) by this simulated 
value, giving a perturbed parameter set: 𝑺𝑟′ =  𝒂𝑿 

3. Repeat this procedure 10,000 times, giving 𝑺′ = 𝑺1′ , … , 𝑺10000′ . Here, we used latin 
hypercube sampling to increase the efficiency of the sampling of the parameter space. 

 

A3.2    Model evaluation 

For each set of perturbed parameters 𝑺𝑟′  calculate the Quantity of Interest (𝑄𝑜𝐼), where the 𝑄𝑜𝐼 
takes two forms: 

(a) 𝑄𝑜𝐼𝑠ℎ𝑜𝑐𝑘 represents 𝑃(𝐶𝐶 ≻ 𝐼𝑛𝑠)𝑠ℎ𝑜𝑐𝑘 in Experiment 1 (Table 1) with 𝑇𝑎𝑠𝑠𝑒𝑠𝑠 = 5 and 𝑇𝑠ℎ𝑜𝑐𝑘 = 10 and a 10% shock.  
(b) 𝑄𝑜𝐼𝑝𝑜𝑣 represents 𝑃(𝐶𝐶 ≻ 𝐼𝑛𝑠)𝑝𝑜𝑣 in Experiment 2 (Table 1) with 𝑇𝑝𝑜𝑣 = 50. 

 
The model evaluation procedure results in a “dataset” of sorts, where the independent variables 
are the parameters (𝑺′, with 𝑃 columns and 10,000 rows) and the dependent variable is the 
quantity of interest (𝑄𝑜𝐼𝑝𝑜𝑣 or 𝑄𝑜𝐼𝑠ℎ𝑜𝑐𝑘 of size 10,000). 
 

A3.3    Gradient-boosted regression forest 
The goal of the sensitivity analysis is to assess how changes in the parameters affect the QoI. 
Hence, we are interested in exploring the function 𝑓 in the relationship 𝑄𝑜𝐼 = 𝑓(𝑺′). This 
function may be non-linear. We trained a gradient-boosted regression forest (GBRF) to yield a 
non-parametric representation of 𝑓. A GBRF consists of a set of simple regression trees that are 
fit in a stagewise manner, with each successive tree being fit to the residuals of the previous. 
GBRFs originated in the machine learning community, and generally exhibit a high predictive 
performance (Elith et al. 2008). We do not discuss this method in detail here and refer interested 
readers to Elith et al. (2008). 
 

A3.4    Assessing variable influence 
We use partial dependence plots (PDPs) – a common visualization technique for non-parametric 
models – to visualize the associations between changes in each parameter and the QoI, as 
assessed by the GBRF. Each point (𝑥, 𝑦) on a partial dependence plot for parameter 𝑝𝑖 represents 
the average prediction made by the GBRF (𝑦 value) if every instance of 𝑝𝑖 is set to 𝑥, keeping all 



 
 

other parameters (𝑝−𝑖 ) at their original values. The slope of the PDP gives an indication of both 
the magnitude and direction of influence of the parameter on the 𝑄𝑜𝐼. A PDP for a linear 
regression model would show a straight line representing the regression coefficient (𝛽). To 
generate confidence bounds on our PDPs we bootstrap the “dataset” 100 times, each time re-
training the GBRF and re-estimating the PDP.  
 

A3.5    Supplemental results 

 
Figure A3.1: Importance of different model parameters in the sensitivity analysis, as calculated 

by the GBRF. The “variable importance” measure is calculated by scikit-learn in Python 
(Pedregosa et al. 2011) and is a measure of the amount of variance that each variable explains. 
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APPENDIX 4 Additional figures 

 
Figure A4.1: Effects of the strategies on various model characteristics relative to the baseline 

scenario for each type of household. In all cases, the horizontal line at zero represents no change 
relative to the baseline model conditions. “Change in P(coping rqd)” refers to change in the 

probability that a household must sell their livestock at each time step. “Change in P(wealth>0)” 
refers to change in the probability that a household has positive wealth (i.e., livestock) at each 

time step. 



 
 

 
 

 
Figure A4.2: Comparison of insurance and cover cropping on 𝑃(𝐶𝐶 ≻ 𝐼𝑛𝑠)𝑠ℎ𝑜𝑐𝑘 for the three 
types of household, which differ solely in their land holdings. Land-poor households have 1 ha 

of land, middle households have 1.5 ha, and land-rich households have 2 ha.  

 

 
Figure A4.3: Comparison of insurance and cover cropping on shock absorption as the magnitude 

of the drought is varied, with 𝑇𝑠ℎ𝑜𝑐𝑘 = 10. The vertical threshold at 0.25 represents the 
microinsurance climate index. 

  



 
 

 

 
Figure A4.4: Influence of strategy characteristics on the shock absorption comparison. The black 

dots represent the baseline settings used in other experiments. In all cases, we simulated a 0.2 
magnitude shock with 𝑇𝑠ℎ𝑜𝑐𝑘 = 10 and averaged results over all household types. Results were 

qualitatively similar for each individual household type. 
 

 
Figure A4.5: Influence of strategy characteristics on the poverty reduction assessment for 

different household types with 𝑇𝑑𝑒𝑣 = 20. Note that poverty reduction measures households that 
have lost all their wealth; since the land-rich households (2 ha) very rarely lose their wealth even 

under baseline conditions (Figure 5), the stark differences seen in this assessment (right-most 
plots) for these households are not meaningful. 

  



 
 

 

 

 

 

 
 

Figure A4.6: Evolution of model metrics under different parameter settings. Plotted values 
represent averages over all household types. “P(livestock sale required)” represents the 

probability that any livestock sale is required, independent of the number. 

 

  



 
 

APPENDIX 5 Synergies 
The analysis in the main body of the article reveals a story of complementarity between 
microinsurance and cover cropping. Here, we examine whether the strategies, when implemented 
together, lead to synergistic effects. We conceptualize a synergy as a situation in which “the sum 
is greater than the parts”. In this case, this represents: 
 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑏𝑜𝑡ℎ > 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝐶𝐶 + 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝐼𝑛𝑠 
 
where the “Benefit” is measured in the same way as shock absorption (Equation 1 in the main 
manuscript). 
 
The results (Figure A5.1) reveal that the modeled strategies exhibit synergies with respect to 
shock absorption in the long-term. In the short term, however, the combined effect is less than 
the sum of its parts. This is mainly explained by cover cropping’s short-term detriment to shock 
absorption while soil organic matter (SOM) is being built. The long-term synergy is not 
surprising, given the structure of the model; each strategy operates through distinct mechanisms: 
cover cropping through the building of SOM and microinsurance through income stabilization. 
Each of these mechanisms enables the wealth-SOM feedback loop, consequently contributing to 
higher income. Due to this feedback, the combined effect of the strategies is heightened, and 
therefore synergistic. 
 

 
Figure A5.1: Probability that both strategies together provide larger benefits than the sum of both 
strategies separately. This represents the outcomes for a “middle” household and a 0.2 magnitude 

drought. 

  



 
 

APPENDIX 6 Utility analysis 
The focus in the main body of the paper centered primarily around the two measures of 
resilience: shock absorption and poverty reduction. Our results showed that—predicated on the 
structure of the model and scenarios—cover cropping reduces poverty by increasing income over 
time, while microinsurance effectively buffers income in the wake of a drought. However, other 
economic indicators may be relevant for households that are not as vulnerable to poverty (i.e., 
land-rich in our analysis). In particular, risk-averse households may be interested in reducing 
income variability in addition to increasing mean income. Hence, microinsurance may provide 
benefit to these types of household that our resilience analysis does not identify.  
 
To formalize this benefit, we calculated an expected risk-averse utility on income over time 
under each scenario. We used an exponential utility function of the form 1 − exp(−𝑋 𝑅⁄ ), 
where X represents income and R represents the household’s risk tolerance. Figure A6.1 shows 
that the utility of more risk-averse households (i.e., with lower risk tolerance) is more strongly 
benefited by insurance than cover cropping. Due to the delay in cover cropping’s benefits on 
income, cover cropping leads to a short-term reduction in utility, which after 20-50 years 
increases to eventually exceed that of microinsurance. At lower levels of risk aversion (i.e., 
higher risk tolerance), the shape of the utility effects more closely mirrors that of expected 
income (Figure A4.1). Hence, by reducing income variability (specifically, the downside income 
risk), microinsurance may be a more promising strategy for risk-averse households that are not in 
poverty or whose crop yields are not highly nutrient limited. 
 
When both strategies are implemented together, the long-run utility exceeds that of both 
strategies in isolation, demonstrating a complementary effect on utility. However, due to the 
short-term financial tradeoffs associated with cover cropping, the shorter-term utility of both 
options together is lower than with microinsurance. Nevertheless, particularly for a risk-averse 
household, at no point does the combined utility decrease below the baseline condition. This 
demonstrates that, from a utility perspective, the welfare impacts of the short-term losses 
associated with cover cropping may be offset by the risk reduction offered by microinsurance. 

 
Figure A6.1: Expected utility over time for a land-rich household under three levels of risk 

tolerance. Higher risk tolerance corresponds to lower risk aversion. 



 
 

APPENDIX 7 Effect of microinsurance climate index 
The microinsurance scheme is structured such that the insurance is “fair”. For instance, if the 
insurance provides payouts in 5% of the years, the annual cost is 1/20th of the payout. Similarly, 
if the insurance provides payouts in 20% of the years, the annual cost is 1/5th of the payout. Thus, 
an insurance scheme with more frequent payouts entails higher premium costs. As a result, an 
insurance scheme that provides more regular payouts provides a lower net benefit to the 
household in a year in which the insurance is triggered. (Note that the strike rate affects the 
rainfall value at which the insurance is triggered.) 
 
This characteristic results in a tradeoff in our model with respect to the microinsurance climate 
index (Figure A7.1). Here, “climate condition” represents the annual realization of climate. The 
probability of a given climate condition occurring is influenced by the climate distribution (i.e., 
climatic context; here ~𝑁(0.5, 0.2)), but the outcomes in Figure A7.1 under a given climate 
condition depend only on the climate condition itself. 
 
For example, under the most extreme plotted climate condition (0.05), an insurance payout is 
received for all insurance indexes (strike rates). This payout is the same for all insurance indexes 
(5% insured, 10% insured, etc.). However, the cost of the premium is highest in the 30% insured 
case (i.e., 30% of the payout). This high premium means that, despite the payout being 
received, the household receives a lower net benefit in this year. As a result, the probability with 
which it must sell livestock is higher (0.55) than under an insurance scheme that provides less 
regular payouts (e.g., 0.10 probability under the 5% insurance index).  
 
However, the higher insurance indexes (e.g., 30% insured) also provide payouts under less 
extreme drought conditions. For example, when the climate condition is 0.4, a payout is received 
under the 30% insurance index but not under any of the other assessed indexes. As a result, the 
probability with which livestock selling is required is lowest for the 30% insurance index under 
this climate condition. 
 
Together, this represents a tradeoff in which insurance that provides more regular payouts offers 
protection under moderate climate conditions at the expense of vulnerability under more severe 
climate conditions, whereas insurance that provides less regular payouts protects against the 
severe climate conditions at the expense of vulnerability under more moderate conditions. 
Depending on the distribution of the climate condition (here, ~𝑁(0.5,0.2) truncated at 0 and 1), 
the net effect of this tradeoff will change as the probability of more and less extreme climate 
conditions shifts. In addition, farmer-level risk preferences may influence the aversion to 
different kinds of loss. Thus, the robust design of index-based microinsurance schemes in case 
study applications should consider the potential for this type of tradeoff. 
 



 
 

 
Figure A7.1: The probability that livestock selling as a coping measure is required as a function 

of the annual climate condition in a simulation under regular climate variability (~𝑁(𝜇 =0.5, 𝜎 =  0.2)) and different insurance coverages. For example, a point (0.4,0.7) represents a 
case in which during a year with a climate condition at 0.4 (affecting crop production – see 

section A1.3.4.2 in the ODD+D) there is a 70% chance that the household’s annual income is 
insufficient to satisfy their consumption and they must sell livestock resources. 5% insured 

represents an index-based insurance in which a payment is received in 5% of years. This is for a 
land-poor household only. 
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