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Abstract

Gold mining is a major source of metal and metalloid emissions into the environment. Stud-

ies were carried out in Krugersdorp, South Africa, to evaluate the ecological and human

health risks associated with exposure to metals and metalloids in mine tailings contaminated

soils. Concentrations of arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), copper

(Cu), lead (Pb), manganese (Mn), nickel (Ni), and zinc (Zn) in soil samples from the area

varied with the highest contamination factors (expressed as ratio of metal or metalloid con-

centration in the tailings contaminated soil to that of the control site) observed for As

(3.5x102), Co (2.8x102) and Ni (1.1x102). Potential ecological risk index values for metals

and metalloids determined from soil metal and metalloid concentrations and their respective

risk factors were correspondingly highest for As (3.5x103) and Co (1.4x103), whereas Mn

(0.6) presented the lowest ecological risk. Human health risk was assessed using Hazard

Quotient (HQ), Chronic Hazard Index (CHI) and carcinogenic risk levels, where values of

HQ > 1, CHI > 1 and carcinogenic risk values > 1×10−4 represent elevated risks. Values for

HQ indicated high exposure-related risk for As (53.7), Cr (14.8), Ni (2.2), Zn (2.64) and Mn

(1.67). Children were more at risk from heavy metal and metalloid exposure than adults.

Cancer-related risks associated with metal and metalloid exposure among children were

also higher than in adults with cancer risk values of 3×10−2 and 4×10−2 for As and Ni respec-

tively among children, and 5×10−3 and 4×10−3 for As and Ni respectively among adults.

There is significant potential ecological and human health risk associated with metal and

metalloid exposure from contaminated soils around gold mine tailings dumps. This could be

a potential contributing factor to a setback in the health of residents in informal settlements

dominating this mining area as the immune systems of some of these residents are already

compromised by high HIV prevalence.
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Introduction

Heavy metals and metalloids pollution of the environment remains a worldwide concern

because of the negative effects that exposure to heavy metals can pose on various ecosystem

and human receptors. Heavy metals and metalloids are introduced into the environment from

geogenic (weathering) and anthropogenic sources including waste disposal, agricultural activi-

ties, vehicular traffic, petroleum refineries, paint industries, photography, and mining [1].

According to Kaasalainen and Yli-Halla [2], heavy metals emitted from anthropogenic origins

including mining activities are highly mobile in the soil environment with increased potential

to cause ecological and human health complications compared to those of geogenic origins.

The contribution of metalliferous mining to elevated concentrations of heavy metals and met-

alloids including arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron

(Fe), lead (Pb), mercury (Hg), manganese (Mn), nickel (Ni), uranium (U) and zinc (Zn) in the

environment is widely reported [3–7]. Gold (Au) mining as a source of heavy metal contami-

nation in soils has been documented in several countries including Korea [3], USA [4], Sultan-

ate of Oman [6], Ghana [7], Canada [8] and South Africa [9]. Processing of ore bodies and

disposal of mine tailings and wastewater rich in heavy metals and metalloids are the main ori-

gins of metal and metalloid release from Au mines [10, 11].

Metals and metalloids contained in mine tailings dumps are spread to various ecological

receptors (fauna and flora), water resources, and the atmosphere when particles of the tailings

are dispersed to surrounding environments through various environmental fate pathways (Fig

1). These metals and metalloids could be adsorbed by soil particles, taken up by plants,

absorbed by micro-, meso- and macro-organisms, or leached to surrounding water bodies (Fig

1). In addition, tailings dumps are usually open, permitting the avian community and other

animals to forage for prey which themselves may have been exposed to heavy metals and met-

alloids through dermal contact, and ingestion of contaminated food or particles or both [12].

The openness of the tailings also facilitates erosion which contributes to extensive spatial dis-

persion of the tailings particles and consequently heavy metals [13]. Tailings dumps therefore

do not just affect the scenic view of the landscape but may also present significant risks to

biotic and abiotic environments.

Many of the heavy metals and metalloids released from gold mining activities are toxic to

plants and have the capacity to bioaccumulate, presenting health risks to humans, animals and

ecosystems. The negative effects of metals on plants including oxidative stress, effects on fluo-

rescence, stomatal resistance, chlorophyll and photosynthesis, reproductive processes, seed

germination, seed morphology and seed physiology have been reported by Chibuike and

Obiora [14]. Soil microbial activities are also negatively affected by high concentrations of

heavy metals. Reduction in soil microbial population and distribution, and low microbial

enzymatic activities in soil due to long-term exposure to heavy metals are some of the effects

reported [15]. Arthropod populations as well as small and large mammals are also negatively

affected by high levels of heavy metals in soils [16, 17]. Studies by Eisler [18] indicated that As

doses of 17 mg/kg to 48 mg/kg body weight (BW) were fatal to birds, whereas some mammals

were negatively affected by As doses of 2.5 mg/kg BW after oral exposure. Humans may be at

risk via exposure to heavy metals and metalloids from Au mine tailings through dermal con-

tact with the tailings and tailings contaminated soil, incidental inhalation and ingestion of con-

taminated suspended tailings and soil particles, ingestion of crops grown on mine tailings

contaminated soils (Fig 1), or through deliberate ingestion of the tailings contaminated soils

(geophagia). Poisoning as a result of heavy metal exposure is known to affect major human

physiological systems including the skeletal, nervous, respiratory, excretory, and digestive

systems. Whereas some of these heavy metals and metalloid (As, Ni, Cd, Cr, and Pb) are
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carcinogenic, they all have the potential to cause one or more health complications including

skin damage, kidney disease, lung and nasal irritation and damage, fragile bones, nervous dis-

order cardiomyopathy, ulceration of stomach and small intestines, nausea, and decreased

sperm count [19]. Heavy metal and metalloid pollution is likely to have significant implica-

tions for different ecosystems and the local human population living in the vicinity of mining

activities.

Gold mining has been an important economic activity in South Africa for more than 120

years [20, 21]. The landscape of Krugersdorp, a city in the outskirts of Johannesburg in South

Africa, is punctured by tailings dumps of abandoned and active Au mines. The present study

was conducted in the vicinity of Tudor shaft, an abandoned shaft in Krugersdorp where an

informal settlement has sprawled. This area has attracted both local and international environ-

mental activists because of the high doses of radionuclides identified around the site. High lev-

els of radionuclides with gamma dose rates of between 0.16 mSv/y and 0.25 mSv/y [22], and

high concentrations of heavy metals and metalloids including As, Cd, Co, Cu, Hg, Mn, Ni, U,

and Zn [23] have been reported around this area. Residents of informal settlements in the area

grow vegetables for local consumption on the tailings dumps, which also serve as a playground

for their children [22]. Health complaints that have been reported among residents in this

community include dermatitis, flu, chronic cough, and wheezing chests [23]. Studies on assess-

ment of human exposure to uranium in the area reported lifetime carcinogenic risk values

as high as 1.01×10−3 [22]. Studies on abandoned and active mines in this area have so far

focused on the levels of radioactivity and the concentrations of heavy metals in soils and water

Fig 1. Conceptual illustration of the fate pathways of mining-related emissions of heavymetals andmetalloids in the environment potentially
leading to exposures for human and ecological receptors.

doi:10.1371/journal.pone.0172517.g001
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resources in the area. The ecological and health risk associated with exposure to the heavy

metal and metalloid rich tailings and tailings contaminated soils have however not been inves-

tigated. Considering that HIV prevalence in South Africa is generally higher in informal settle-

ments than in formal settlements and among the economically active age group [24], exposure

of individuals with an already compromised immune system to heavy metals is likely to have

direct consequences on the health of individuals in these communities as well as the economy

and labor force of the country. The present study therefore aimed at determining the health

risks associated with exposure of residents in the precincts of Au mine tailings dumps to heavy

metals. Our study furthermore aimed at determining the potential ecological risks associated

with the spread of heavy metals rich Au mine tailings to surrounding ecosystems.

Materials andmethods

Description of the study area

The study was carried out in Krugersdorp (26˚6’S and 27˚ 46’E), a mining city in the West

Rand District of Gauteng Province (Fig 2), where Au, Mn, Fe, and asbestos have been mined

over many years. The area covers a total of 247.2 km2 with a population of 140,643 and popula-

tion density of 570 persons per km2. Geologically, the West Rand area of Gauteng is underlain

by rocks of the Johannesburg Subgroup of the Witwatersrand Supergroup with outcrops of the

Black Reef Formation of the Transvaal Supergroup [25]. The Witwatersrand Supergroup is

made up of erosion resistant quartzites, ironstones and some marine lava deposits interspersed

Fig 2. Study area in the Krugersdorpmining area with 1–3 indicating soil sampling sites.

doi:10.1371/journal.pone.0172517.g002
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with softer, more easily eroded tillites, mudstones and conglomerates. Huge deposits of Au are

found in some of the conglomerates of the younger members of the Supergroup [26]. Pyrite

and uranite are among the minerals that have been associated with Au mining in the area.

Decades of Au mining in the area has left more than 200 tailings dumps in the West Rand

region where Krugersdorp is located. Information regarding the specific age of the individual

tailings dumps in the area and the varying processes used to extract Au from the orebodies

over the years is usually not available. The Tudor shaft community located on one of such

dumps comprises of more than 2000 residents who are exposed to these tailings daily. The tail-

ings in this area are bare of any vegetation and remain exposed to various agents of erosion

permitting a wide spatial dispersion of tailings particles. Surrounding communities are there-

fore at potential risk from increased levels of heavy metal and metalloid exposure.

Soil sample collection and characterization

Soil samples were collected within a 20 m radius of abandoned Au mine tailings dumps in

three different areas in Krugersdorp located at 26˚ 7’ 56” S and 27˚ 48’ 13”E (Site 1), 26˚ 8’

34"S and 27˚ 48’ 28”E (Site 2), and 26˚ 7’ 40" S and 27˚ 48’ 57"E (Site 3) (Fig 2). Gold mining in

these sites had ceased more than a decade ago. A control sample was collected 6 km away from

the study sites in an area with the same lithology but with little human interference. Soil sam-

pling was performed in public spaces outside the borders of the mining activities. No formal

permission was required to collect samples besides informing the occupants of the informal

settlement near the mining areas. Neither endangered or protected ecological species nor

humans were sampled for this study. All soil samples were collected using a plastic hand trowel

at depths of 0 to 15 cm. Twelve samples were collected from both control and each study site

once every month over a period of four months making a total of 48 samples per site. Samples

were taken to the laboratory where they were characterized for their basic properties including

particle size distribution and median diameter D(v,0.5), pH, organic matter content, electrical

conductivity (EC) and cation exchange capacity (CEC). The particle size distribution of 24

samples from each site was determined using a Malvern Mastersizer 2000 laser particle size

analyzer fitted with Hydro 2000G dispersion unit as described by Council for Geosciences

[27]. The pH and EC of all samples collected were determined in a 1:2.5 (weight/volume) soil:

water (distilled deionized) suspension, whereas organic matter content and CEC were deter-

mined using the modified Walkley Black and ammonium acetate techniques, respectively, as

described by Van Reeuwijk [28]. The Student t-test was used to determine differences in

means of the properties of soil samples from the different sites.

Whole rock mineralogy of 5 randomly selected samples from each site was determined

using X-ray diffraction techniques. Quantitative analyses of minerals identified in the samples

were preformed using the relative peak height/area proportions and reference-intensity-ratio

(RIR) method where all diffraction data are scaled using a standard reference material (corun-

dum) [29]. Identification of minerals from data and diffractograms obtained after scanning

was carried out using the 2001 Version of the Philips X’PERT Graphics and Identify Software

package. The mineral peak list produced by the software package was compared with those in

the Mineral Powder Data File [30] for identification. Mean values of relative abundance of

minerals in five samples from each site was presented as the relative abundance of the mineral

in that site.

Determination of heavy metals and metalloids in soil samples

Aqua regia (a mixture of 32% HCl and 55% HNO3 in a ratio of 3:1) was used to extract heavy

metals in the samples as described by Lomonte et al. [31] and Goddard and Brown [32]. To 1 g

Mine tailings and environmental contamination
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of each sample weighed into a beaker, 10 ml of aqua regia was added and the mixture evapo-

rated to near dryness in a water bath at 110˚C. Another 15 ml of aqua regia was added to the

mixture after which it was also evaporated to near dryness. 1M HNO3 was added to the mix-

ture and the extract filtered through acid washed Whatmann no. 42 filter paper. The filtrate

was collected and used for determination of heavy metals in each sample. A ContrAA 300

atomic absorption spectrometer was used in the determination of heavy metal concentrations

in the sample extracts. For quality assurance and quality control purposes, two reagent blanks

were included in each batch of samples analyzed. All samples were analyzed in duplicate. The

reagent blanks were used as blanks in the determination of metal concentrations with the Con-

trAA 300. Values presented for heavy metals are therefore means of all samples analyzed per

site. A Perkin Elmer Pure Plus multi element standard was used to determine percentage

recovery of heavy metals analyzed. Percentage recovery of heavy metals and metalloids in the

experiment ranged from 77% to 115% with average percent recovery being 86%– 107%. The

lowest and highest percent recovery was obtained for As and Cu, respectively.

Screening-level human toxicity and freshwater ecosystem toxicity
assessment

As a first step, the potential of all involved heavy metals to pose a risk to humans and/or

aquatic ecosystems was determined using the multimedia, multi-pathway model USEtox [33].

USEtox is the UNEP-SETAC global consensus model for characterizing chemical emissions in

terms of human toxicity and freshwater aquatic ecotoxicity impacts [34]. It combines multime-

dia environmental fate, multi-pathway exposure and potential negative effects associated with

a chemical emission into the environment in a set of characterization factors (CFs) that are

expressed as:

• Increase in human cancer and/or non-cancer disease cases per kg emitted chemical into an

environmental compartment (cases/kg) for human toxicity, and

• increase of the potentially affected fraction (PAF) of freshwater ecosystem species integrated

over the exposed water volume and the duration of one day per kg emitted chemical (PAF

m3 d/kg) for freshwater aquatic ecotoxicity,

In the present study, USEtox CFs for all relevant heavy metals for an assumed emission of

1kg/d into continental natural soil were used to contrast for As, Cd, Cr, Co, Cu. Mn, Ni, Pb

and Zn and the contribution of different exposure pathways considered in USEtox to overall

exposure for humans as well as to contrast the overall potential impacts on humans and/or the

environment per kg emitted metal. USEtox however does not take into consideration dermal

pathway of exposure in toxicity assessment

Assessment of ecological risk from heavy metals and metalloids in
tailings contaminated soils

Potential Ecological Risk Indices of As, Cd, Cr, Co, Cu. Mn, Ni, Pb, and Zn in the three con-

taminated sites were determined as directed by Håkanson [35]. Though the method was origi-

nally used to determine the ecological risk index for aquatic environments, studies by Qingjie

et al [36], Zhu et al [37], Jiao et al [38], and Soliman et al. [39] have shown that the method is

also applicable for assessing risks associated with heavy metal pollution in soils. The contami-

nation factor of each heavy metal at each site (Cf) and the degree of heavy metal contamination

at each of the three sites (Cdeg) were determined according to Eqs (1) and (2), respectively.

Potential ecological risk of each heavy metal was determined as indicated in Zhu et al [37] and

Mine tailings and environmental contamination
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Håkanson [35] using Eqs (3) and (4).

Cf ¼ Co=Cn
ð1Þ

Cdeg ¼
X

Cf ð2Þ

Er ¼ Tr � Cf ð3Þ

RI ¼
X

Er ð4Þ

Where Co is the mean concentration of each heavy metal and metalloid in the soil sample, Cn

is the background concentration of the element in the site (which in this case was taken as the

concentration at the control site), Cf is the contamination factor for each heavy metal and met-

alloid, Cdeg is the degree of contamination at each site based on studied metals and metalloids,

Er is the risk factor for each element, Tr represents the sedimentological toxic response for the

given metal or metalloid, which according to Håkanson [35], Wu et al. [40], Soliman et al [39],

and Jiao et al [38] are As = 10, Cd = 30, Co = 5, Cr = 2, Cu = 5, Mn = 1, Ni = 5, Pb = 5, and

Zn = 1, and RI is the potential ecological risk.

Assessment of human exposure to heavy metals and metalloid in tailings
contaminated soils

The risk presented to both children and adults in the study area due to continuous exposure to

mine tailings contaminated soil was determined as detailed in the Risk Assessment Guidance

for Superfund Volume I Human Health Evaluation Manual (Part A), [41] Qu et al, [42],

USEPA [41], and Kurt-Karakus [43]. Pathways related to three human exposure routes were

considered in this study including (1) ingestion (2) inhalation, and (3) dermal exposure.

Chemical daily intake (CDI) of each heavy metal and metalloid through each route was calcu-

lated as indicated in Eq (5) (ingestion route), Eq (6) (inhalation route), and Eq (7) (dermal

route). Dermal exposure was taken as the sum over exposure pathways for different body

parts, namely head, arms, hands, legs and feet. The values used in Eqs (5) to (7) are presented

in Table 1. Results obtained from Eqs (5) to (7) were then compared with the documented ref-

erence dose (RfD) for each heavy metal analyzed as detailed in Agency for Toxic Substances

and Disease Registry Toxic Substances Profiles [44, 45].

CDIIng ¼
CUCL � IR� CF � FI � EF � ED

BW � AT
ð5Þ

CDIInh ¼ CUCL � InhR� EF � ED

PEF � BW � AT
ð6Þ

CDIDermal ¼
CUCL � CF � SA� AF � ABS� EF � ED

BW � AT
ð7Þ

The values used for the concentration (CUCL) of the heavy metals and metalloids in Eqs (5)–

(7) were the upper limits of the 95% confidence interval for the means of heavy metals and

metalloids which according to USEPA [41], Hu et al. [49] and Zheng et al. [50] yields the maxi-

mum potential exposure for each heavy metal and metalloid considered. The averaged metal

and metalloid concentrations of the samples from each site approximated a log-normal

Mine tailings and environmental contamination
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distribution; hence the data were transformed by using the natural logarithm of the heavy

metal and metalloid concentration ln(C) [41]. The log-transformed data were then used to

determine the UCL (upper confidence limit) for each metal and metalloid as described in

USEPA [51], and Ferreira-Baptista and Miguel [47], as presented in Eq (8).

CUCL ¼ exp �x þ 0:5s2 þ sH
ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

� �

ð8Þ

Where UCL is the upper confidence interval limit, �x is the mean of log-transformed metal or

metalloid concentration, s is the standard deviation of log-transformed data, H is the H-statis-

tic, and n is the number of samples.

Non-carcinogenic risk posed by exposure of individuals in the community to the selected

heavy metals and metalloids was determined by calculating the Hazard Quotients (HQ) as

indicated in Eq (9) [42, 43]. According to Qu et al. [42],HQ values< 1 are assumed to be safe

whereasHQ values> 1 present potential health risk associated with over exposure. TheHQ

values obtained were used to determine chronic hazard index (CHI) according to Qu et al. [42]

and Ogunkunle et al. [52] (Eq (10). CHI values> 1 indicate a possibility of the occurrence of

non-carcinogenic effects in individuals [43]. The carcinogenic risks associated with exposure

to As, Cd, Co, Cr, Ni and Pb were determined as indicated in Eqs (11) and (12) [50, 53, 54]. A

cancer risk below 1×10−6 is considered insignificant because 1×10−6 is classified as the carcino-

genic target risk. A cancer risk above 1×10−4 is classified as unacceptable [41, 54]. Risk assess-

ment parameters used in Eqs (9)–(11) are presented in Table 2.

Non � Cancer Hazard quotient ðHQÞ ¼ CDIroute
chronic reference dose for element ðRfDÞ ð9Þ

Total chronic hazard index ðCHIÞ ¼
Xn

i¼1
HQ ¼ HQIng þHQInh þHQDermal ð10Þ

Carcinogenic risk ¼ CDIroute � CSFroute ð11Þ

Table 1. Health risk parameters and values used.

Parameters Unit Definition Values used

Children Adults

CDI mg/kg/d Chemical Daily Intake of heavy metal

IR mg/d Ingestion rate 200 100

EF d/year Exposure frequency 350 350

ED years Exposure duration 6 30

PEF -- - - - - - - - - Particle emission factor 1.36x109 1.36x109

InhR m3/d Inhalation rate 7.6 20

BW kg Body weight 15 70

CF kg/mg Units correction factor 10−6 10−6

FI - - - - - - - - - - The fraction of soil or dust contacted that is
presumed to be contaminated

1 1

AT d Average time over which exposure is averaged EDx365 EDx365

SA cm2 Skin surface area available for exposure 600 (head); 1060 (arms); 370
(hands); 1950 (legs); 490 (feet)

1250 (head); 2760 (arms); 960
(hands); 6400 (legs); 1300 (feet)

AF mg/cm2 Adherence factor 0.04 0.02

ABS -- - - - - - - - - Dermal absorption factor 0.13 0.13

Sources: [41, 43, 45–48]

doi:10.1371/journal.pone.0172517.t001
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Where CDI represents the chemical daily intake for the exposure route determined as in Eqs 5,

6 and 7, and CSF represents the route-specific cancer slope factor indicated in Table 2.

Total carcinogenic Risk ¼ RiskIng þ RiskInh þ RiskDermal ð12Þ

Results and discussion

Properties of soils around the tailings

Mean particle size distribution of the soil samples differed from one site to the other as well as

between the three study sites and the control site (P< 0.05). The mean particle sizes of soil

samples from the three sites which varied between 0.4 μm to 355.7 μm (Fig 3) were smaller

compared to particle sizes of soils from the control site (0.1 μm to 525.8 μm). With the maxi-

mummean particle diameter of all samples being 355.7 μm, the soil particles at the study site

could be described as being fine. Samples from Site 1 were finer than those from Sites 2 and 3

Table 2. Toxicological parameters for heavymetals andmetalloids used in health risk assessment.

Heavy metal and metalloid References doses (mg/kg/day) Slope factors (mg/kg/day)

Inhalation Ingestion Dermal Inhalation Ingestion Dermal

As 1.50E-05 3.00E-04 9.00E-04 15.1 1.50 3.66

Cd 1.50E-05 1.00E-03 1.00E-05 6.3 - -

Co 6.00E-06 3.00E-04 1.60E-02 9.80 - -

Cr 2.86E-05 3.00E-03 6.00E-05 42.0 - -

Cu 6.90E-04 4.00E-02 1.20E-02 - - -

Mn 1.43E-05 4.60E-02 1.84E-03 - - -

Ni 9.00E-05 2.00E-02 9.00E-05 0.84 0.84 -

Pb 3.52E-03 3.50E-05 5.20E-04 - 8.50E-03 -

Zn 3.00E-01 3.00E-01 6.00E-02 - - -

Sources: [41, 43, 47, 49]

doi:10.1371/journal.pone.0172517.t002

Fig 3. Mean particle size distribution of soil samples from each site (n = 24).

doi:10.1371/journal.pone.0172517.g003
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with clay sized-particles (< 2 μm) constituting 6.95%, 2.25%, and 2.95% of the volume of soil

particles at Site 1, Site 2 and Site 3 respectively. Mean particle sizes of soils at the control site

were 2.3% (clay), 48.6% (silt) and 49.1% (sand). Silt-sized particles constituted 88.5% of the

soil particles at Site 1 and 44.8% and 60.1% of the soil particles at Sites 2 and 3 respectively.

The median particle diameter of the samples according to values of D(v,0.5) were 44.8 μm,

11.3 μm, 56.4 μm and 31.7 μm for the control site, Site 1, Site 2 and Site 3 respectively.

Percival et al [8] also reported fine textured soils around Au mine tailings from Nova Scotia

in Canada. The particle size distribution curves of the samples (Fig 3) indicate a narrow range

of particles with values of coefficient of uniformity of 5.6 (Site 1), 9 (Site 2) and 8.4 (Site 3).

With these values all being close to, or greater than 6, the soil particles can be described as

being well graded [55]. Considering that host rocks are crushed to increase the surface area of

the rocks in an endeavor to facilitate extraction of Au from the orebodies, the particles around

the tailings are expected to be well graded.

Soils around the tailings had lower organic matter (OM) content (0.1% to 0.6%) than soils

at the control site (0.3% to 1.88%). Low OMmatter content in soils around tailings dumps is

not unexpected because the environment is devoid of plant nutrients and the acidic nature of

tailings would hinder vegetation growth, limiting the amount of organic matter in the soils.

The soils around the tailings were more acidic (pH range from 2 to 6.23) with higher EC values

(1.73 mS/cm to 11.52 mS/cm), compared to the soils from the control site with pH and EC

ranges of 4.76 to 7.5 and 0.2 mS/cm to 1.15 mS/cm, respectively. The pH values observed in

these soils are within the range of pH values observed by Nengovhela et al. [56] but much

lower than those reported by Tariq et al. [57] in similar environments. Acidic conditions

around Au mine tailings have been associated with high concentrations of pyrite contained in

the tailings, which upon exposure, reacts with oxygen to form acid mine drainage. The acidic

nature of the tailings would increase the mobility of potentially toxic heavy metals increasing

their potential to cause harm to the environment. This would however depend on the CEC

and mineral composition of the soils as these determine heavy metal mobility in the environ-

ment, and are both affected by the prevailing pH conditions. The CEC values for the soils were

between 5.0 and 6.03 meq/100 g soil, whereas those at the control site were between 19 and 20

meq/100 g soil. Lack of organic matter, and low clay content would have contributed to the

low CEC observed in the soil samples around the tailings. In addition, minerals identified in

the soils (Table 3) have very low CEC.

The mineral assemblage of soils from all three sites was dominated by quartz (Table 3).

Samples from Site 3 had a more diverse mineral assemblage than those from Sites 1 and 2.

Quartz constituted 70% to 84% of minerals in samples from Sites 2 and 3, whereas pyrophyllite

made up 55% of the mineral constituents of samples from Site 1 (Table 3). The mineralogy of

soils at the control site was dominated by quartz and kaolinite (Table 3). The dominance of

quartzite in Witwatersrand Supergroup (bedrock of the study area) in addition to the resis-

tance of quartz to weathering could explain the dominance of quartz in the samples. Gypsum

Table 3. Mean relative abundance of minerals identified in samples.

Sample Control Site Site 1 Site 2 Site 3

Gypsum < 1

K-feldspar - - - 1

Quartz 97 27 84 70

Mica - 13 3 3

Kaolinite 3 5 - 1

Pyrophyllite - 55 12 26

doi:10.1371/journal.pone.0172517.t003
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(CaSO4. 2H2O) occurrence at Site 1 could be attributed to the presence of Ca in the tailings

which might have resulted in its precipitation. No crystalline forms of Na, CN or Fe-bearing

minerals were contained in the samples despite the commonly employed methods of process-

ing which use Na-CN or K-CN as leaching agents. According to Percival et al. [8], Au mine

tailings are usually fine textured with the mineralogy reflecting that of the host rock. Though

pyrite constitutes part of the Witwatersrand Supergroup and has been reported in other Au

tailings, it was not identified in this study possibly because of the shallow depth of sampling

where pyrite might have been depleted as a result of oxidation after exposure to atmospheric

oxygen. The mineral assemblage of the soils indicates a poor ability to sorb heavy metals, and

an increased potential for ecosystem deterioration.

Heavy metal and metalloid concentrations in soils around tailings

The relative percent difference in heavy metal and metalloid concentrations between replicate

analyses varied with sites. Detailed results of replicates are included in S1 Table. Though the

study sites were all around Au mine tailings, the concentrations of metals and metalloids var-

ied. Highest heavy metal concentration values were recorded in samples from Site 1, followed

by those from Site 3, and then Site 2. Around Site 1, Zn had the highest concentration value

(Fig 4) with a range of 2203 mg/kg– 5340 mg/kg whereas Cd had the lowest (1.1 mg/kg to 8.4

mg/kg). Values for heavy metal and metalloid concentrations in soil samples followed the

Fig 4. Concentrations of heavymetals andmetalloids in samples of tailings contaminated soils.

doi:10.1371/journal.pone.0172517.g004
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order Zn>Mn> Ni> Co> Cu> As> Cr> Pb> Cd (Site 1), Cr>Mn> Zn> Ni>

Cu> Pb> As> Cd> Co (Site 2), and Cr>Mn> Zn> Cu> Pb> Ni> Co> As> Cd

(Site 3). These patterns were all different from the control site which had an order of Mn> Cr

> Zn> Cu> Ni> Pb> Co> As> Cd (Fig 4). Except for Cr, heavy metal concentrations

in samples from Site 1 were significantly higher than in samples from the control site

(P< 0.05). Differences in heavy metal and metalloid concentrations in soils at Site 2, Site 3

and the control site were insignificant for As, Co, Cu, Mn, Ni and Zn (P> 0.05) but Cd, Cr,

and Pb concentrations in samples from Site 3, were significantly different from those at the

control site (P< 0.05).

The values for some heavy metals like Cd and Cu in soils from the control site were on the

high side of typical heavy metal concentrations reported in natural soils [58]. They however

fall within the limits of screening values for heavy metals in soils in South Africa for all land

use types protective of water resources, informal and standard residential areas [59]. Abdul-

Wahab and Marikar [6], Meunier et al. [60], and Song et al. [61] reported similar heavy metal

concentration values in Au mine tailings in their different studies. Despite these differences,

results indicate significant enrichments of soils with heavy metals and metalloids as indicated

by the values for heavy metal and metalloid contamination factors (Fig 5).

Levels of heavy metals and metalloid contamination in soils around
tailings dumps

Heavy metal and metalloid contamination factors Cf at the different sites ranged from 1.3 to

345 (Site 1), 0.4 to 3.2 (Site 2) and 0.4 to 2 (Site 3), (Fig 5, numbers on top of bars). At Site 2

and site 3, Cf values for Cr and As, respectively, were the highest whereas at Site 1, As had the

highest Cf value. Contamination factors at Site 1 were highest among the three sites (Fig 5).

According to contamination factor classification by Loska andWiechula [62], levels of con-

tamination observed for As, Cd, and Ni in soils at Site 3 were low (Cf� 1), whereas contamina-

tion levels for Co, Cr, Cu, Mn, Zn and Pb were medium (1< Cf� 3).

Heavy metal and metalloid contamination levels of soils at Site 2 were low for Co, Cu, Mn,

Ni, Pb and Zn, medium for Cr and Cd, and high for As (Fig 5). Soils at Site 1 were more con-

taminated with contamination levels for Cr and Pb classified as medium and As, Cd, Co, Cu,

Ni, Mn and Zn classified as high (Fig 5). The degree of soil contamination at the three sites

therefore varied being very high for Site1 (8.4x102), low for Site 2 (9.3), and medium for site 3

(10.3) based on the classification of Cdeg values by Loska and Wiechula [62] where Cdeg < 5

indicate low pollution; 5� Cdeg< 10, medium pollution; 10� Cdeg< 20, high pollution; and

Cdeg � 20, very high pollution. Increased level of heavy metal and metalloid contamination

around these sites might have occurred as a result of leaching from the tailings or dispersal of

the tailings particles to surrounding environment. Dispersal by wind would have been facili-

tated by the silky texture of the particles. Surrounding ecosystems are therefore at risk of heavy

metal exposure from contaminated soil.

Screening-level human and freshwater ecosystem exposure and toxicity
impacts

Exposure to metals released to natural soil is many orders of magnitude higher via the inges-

tion route (including pathways for ingestion of drinking water, above-ground produced crops

and below-ground produced crops like root and tuber crops, meat, dairy and fish) than via the

inhalation route across heavy metals (Fig 6). Ingestion-related pathways contribute differently

to overall ingestion exposure and are dominated by ingestion of fish mainly following runoff

and leaching from soil to freshwater contributing up to 77% to overall human exposure for As

Mine tailings and environmental contamination
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Fig 5. Heavymetal andmetalloid contamination factors and ecological risk factors at the three tailings sites.

doi:10.1371/journal.pone.0172517.g005
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and Co, followed by above-ground produced crops (up to 68% contribution for Pb) and

below-ground produced crops (up to 55% contribution for Cu) mainly following root uptake

into crops, and drinking water ingestion (up to 60% contribution for Ni). The exception is Cr,

where dairy (41%) and meat (37%) consumption are the main contributors to human inges-

tion exposure assuming that emissions refer to trivalent chromium, which binds more strongly

to organic matter than most other metals. Combining human ingestion and inhalation expo-

sure with effect factors relating human exposure to aggregated potential cancer and non-can-

cer effects in the USEtox model, characterization factors for human toxicity were derived and

are shown in Fig 7.

Fig 6. Distribution of pathways contributing to potential human exposure following an assumed emission of different heavymetals and
metalloids of 1 kg per day to natural soil.

doi:10.1371/journal.pone.0172517.g006

Fig 7. Distribution of potential human toxicity (left y-axis) and freshwater ecotoxicity (right y-axis) impacts following an assumed emission of
different heavymetals andmetalloids of 1 kg per day to natural soil.

doi:10.1371/journal.pone.0172517.g007
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Highest toxicity potentials have As and Cd with 1x10-2 and 2x10-3 cumulative non-cancer

cases in an exposed population per kg emitted to natural soil, respectively, while for cancer

effects, highest toxicity potentials are seen for As, Ni and Cd with 2x10-4, 6x10-5 and 9x10-6

cases per kg emitted, respectively. Similarly to human toxicity, the mass fraction of metal emis-

sion to soil reaching freshwater was combined with freshwater aquatic ecotoxicity effect factors

in USEtox to quantify characterization factors for freshwater ecotoxicity. Highest freshwater

ecotoxicity potentials are seen for Cu, Cd and Ni with respectively 5.2x106 and 1.2x106 and

1.5x105 PAF m3 d per kg emitted to natural soil.

Despite large variability of toxicity and ecotoxicity results between metals, there are also

large uncertainties related to toxicity characterization, ranging from one to two orders of mag-

nitude for freshwater ecotoxicity to more than two orders of magnitude for the more complex

ingestion-related exposure pathways for human toxicity [33]. From these screening-level

results, a more detailed assessment of potential risks is presented in the following sections start-

ing from the actual heavy metal concentrations in soils around the mining sites. However,

USEtox characterization factors are normalized to emitted mass and would have to be adapted

for use with measured metal concentrations in soil. More specifically, soil concentrations

would need to be combined with considered soil volume and bulk density to obtain metal mass

in soil, which could then be set as either initial conditions (in case of dynamic characterization)

or continuous emission when combined with the residence time in soil varying significantly

between metals (in case of steady-state characterization). Since soil volume and residence time

are not available in the current study, site-specific potential risk was estimated using contami-

nation and risk factors as described in the following.

Ecological risk associated with heavy metals and metalloids in mine
tailings contaminated soils

In soils from Site 1, Er values ranged from 2.6 for Cr to 3.5 x 103 for As (Fig 5). Er values for

soils from Site 2 were lower with a range of 0.6 (Mn) to 35.4 (Cd). Manganese also had the low-

est Er value (1.1) in soils from Site 3 and Cd the highest Er value (11.59). Although Cd concen-

trations were very low in the samples, the ecological risk for Cd was high because of the higher

toxic response value (Tr) of Cd compared to the other metals. There was also a high ecological

risk of Cd at the control site because of the high concentrations of Cd observed at the site. This

is also confirmed by results from screening with the USEtox model, which indicates that Cd

presents a high potential ecotoxicity risk per emission unit. The values of some of the heavy

metals like Cd, Cu and Pb in the soils from the control site were higher than those in soils

around the tailings. The occurrence of high concentrations of heavy metals at the control site

might have occurred as a result of dispersal of the tailings particles by wind, which is prevalent

in the study area especially during the months of August and September. These metals could

also have originated from other anthropogenic activities. Though the observed values for heavy

metals are higher than the average for most soils [58], they fall within the range of screening val-

ues for soils in South Africa [59]. These results also indicate that there may be heavy metal asso-

ciated ecological risk even at the control site. The Ecological risk of a metal can be classified as

low when risk factor (Er)� 40, moderate when 40< Er� 80, considerate when 80< Er� 160,

high when 160< Er� 320 and very high when Er> 320 [37], [63], [64]. Values for ecological

risk factors for the various heavy metals and metalloids in soils from the three study sites were

increasing in the following order: from Cr (lowest), Pb, Mn, Zn, Cd, Cu, Ni, Co to As (highest)

for Site 1; fromMn (lowest), Zn, Cu, Cr, Ni, Pb, Co, As to Cd (highest) for Site 2; and fromMn

(lowest), Zn, Cr, Ni, Cu, Co, As, Pb to Cd (highest) for Site 3. Potential ecological risk was high-

est at Site 1 (RI = 5.7x103) followed by Site 2 (RI = 82), and then Site 3 with an RI value of 50.

Mine tailings and environmental contamination
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This classification is according to ranges presented by Zhu et al. [37], Håkanson et al. [63], and

Chen et al. [64] where RI� 150 represents low potential ecological risk, 150< RI� 300; mod-

erate ecological risk potential, 300< RI�600; considerable ecological risk, and RI> 600; very

high ecological risk. Our results indicate high risks to biodiversity in the area from soil contami-

nation with metals. High concentrations of these metals and metalloid in the soil would likely

affect colonization of the area by vegetation which may reduce the organic matter content in

the soils, and their ability to retain metals. This would also render the area more prone to ero-

sion. There will also be implications for flora and fauna in the area. These implications would

be more detrimental around Site 1 than the other two sites given the rather small difference for

most metals between Sites 2 and 3 and the control site. These small differences, however, may

also indicate that even at the distance chosen for the control site to any of the Au mines, there is

a risk related to metal contaminated soils and that much larger distances would need to be con-

sidered for finding a true reference point for uncontaminated soils in future studies.

Human exposure to heavy metals and metalloids around tailings dumps

Based on the daily intake values used in this study, daily intake of the heavy metals and metal-

loids at all three sites was higher among children than among adults for all three pathways of

exposure (Table 4). Average daily intake was highest through ingestion, followed by dermal

and finally by inhalation pathway. At Site 1, daily intake was highest for Zn and lowest for Cu.

At Sites 2 and 3, Cr daily intake values were highest. Average daily intake of As was lowest at

Site 3, whereas at Site 2, Cd had the lowest average daily intake value. Details of the average

daily intake values for each exposure pathway for heavy metals and metalloids at the different

sites are presented in Table 4. Non-carcinogenic hazard quotients (HQ) of heavy metals and

metalloids at the sites were higher among children than among adults (Table 4). At all three

sites,HQ values for exposure through inhalation was<1 for both adults and children. At Site 2

and Site 3,HQ values for Cr were>1 for children for ingestion exposure, and for both adults

and children through dermal exposure (Table 4).

Lower exposure at Site 2 and Site 3 compared to Site 1 can be attributed to the lower levels

of heavy metals and metalloid at these sites. At Site 3, children are significantly exposed to

both Cd and Cr whereas adults are exposed to Cr only (Fig 8). These results are in line with

screening level assessment which indicate high non-carcinogenic risk per emission unit for As,

followed by Cd, Zn, Pb, Ni, Cr and Cr in decreasing order based on human toxicity characteri-

zation factors obtained with USEtox (Fig 7).

Significant exposure risk exists at Site 1 where values forHQ and CHI for As, Cd, Co, Cr,

Ni, and Mn in children and As and Cr for adults were> 1 (Fig 8). Non-carcinogenic risk asso-

ciated with exposure of humans to heavy metals and metalloid in soils was therefore greatest at

Site 1 followed by Site 3 and finally Site 2. Numerous studies explaining the health effects asso-

ciated with exposure of humans to heavy metals exist [65–67]. Results obtained in this study

indicate that there is significant heavy metal and metalloid exposure risk at Site 1 compared to

the other two sites.

Carcinogenic risks associated with heavy metals and metalloids
exposure at the three sites

Screening-level human toxicity results using USEtox indicate that exposure to some heavy

metals and metalloids like Pb, Ni, Cd, and As could result in potential cancer risk (Fig 7). A

detailed carcinogenic risk assessment of the different samples indicates that carcinogenic risk

for the different metals varied with sites. Exposure of individuals to soils from Site 1 presented

a significantly higher cancer risk for As and Ni compared to the other sites. Arsenic cancer risk

Mine tailings and environmental contamination
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(CR) values were 2.6x10-3 (CRIng adult), 2.4x10
-2 (CRIng children), 2.2x10

-3 (CRdermal adult),

7.1x10-3 (CRdermal children), 4.8x10
-3 (Total Cancer Risk adult) and 3.1x10-2 (TCR children).

Cancer risk values for Ni at Site 1 was 4.0x10-3 (CRIng adult), and 3.7x10
-2 (CRIng children).

Cancer risk values for As and Cd at Site 1 were all higher than 1x10-4 which is the unacceptable

risk threshold. At Site 2, carcinogenic risk value for As through ingestion by children was

2.9x10-4 and for Ni, 3.9x10-4 with a total carcinogenic risk of 3.9x10-4 for As and Ni in children.

Carcinogenic risk at Site 3 was lowest with values for cancer related risk associated with Ni in

children through ingestion being 7.1x10-4. There was no significant carcinogenic risk for

adults at Site 2 as all TCR values were< 1x10-4. At Site 3 there is a possibility of children

ingesting soils and tailing particles developing cancer related health risk associated with Ni (Ni

CRIng = 7.1x10-4). All other values for this site were less than the unacceptable value of 1x10-4.

Ecological and human health Implications of exposure to tailings
contaminated soil

The effects of prolonged exposure of various fauna and flora species to heavy metals have been

reported by Fayiga et al. [68], Franco-Hernández et al [69], Sethy and Ghosh [70], Chibuike

Table 4. Average daily intake of heavymetals andmetalloids by adults and children and the respective hazard quotients.

Heavy metal Site Daily intake (mg/kg bw/d) Hazard quotient (HQ)

Ingestion Inhalation Dermal Ingestion Inhalation Dermal

adult child adult child adult child adult child adult child adult child

As 1 1.7E-03 1.6E-02 2.5E-07 4.5E-07 5.9E-04 2.0E-03 5.8E+00 5.4E+01 1.7E-02 3.0E-02 4.8E+00 1.6E+01

2 2.1E-05 2.0E-04 3.1E-09 5.5E-09 7.3E-06 2.4E-05 7.1E-02 6.6E-01 2.1E-04 3.7E-04 5.9E-02 2.0E-01

3 5.7E-06 5.3E-05 8.4E-10 1.5E-09 2.0E-06 6.4E-06 1.9E-02 1.8E-01 5.6E-05 9.9E-05 1.6E-02 5.2E-02

Cd 1 1.5E-05 1.4E-04 2.2E-09 3.9E-09 5.1E-06 1.7E-05 1.5E-02 1.4E-01 2.2E-04 3.9E-04 5.1E-01 1.7E+00

2 7.1E-06 6.6E-05 1.0E-09 1.8E-09 2.4E-06 8.0E-06 7.1E-03 6.6E-02 1.0E-04 1.8E-04 2.4E-01 8.0E-01

3 1.7E-05 1.6E-04 2.5E-09 4.4E-09 5.8E-06 1.9E-05 1.7E-02 1.6E-01 2.5E-04 4.4E-04 5.8E-01 1.9E+00

Co 1 2.0E-03 1.9E-02 3.0E-07 5.3E-07 6.9E-04 2.3E-03 1.0E-01 9.4E-01 5.2E-02 9.2E-02 4.3E-02 1.4E-01

2 8.2E-06 7.6E-05 1.2E-09 2.1E-09 2.8E-06 9.2E-06 4.1E-04 3.8E-03 2.1E-04 3.7E-04 1.8E-04 5.8E-04

3 8.8E-06 8.2E-05 1.3E-09 2.3E-09 3.0E-06 9.9E-06 4.4E-04 4.1E-03 2.3E-04 4.0E-04 1.9E-04 6.2E-04

Cr 1 2.6E-04 2.4E-03 3.8E-08 6.8E-08 8.9E-05 2.9E-04 8.6E-02 8.1E-01 1.3E-03 2.4E-03 1.5E+00 4.9E+00

2 7.8E-04 7.3E-03 1.2E-07 2.0E-07 2.7E-04 8.9E-04 2.6E-01 2.4E+00 4.0E-03 7.1E-03 4.5E+00 1.5E+01

3 3.7E-04 3.5E-03 5.5E-08 9.8E-08 1.3E-04 4.2E-04 1.3E-01 1.2E+00 1.9E-03 3.4E-03 2.1E+00 7.1E+00

Cu 1 1.7E-03 1.6E-02 2.5E-07 4.5E-07 5.9E-04 2.0E-03 4.3E-02 4.0E-01 6.3E-06 1.1E-05 5.0E-02 1.6E-01

2 2.5E-05 2.4E-04 3.7E-09 6.6E-09 8.6E-06 2.8E-05 6.3E-04 5.9E-03 9.2E-08 1.6E-07 7.2E-04 2.4E-03

3 5.9E-05 5.5E-04 8.7E-09 1.5E-08 2.0E-05 6.7E-05 1.5E-03 1.4E-02 2.2E-07 3.8E-07 1.7E-03 5.6E-03

Mn 1 4.3E-03 4.0E-02 6.3E-07 1.1E-06 1.5E-03 4.9E-03 9.3E-02 8.7E-01 4.4E-02 7.8E-02 5.1E-01 1.7E+00

2 2.4E-04 2.2E-03 3.5E-08 6.2E-08 8.2E-05 2.7E-04 5.2E-03 4.8E-02 2.5E-03 4.3E-03 4.4E-02 1.5E-01

3 3.1E-04 2.9E-03 4.6E-08 8.2E-08 1.1E-04 3.6E-04 6.8E-03 6.4E-02 3.2E-03 5.7E-03 5.9E-02 1.9E-01

Ni 1 4.8E-03 4.5E-02 7.0E-07 1.2E-06 1.6E-03 5.4E-03 2.4E-01 2.2E+00 2.7E-05 4.8E-05 3.0E-01 1.0E+00

2 5.0E-05 4.7E-04 7.4E-09 1.3E-08 1.7E-05 5.7E-05 2.5E-03 2.3E-02 2.8E-07 5.0E-07 3.2E-03 1.1E-02

3 9.1E-05 8.5E-04 1.3E-08 2.4E-08 3.1E-05 1.0E-04 4.6E-03 4.2E-02 5.1E-07 9.1E-07 5.8E-03 1.9E-02

Pb 1 7.1E-05 6.7E-04 1.1E-08 1.9E-08 2.5E-05 8.1E-05 2.0E-02 1.9E-01 3.0E-06 5.3E-06 4.7E-02 1.5E-01

2 5.2E-05 4.8E-04 7.6E-09 1.4E-08 1.8E-05 5.9E-05 1.5E-02 1.4E-01 2.2E-06 3.8E-06 3.4E-02 1.1E-01

3 4.8E-05 4.5E-04 7.0E-09 1.3E-08 1.6E-05 5.4E-05 1.4E-02 1.3E-01 2.0E-06 3.5E-06 3.1E-02 1.0E-01

Zn 1 6.7E-03 6.2E-02 9.8E-07 1.7E-06 2.3E-03 7.6E-03 2.2E-02 2.1E-01 3.3E-06 5.8E-06 8.0E-01 2.6E+00

2 1.1E-04 1.0E-03 1.6E-08 2.9E-08 3.8E-05 1.2E-04 3.6E-04 3.4E-03 5.4E-08 9.5E-08 6.3E-04 2.1E-03

3 2.3E-04 2.1E-03 3.3E-08 5.9E-08 7.8E-05 2.6E-04 7.6E-04 7.1E-03 1.1E-07 2.0E-07 1.3E-03 4.3E-03

doi:10.1371/journal.pone.0172517.t004
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and Obiora [14], Emamverdian et al. [71], Sobelev and Begonia [15], Migliorini et al. [16], Gall

et al. [17] and Eisler, [18]. Results from our study have highlighted the potential ecological risk

which exists around some mine tailings in the study area. Ecosystems around Au mine tailings

dump are at a huge risk from heavy metals and metalloids contained in the tailings. This risk

varies with site and heavy metal or metalloid in question. In this study, As, Co and Ni pre-

sented the greatest ecological risk. The effect of As on birds and mammals has been presented

by Eisler [18]. According to Finnegan and Chen [72], plant growth is stimulated by low con-

centrations of As, since few plants are tolerant to high concentrations of the metal. Nickel at

low concentrations also has a vital role in various plant morphological and physiological func-

tions [73], but high Ni concentrations affects lateral root development, photosynthesis, mineral

Fig 8. Chronic hazard index (CHI) for eachmetal andmetalloid at the three study sites.

doi:10.1371/journal.pone.0172517.g008
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nutrition and enzymatic activity and would therefore affect vegetation growth. Cobalt and Zn

would also affect seed germination. High concentrations of these heavy metals would therefore

affect the development of any vegetation cover in the area, preventing OM accumulations in

the soil, which would otherwise serve as a source for nutrients for soil biota. The ecosystem

functioning and diversity will therefore be greatly affected especially at site 1. This is not only

for terrestrial ecosystem as heavy metals in tailings could also find their way into surface water

systems as indicated in Fig 1. The potential toxicity of these heavy metals and metalloids to

freshwater ecosystems will also vary with site. Using USEtox, the freshwater ecotoxicity charac-

terization factors were highest for Pb and lowest for Cu (Fig 7). No freshwater body is close to

Sites 2 and 3, but there is a dam in the precincts of Site 1. Considering that the concentrations

of all heavy metals were highest in soils at Site 1, dispersal of mine contaminated soil into the

dam is likely to increase the freshwater ecotoxicity factors.

High exposure of humans to As is associated with skin damage, increased risk of cancer,

and problems with circulatory system [74]. Cadmium and Pb are carcinogenic and prolonged

exposure to low concentrations could lead to kidney disease, lung damage, and fragile bones

for Cd, and nervous disorder in the case of Pb. Cobalt has been implicated in cardiomyopathy

and lung irritation. According to ATSDR [19], Cr may cause gastrointestinal, nasal and lung

irritation, ulceration of stomach and small intestines, dermatitis, and decreased sperm counts.

Dermatitis, lung inflammation and cancer are health conditions associated with excessive Ni

intake. The most commonly reported adverse health effects of Cu and Zn are gastrointestinal

distress including nausea, vomiting, and/or abdominal pain but irritation of the respiratory

system is also common [44]. These complications are likely to be experienced by residents

close to site 1 because of the higher concentrations of heavy metals and metalloids at this site

compared to the others. In addition, screening-level human toxicity and freshwater ecosystem

toxicity assessment using USEtox (Fig 6) indicates ingestion of above-ground crops contrib-

utes significantly to exposure to Cd, Cu, Mn, Pb and Zn (Fig 6). Considering that vegetables

destined for human consumption are grown on these soils by some residents, total daily intake

of the metals could actually be higher than what is presented in our study. Research in South

Africa has shown that HIV is more prevalent among informal settlements [24] and these com-

munities are the ones living close to tailings dumps from mining activities. The consequences

of heavy metal exposure in these communities would be more grievous because of an already

compromised immune system.

The extent to which individuals exposed to these metals and metalloids are affected is also

influenced by several factors among which include the species of the heavy metal or metalloid

present, the mineralogy of the soil as well as the environment in the gastrointestinal tract (in the

case of oral exposure) [75]. Studies by Tahiri et al, [76] show that under fed conditions, dissolved

organic matter which may readily form a complex with some metals like Pb is present in the

GIT, and could reduce metal bioaccessibility, their uptake and consequently the negative effect

on the exposed individual. In addition, precipitation or chelation under the prevailing alkaline

conditions in the stomach has also been reported to reduce bioaccessibility of metals in the

stomach [77]. The kinds of food and microorganisms present in the GIT may reduce absorption

through chelation processes [77],[78]. GIT microflora like Lactobacillus and Bifidobacterium

are known to bind Cd, Pb and other metals in solution [78]. These factors are however not usu-

ally taken into consideration in the determination of metal and metalloid exposure risk.

Conclusion

Abandoned gold mine tailings present serious ecological and human health risk associated

with exposure to heavy metals and metalloids emitted into the environment. The findings of
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this study indicate that high concentrations of As, Cd, Co, and Ni in soil may present unac-

ceptable risks to human populations as well as to ecosystems in the vicinity of mining areas.

The extent to which ecosystems may be affected varies from one Au mine to the other.

Humans in the vicinity of mine tailings are at risk of developing cancer and non-cancer health

complications associated with exposure to heavy metals via several ingestion- and dermal-

related pathways and via inhalation. The exposure-related risks are higher among children

than adults, mainly via ingestion and dermal exposure. Communities in the vicinity of tailings

should take precaution to reduce the frequency of exposure to these soils in order to reduce

the probability of developing a health complication. Efforts to prevent consumption of

vegetables grown on these soils should be intensified to reduce related risks on humans, and

improved methods for combining measured metal concentrations in contaminated soils with

toxicity characterization modeling are required to provide further insights and to identify and

evaluate emission and exposure reduction measures.
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