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Abstract 44 

Climate change is shifting species’ distribution and phenology. Ecological traits, such as 45 

mobility or reproductive mode, explain variation in observed rates of shift for some taxa. 46 

However, estimates of relationships between traits and climate responses could be influenced 47 

by how responses are measured. We compiled a global dataset of 651 published marine 48 

species’ responses to climate change, from 47 papers on distribution shifts and 32 papers on 49 

phenology change. We assessed the relative importance of two classes of predictors of the 50 

rate of change, ecological traits of the responding taxa and methodological approaches for 51 

quantifying biological responses. Methodological differences explained 22% of the variation 52 

in range shifts, more than the 7.8% of the variation explained by ecological traits. For 53 

phenology change, methodological approaches accounted for 4% of the variation in 54 

measurements, whereas 8% of the variation was explained by ecological traits. Our ability to 55 

predict responses from traits was hindered by poor representation of species from the tropics, 56 

where temperature isotherms are moving most rapidly. Thus, the mean rate of distribution 57 

change may be underestimated by this and other global syntheses. Our analyses indicate that 58 

methodological approaches should be explicitly considered when designing, analysing and 59 

comparing results among studies. To improve climate impact studies, we recommend that: (1) 60 

re>analyses of existing time>series state how the existing datasets may limit the inferences 61 

about possible climate responses; (2) qualitative comparisons of species’ responses across 62 

different studies be limited to studies with similar methodological approaches; (3) meta>63 

analyses of climate responses include methodological attributes as covariates and; (4) that 64 

new time series be designed to include detection of early warnings of change or ecologically 65 

relevant change. Greater consideration of methodological attributes will improve the accuracy 66 

of analyses that seek to quantify the role of climate change in species’ distribution and 67 

phenology changes.   68 
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Introduction  69 

A large number of marine (Poloczanska�������, 2013) and terrestrial (Parmesan &  Yohe, 70 

2003) species have shifted their distributions and phenology in recent decades, indicating that 71 

climate change is driving a global biological response. For example, recent climate change 72 

has driven the invasion of pest species (Ling�������, 2008), contributed to declines in 73 

commercially important fish species (Beaugrand &  Kirby, 2010) and appears to be increasing 74 

mismatch in the seasonal timing between predators and their prey (Edwards &  Richardson, 75 

2004, Barbraud &  Weimerskirch, 2006).   76 

Despite an overall broad consistency in species’ responses to climate change, there is 77 

considerable variability in magnitudes and patterns of responses (Parmesan, 2007, 78 

Poloczanska�������, 2013, Sunday�������, 2015). Variability poses a challenge to ecological 79 

science and management of species impacted by climate change, because it hinders 80 

predictions of future responses. Analyses across many species have examined how 81 

combinations of taxonomic identity, ecological traits and local environmental variables may 82 

explain variability in responses (Perry�������, 2005, Wolkovich�������, 2012, Pinsky�������, 83 

2013, Poloczanska�������, 2013, Sunday�������, 2015). All of these approaches base their 84 

inferences on standardised measures of distribution and phenology, yet observed responses to 85 

climate change may also depend on how distribution and phenology are measured 86 

(Wolkovich�������, 2012).   87 

Measurements of distribution and phenology are influenced by a suite of decisions that are 88 

made in two stages of all studies: their sampling design and data analysis (Brown�������, 2011, 89 

Bates�������, 2014a). In the sampling design phase researchers decide how species’ variables 90 

are measured. For example, distribution can be measured as mean latitude of a populations’ 91 

geographic extent  (e.g. Perry�������, 2005) or by measuring the most extreme latitudes where 92 

a species is found (e.g. Robinson�������, 2015). Similarly, the phenology of breeding events 93 
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can be measured by censusing a population throughout a season to determine the peak 94 

breeding date, or as the first and last individuals to breed (e.g. Fitter &  Fitter, 2002, Barbraud 95 

&  Weimerskirch, 2006). Measures of distribution and phenology based on the most extreme 96 

individuals rather than variables that represent the distribution of individuals within a 97 

population may lead to very different estimates of climate change response rates. For 98 

example, single individuals may by chance have extreme responses (Brown�������, 2011) and 99 

measurements using single individuals are susceptible to detection biases (Cook�������, 2012, 100 

Bates�������, 2015).  101 

In the analysis phase, most marine climate change studies include only a single predictor – 102 

temperature – to explain changes in distribution or phenology, and thus do not explicitly 103 

consider other drivers of change (Brown�������, 2011). It is unknown whether studies that do 104 

not account for other potential anthropogenic drivers, such as fishing, eutrophication and 105 

habitat loss, could lead to higher estimates of impacts of climate change. For example, an 106 

investigation of changes in the distribution of North Sea cod showed fishing pressure explains 107 

part of the observed biological changes (Engelhard�������, 2014).   108 

A greater understanding of how different methodological approaches affect detection of 109 

observed responses to climate change will benefit climate change ecology in four main ways. 110 

First, studies that analyse existing data sets to test for climate impacts, need to account for 111 

historical choices made about field data collection that could limit the ability to detect 112 

species’ responses to climate change. For instance, uneven sampling effort along coasts 113 

means museum records of species occurrences may misrepresent historical range boundaries 114 

(Shoo�������, 2006, Przeslawski�������, 2012).  Second, many regional studies compare rates of 115 

change with other studies in their discussions of how ecological traits influence a species’ 116 

response (e.g. Richardson, 2008). Comparisons of change may also need to consider 117 

differences in methodological approaches across studies, such as how occurrence data are 118 
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used to estimate ranges. Third, new time>series are being initiated with the aim of measuring 119 

future distribution and phenology change (e.g. Robinson�������, 2015). Greater understanding 120 

of how different methodological approaches can affect measured responses to climate change 121 

could assist the design of new time>series. For instance, inconsistent sampling effort through 122 

time may bias measured rates of change (Bates�������, 2015). Finally, meta>analyses of 123 

existing studies will produce more accurate estimates if they standardise for study differences, 124 

or constrain comparisons to be among studies with similar methods (Parmesan, 2007, 125 

Przeslawski�������, 2012). For instance, differences in rates of range shifts among European 126 

butterflies, birds and plants could be a consequence of taxonomic identity, geographic biases 127 

or differences in the metrics used (Parmesan and Yohe 2003).   128 

Here we examine potential causes of variability in observed marine species distribution and 129 

phenology responses to climate change using a meta>analysis. First, we ask whether 130 

measurements of distribution and phenology change from the peer>reviewed literature are 131 

representative of different taxa, oceans and methodological approaches. Then we conduct a 132 

meta>analysis on rates of response, to ask how ecological traits, study design and 133 

measurement approaches influence rates of distribution and phenology change. This enables 134 

us to ask how study measurement approaches may bias measured rates of change and affect 135 

inferences about the biological drivers of change. Finally, we investigate how different 136 

measurement approaches are used for different taxa and discuss the implications of 137 

measurement biases on the global understanding on climate change responses. 138 

Methods�139 

������	��140 

We analysed the database of peer>reviewed studies of observed impacts of climate change on 141 

marine organisms compiled by Poloczanska������� (2013). We used a subset of 61 studies 142 

where rates of range change in phenology or distribution were reported or could be calculated, 143 
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and updated the database with a further 18 studies published in 2011>2014, for a total of 79  144 

studies (Supplemental online tables). In the original database and the update, we made every 145 

effort to include every dataset and study that met our criteria; thus we believe this to be a 146 

comprehensive dataset rather than a small subset of available data.  147 

Three criteria were applied for inclusion of peer>reviewed studies in the database: (1) Authors 148 

must have inferred or directly tested for trends in marine ecological and climate variables 149 

from field observations; (2) observations spanned at least 19 years; and (3) studies included 150 

data after 1990. Studies relying purely on modelling or experimental data were excluded. 151 

Data spanning at least twenty years is a common cut>off used in syntheses of climate change 152 

impacts (Rosenzweig�������, 2008). This length of time gives confidence that biological 153 

changes might be driven by long>term climate change rather than yearly climate variability. 154 

We chose to use nineteen years as the minimum time span, since several large studies had 155 

durations of 19 years. Requiring studies to also have data after 1990 ensures that there are 156 

observations in recent decades when the anthropogenic climate signal has been strongest.  157 

Inclusion of all peer>reviewed studies resulted in some pseudo>replication of observations. In 158 

some cases, multiple studies analysed the same raw dataset, and in other cases multiple 159 

metrics of change were reported for a single species in a region. In such cases, only the most 160 

recent study for a given data>set was included in the main database. Non>independent 161 

observations were removed from the database, using a decision tree based on data and 162 

analysis quality (Poloczanska�������, 2013). Following this process 47 distribution studies with 163 

485 observations of change and 32 phenology studies with 156 observations of change 164 

remained and were included in our analyses.�165 


����		��������	�����������166 

First, we summarize measurements of distribution and phenology change by methodological 167 

attributes,  taxon, latitude, and for phenology, season. We then conducted analyses to examine 168 
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how rates of change were influenced by ecological traits and methodological approaches. 169 

Rates of change, in kilometres per decade or days per decade, were obtained from individual 170 

studies in the database, either directly as reported in the text, calculated from figures, or by 171 

contacting the study’s authors. Distribution changes were recorded as positive where they 172 

were consistent with a response to climate change (generally polewards, but see Burrows����173 

���, 2011) and negative if they were not consistent with climate change. Phenology changes 174 

were recorded as negative for shifts to earlier dates and positive for shifts to later dates.  175 

We related rates of change to a suite of predictors using a generalised linear modelling 176 

approach.  The response variables were the rate of change in either distribution or phenology. 177 

Predictors were divided into two categories: methodological approaches and ecological traits. 178 

For methodological attributes we considered the frequency of sampling (continuous, irregular 179 

or comparison of two periods). Fewer sampling points for studies that compare two periods of 180 

time (e.g. repeating a historical survey), may mean less accurate (either higher or lower) rates 181 

of change, because intervening fluctuations are ignored. We considered the number of species 182 

in a study; studies reporting on more species were expected to have lower rates of change 183 

because they are less likely to be influenced as strongly by publication bias (Parmesan, 2007). 184 

We also considered whether non>climatic drivers of change were accounted for in the study. 185 

We expect slower rates of change in studies with non>climatic drivers because confounding 186 

influences on the response could explain some of the observed variation. For distribution, we 187 

considered whether rates were generated from abundance (or relative abundance) metrics or 188 

from presence data on species occurrence at sites. Occurrence>based data were expected to 189 

have higher rates of change because they are more susceptible to the outlying influences of a 190 

single individual. Similarly for phenology, we considered whether the magnitude of change in 191 

timing was related to whether the measure was an abundance metric, or the timing of the most 192 

extreme individual (e.g. first or last arrival – the temporal analogue of single sightings on a 193 

Page 8 of 37Global Change Biology



 9 

range edge). Extreme timings were expected to have higher rates of change (Moussus�������, 194 

2010).  195 

For ecological traits we considered whether life>history development type (direct 196 

development with no larval phase, meroplanktonic, planktonic), exploitation status 197 

(commercially targeted or not), the mean latitude of the observations for a species and the 198 

depth range of the organism (coastal, demersal or pelagic) could influence the rates of change 199 

measured (Poloczanska�������, 2013). For the depth range, species were classified based on the 200 

life>history stage that was studied and coastal species where those constrained to terrestrial 201 

(seabirds), intertidal (e.g. barnacles) or near>shore (e.g. anemones) habitats (Poloczanska����202 

���, 2013). Additionally, for distribution we considered whether the measurement was made 203 

for a leading (poleward) or trailing (equatorward) edge, or for the population centre. For 204 

phenology, we considered the season of the measurement. Where available, ecological traits 205 

were extracted during the review of each study, based on what the individual studies reported. 206 

Latitude, range edge and season could also be considered as methodological approaches, 207 

however we classified them as ecological traits because ecological expectations can be given 208 

for their effect on climate responses (Davis�������, 2010).  209 

We also included climate predictors in analyses: the velocity of climate change (km/decade) 210 

for distribution and seasonal shift (days/decade) for phenology. The climate predictors 211 

measure the expected rate of response if species are tracking thermal niches in space and time 212 

(Loarie�������, 2009, Burrows�������, 2011). The indices were calculated for each study 213 

following Burrows������� (2011). In brief, we used a global database of monthly sea>surface 214 

temperatures, at a resolution of 1
o
 (Rayner�������, 2003). First, we spatially matched every 215 

species observation to a grid square. Where studies had a larger extent than a single grid>216 

square, we matched them to a grid square at the centroid of a study’s location, or the nearest 217 

ocean cell if the centroid fell on land. We then calculated the decadal rate of temperature 218 
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change for each study’s centroid using linear regressions of mean annual temperatures. The 219 

time>period was chosen to match each study’s duration. For distribution, we additionally 220 

calculated the spatial gradient in temperature (degrees Celsius per kilometre) by taking the 221 

mean temperature in each grid square across the each study’s timespan, then calculating the 222 

spatial gradient in temperature as the vector sum of the north>south and east>west components 223 

of spatial change. For phenology, we additionally calculated the seasonal gradient in 224 

temperature over the dates of each study, as the mean of the monthly temperature differences 225 

over each season. Velocities were then calculated as the spatial or seasonal gradient in 226 

temperature divided by the inter>annual trend (Burrows�������, 2011).  227 

We used linear mixed>effects models to relate rates of change to the suite of methodological 228 

and ecological predictors (‘lme4’ package in the R programming language (Bates�������, 229 

2014b)). Taxon was treated as a random effect because our main interest was to characterise 230 

rates of change by ecological traits and measurement type, which are correlated with taxa. For 231 

distribution and phenology we developed separate full models including all physical, 232 

ecological and measurement predictors. Models were simplified using a step>wise selection 233 

process, removing the variable that caused the greatest reduction in the Bayes Information 234 

Criteria (BIC) at each step. The selection process stopped when no further predictors could be 235 

removed without increasing the BIC. We chose to use the BIC over the Aikaike Information 236 

Criteria because the BIC is less likely to include spurious predictors and it controls for sample 237 

size (Burnham &  Anderson, 2002). Thus, the final models could be considered conservative 238 

in that they include only the strongest predictors of rates of response to climate change.  239 

We plotted effect sizes for predictors included in the final models on term plots. Term plots 240 

illustrate the modelled effects of a predictor relative to the mean of all predicted values. Term 241 

plots are an appropriate way to display effect sizes when there is no control treatment, 242 

because comparisons can be made across all predictions. A positive value for an effect on the 243 
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term plot indicates that a predictor increases the rate of an organism’s response to climate 244 

change. A negative value indicates the effect slows an organism’s response to climate change. 245 

Terms were presented with confidence intervals, which were estimated using bootstrapping 246 

(using the ‘boot’ package in R, see Canty and Ripley (2014)). 247 

We estimated the relative importance of methodological approaches when compared to 248 

ecological traits by comparing the proportions of variance explained by each set of predictors. 249 

We estimated variance explained by either measurement approaches or ecological traits as the 250 

difference between the marginal R
2
 statistic (Nakagawa &  Schielzeth, 2013) for the model 251 

with all significant predictors and a model without the respective variables.  252 

Following the analysis, we examined in more detail how inferences drawn from analysis of 253 

the database may be influenced by the available studies. Specifically, we plot the frequency of 254 

measurement for the variables that were significant predictors of distribution and phenology 255 

change by taxa.  256 

Results  257 

������������	������������������������	�������	�258 

Across all the distribution and phenology studies there were many biases in study attributes 259 

and methodologies (Fig. 1). Of 47 distribution studies and 32 phenology studies, only 15 and 260 

6 respectively had more than one species, although only 2 distribution studies and no 261 

phenology studies had >10 species (Fig. 1a). Out of 485 distribution measurements, 262 

occurrence>based measures of distribution were slightly more common than abundance>based 263 

measures (Fig. 1b). For 156 phenology observations, abundance>based measures were more 264 

common than measurements of extreme individuals (Fig 1b). 38% of distribution responses 265 

compared two points in time, whereas 85% of phenology responses were measured from 266 

continuous time series (Fig. 1c). Most distribution and phenology data were collected in mid>267 
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to>high latitudes, with phenology records, in particular, biased towards the northern 268 

hemisphere and a remarkable paucity of observations for tropical species (Fig. 1d). There was 269 

considerable bias in taxonomic representation; 41% of distribution records were for bony fish 270 

and 19% for benthic algae (Fig. 1e), whereas 33% of phenology records were for seabirds and 271 

51% for phyto and zoo>plankton, which were both poorly represented in distribution records 272 

(3% and 1% respectively). Most benthic taxa had distribution observations, but few 273 

phenology observations. Measurements of phenology tended to be made in spring and 274 

summer, but rarely in autumn or winter (Fig. 1f). 275 

������	������������������	���������������������������	�����	������������	�����������276 

The final model for the rate of distribution change included one ecological trait and two 277 

methodological approaches (Table 1, Fig 2). Estimates of change derived from irregular time>278 

series or those that were calculated by comparing two points in time tended to be faster than 279 

continuous time>series (Figure 2). Occurrence>based measures of distribution change were 280 

also faster than abundance>based measures. Demersal and pelagic species moved faster than 281 

coastal species (intertidal species and seabirds). A model including these top>ranked 282 

predictors suggests that phytoplankton have changed distributions faster than other taxa, 283 

whereas benthic cnidarians and seabirds have changed the slowest (Fig. 2). The reduced 284 

model explained 28% of the variance, with methodological approaches (sampling frequency 285 

and type of measure) accounting for 22% of the variation in rates of change, and ecological 286 

variables (depth zone) accounting for 7.8% (there was shared variance across methodological 287 

and ecological variables, so the individual variables did not add up to the total variance 288 

explained).  289 

Ecological traits that were excluded from the final model included the range edge, which was 290 

not a parsimonious predictor of distribution change (Table 1). The velocity of climate change 291 

was also excluded from the final model, while the model estimated a positive effect of higher 292 
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velocities on distribution change, this effect was not strong. The number of species in each 293 

study, a methodological variable, was also excluded from the final model, suggesting there is 294 

no strong effect of publication bias in this analysis.  295 

������	������������������	���������������������������	������������������	�����������296 

The final reduced model for phenology change explained 14% of the variance in the data and 297 

included four factors, timespan, season, inclusion of non>climatic factors and latitude (Table 298 

1, Fig 3). It excluded sampling frequency, depth range, life>history development type, 299 

exploitation status, seasonal climate shift, measurement type and the number of species in a 300 

study. Studies that used shorter time>series were more likely to report earlier timings, 301 

suggesting a slight publication bias, although the effect size was small. However, counter to 302 

our expectations, studies that considered non>climatic factors estimated faster rates of change 303 

than studies that did not. Phenological events at mid>latitudes were more likely to be slower 304 

than at higher latitudes. The phenology of autumnal events typically shifted later, rather than 305 

earlier. Overall, the effects of ecological traits and methodological attributes were small (8 306 

and 4% of the variance respectively) compared to the random effect of taxa on rates of 307 

change. Larval bony fish were most likely to be shifting events earlier, whereas, seabirds had 308 

small changes in phenology or were likely to be shifting later.  309 

���������	���������	���	�	��������	���������		������310 

Next we examined how observations are distributed across taxa, ecological traits and 311 

methodological approaches to explore the representativeness of climate research. We focus on 312 

the ecological traits and methodological approaches that were significant predictors of rates of 313 

change. Importantly, not all taxa had measurements with every methodological approach 314 

(Figs 4 & 5). Lack of measurements indicates caution should be taken when extrapolating the 315 

results of meta>analyses to poorly sampled taxa.  316 
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For distribution, occurrence>based measures (that tended to report larger distribution changes) 317 

predominated over abundance>based measures. Most abundance>based measures came from 318 

fish and larval fish studies, which typically use nets to sample species in fishery>related 319 

surveys (Fig. 4). Occurrence>based measures were predominant in other taxa. Fishery>related 320 

surveys also had many more continuous time>series, rather than comparisons of two points in 321 

time. In particular, benthic molluscs, benthic cnidarians, macro>algae and other invertebrates 322 

had no continuous time>series.   323 

Although measurements of phenology change were faster in studies that considered non>324 

climatic factors (Fig. 3a), there were very few studies (only 7) that considered non>climatic 325 

factors in their analyses (Fig. 5). Observations that come from studies that considered non>326 

climatic factors were mostly for seabirds, but there was also a small proportion for 327 

phytoplankton and benthic crustaceans. All taxa were represented in data>sets with timespans 328 

of up to 50 years. Autumn and spring were also well represented, however many taxa did not 329 

have phenological measurements in summer and winter. Most phenology records for most 330 

species were at latitudes >40
o
, only seabirds had measurements closer to the Equator.  331 

Discussion and recommendations 332 

The methodology used to standardize studies for meta>analyses can have considerable effects 333 

on estimates for rates of response to climate change (Parmesan, 2007, Przeslawski�������, 334 

2012). Typically, meta>analyses exclude some studies to achieve consistency, such as 335 

excluding studies of single species to avoid publication bias (Parmesan &  Yohe, 2003, 336 

Parmesan, 2007, Poloczanska�������, 2013). Rather than excluding studies, we used linear 337 

models to standardize for differences in approaches across studies. By including studies that 338 

used different methods to measure change, we have quantified the size and direction of 339 

methodological effects on estimates of distribution and phenology responses to climate 340 

change. We found methodological differences explained 22% of the variation in range shifts, 341 
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more than the 7.8% of the variation explained by ecological traits. For phenology change, 342 

methodological approaches accounted for 4% of the variation in measurements, whereas 8% 343 

of the variation was explained by ecological traits. Our study bolsters other recent findings 344 

that different approaches to observing a single pattern (e.g., a geographic distribution) can 345 

lead to different estimates of change over time (Moussus�������, 2010, Wolkovich�������, 2012, 346 

Bates�������, 2015). Below we discuss the implications of differences in study design and 347 

biological traits on estimated rates of change. �348 

��������	���349 

We found studies comparing two points in time or using irregularly sampled time>series 350 

measured greater rates of change than studies using continuous time>series. Continuous time>351 

series should quantify rates of change more accurately than infrequent sampling, because 352 

infrequent samples confound short>term variability with long>term trends (Moussus�������, 353 

2010, Brown�������, 2011). Further, range shifts in response to climate change can be 354 

confounded by inconsistent sampling effort when a species is unlikely to be detected at every 355 

sampling event (Bates�������, 2015). Studies in our database that had infrequent sampling often 356 

resurveyed sites that were sampled historically, so our result may also suggest some 357 

publication and study>site selection bias towards places where ecological change has been 358 

greatest.  359 

Historical comparisons (i.e. resurveying) are an important way to create long>term studies, 360 

where there has not been funding to support long>term sampling (e.g. Southward�������, 2005, 361 

Przeslawski�������, 2012, Robinson�������, 2015). Studies of fish were more likely to have 362 

continuous time>series, presumably because of their economic importance, whereas 363 

observations for other taxa often came from comparisons of two points in time. We encourage 364 

authors to look for and publish resurveys of historical sampling, regardless of whether there 365 

have been considerable changes in distribution, to help overcome potential publication biases. 366 
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Efforts to digitise and publish historical datasets (e.g. Engelhard�������, 2014), combined with 367 

the growth of data journals with the mandate that data generated using public funds must be 368 

made available, may lead to many such data sets surfacing in the future, providing a richer 369 

and less>biased basis to assess responses to climate change.  370 

Abundance>based estimates of distribution change were slower than occurrence>based 371 

measures. Occurrence>based measures can be influenced by responses of single individuals or 372 

by detectability of a species, so we expected their observed rate of change to be greater 373 

(Brown�������, 2011, Bates�������, 2015). Occurrence>based measures may be more likely to 374 

detect change, but also more susceptible to spurious affects. Occurrence and abundance 375 

measures also reflect different aspects of distribution change (Bates�������, 2014a). 376 

Occurrence>based measures are sensitive to range expansion, whereas abundance>based 377 

measures better reflect population establishment. As such, our analysis suggests that 378 

population establishment occurs much more slowly than range expansion – taking the 379 

difference in rate of change between abundance and occurrence>based measures, the analysis 380 

suggests on average a lag of about 140 km/decade, which is of greater magnitude than rates of 381 

change in individual species’ range centres (Poloczanska�������, 2013). Further, this result 382 

indicates that caution should be taken when extrapolating rates of change across different 383 

locations. Ranges may expand rapidly as few individuals of a species occupy areas it was 384 

previously absent from, but population establishment may follow more slowly (Bates�������, 385 

2014a). The pattern of range expansion and population establishment is particularly important 386 

when managing ecosystems dynamically as communities move into novel configurations with 387 

climate change (Graham�������, 2014).  388 

Studies with single species or short time>series are often excluded from meta>analyses 389 

because of perceived publication bias toward publishing results consistent with climate 390 

change (Parmesan &  Yohe, 2003, Parmesan, 2007). Based on the analysis of length of study 391 
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as a predictor, we found no publication bias in distribution studies and only a small bias in 392 

phenology studies. Publication bias may be less prevalent in marine than terrestrial studies 393 

because overall there are more multi>species studies in marine ecosystems where sampling 394 

methods tend to collect numerous organisms (e.g. fish and plankton) by nets (Richardson����395 

���, 2012).  396 

We found that inclusion of non>climatic factors in the analysis increased the estimated rates of 397 

phenology change, but had no effect on rates of distribution change. However, few studies 398 

included non>climatic factors, so further investigation of how climate responses interact with 399 

factors like fishing pressure and eutrophication is important. Phenology is sensitive to 400 

multiple human impacts, and it may be that in the studies analysed here, those impacts are 401 

also causing seasonal timings to occur earlier. Given the paucity of studies, further work is 402 

required to assess the interaction between climate change and other variables (Parmesan�������, 403 

2013).  404 

��������������	�405 

We found that pelagic and demersal species tended to move faster than coastal (inshore) 406 

species. Coastal species such as kelps and rocky shore invertebrates may be less able to track 407 

warming because their distributions are restricted to the coast, and hence subject to non>408 

climatic biogeographic barriers to simple latitudinal shifts, and their requirements for specific 409 

largely rule out depth shifts (Broitman�������, 2008). For instance, limited availability of hard 410 

substrates on Australia’s East coast may limit pole>wards migration of rocky intertidal 411 

organisms (Poloczanska�������, 2011).  412 

Contrary to previous studies for terrestrial and marine ecosystems, we did not find that 413 

leading edges moved faster than trailing edges (Parmesan�������, 1999, Sunday�������, 2012, 414 

Poloczanska�������, 2013). Range edges are more likely to be detected with occurrence>based 415 

measures, because species tend to be rarer at their range edges (Sagarin�������, 2006), 416 
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therefore, the measurement type and the position of measurements within a species’ range 417 

may be confounded. In our analysis sufficient measurements of species abundance at range 418 

edges were available to distinguish the effects of range position and measurement type on the 419 

rate of distribution shift. We found that occurrence based measurements were generally faster 420 

than abundance based>measurements. Thus if measurement differences are not accounted for, 421 

studies may overestimate the rate of shift at range edges, because of the bias toward 422 

measuring edges using single individuals.  423 

���	�������������������������	����	�424 

Our analyses revealed that many gaps remain in our understanding of distribution and 425 

phenology responses to climate change. Gaps are a consequence of not only geographical 426 

biases in sampling effort, but also of how different taxa are studied. In particular a strong 427 

geographic bias exists towards temperate regions, where data>collection efforts have 428 

historically been the greatest. Tropical regions, grossly underrepresented in current studies 429 

(Lenoir &  Svenning, 2015), are expected to display some of the highest rates of distribution 430 

change, particularly in marine systems (Burrows�������, 2014) and the distributions of tropical 431 

taxa may be particularly susceptible to warming (Sunday�������, 2012, Molinos�������, 2015). 432 

Moreover, the subtropical and tropical ocean represents ~70% of the global ocean surface, 433 

implying that the current paucity of studies of distribution and phenology shifts in the tropics 434 

affects our capacity to extrapolate available data to global rates. Global rates of distribution 435 

change estimated here are therefore likely lower than those that would be inferred if the 436 

studies were randomly distributed across latitudes.  437 

There were few long>term phenology studies in the tropics. While seasonality in temperature 438 

is weaker in the tropics and our results suggest phenology change is slower toward lower 439 

latitudes, warming can still drive temporal changes in species abundance, for instance blooms 440 

of dangerous jellyfish (Jacups, 2010). In addition to warming, seasonality along tropical 441 
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coastlines can be driven by precipitation (van Schaik�������, 1993, Chambers�������, 2013). For 442 

example, the timing of juvenile prawn migrations from rivers to the ocean is related to 443 

cumulative rainfall in tropical river basins (Staples &  Vance, 1986). Phenological response to 444 

precipitation is more difficult to predict than warming>related responses because species may 445 

shift earlier or later (Chambers�������, 2013). Impacts of climate change on tropical seasonality 446 

have historically been neglected and warrant further studies.   447 

There was systematic differences in types of observations across taxa, which suggests that we 448 

have major gaps in our understanding of climate impacts. For instance, seabird studies that 449 

measured changes in phenology with climate change were common, whereas there were only 450 

two seabird studies of distribution that met the criteria for inclusion in our database. This is 451 

likely to be because seabirds are most easily sampled at breeding colonies where there have 452 

been long>standing monitoring programs (e.g. Barbraud &  Weimerskirch, 2006), rather than 453 

during their extensive foraging forays. In the future, the extensive and ongoing tracking 454 

information collected using satellite tags should provide long>term information on distribution 455 

shifts in feeding distributions, and potentially on shifts in breeding sites. In contrast to seabird 456 

studies, studies of fish distribution were common, and studies of fish phenology rare. Fish 457 

studies in the database often used fisheries data>sets for analyzing climate patterns. Fisheries>458 

related surveys are large>scale, regular (usually annual) surveys of abundance indices. They 459 

are typically annual so cannot be used to measure phenology, but they do often cover large 460 

geographic areas, so are very suitable for distribution studies.  461 

Few observations of marine phenology were available from autumn or winter, a potential 462 

temporal bias that also occurs in terrestrial studies of phenology (Gallinat�������, 2015). The 463 

lack of data on phenology from autumn and winter could partially reflect the fact that many 464 

species perform many of their most important processes (e.g. feeding and reproduction) 465 

predominantly in spring and summer. There are also many more spring than autumn 466 
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observations for terrestrial ecosystems (Parmesan &  Yohe, 2003). But unlike marine systems, 467 

terrestrial systems do have a few very long>term (e.g. grape harvests over 800 year, (Menzel, 468 

2005)), and iconic (e.g. fall color indexes in New England, USA (Gallinat�������, 2015)) 469 

autumn measurements. We found evidence that autumnal events were shifting later, rather 470 

than earlier, which is consistent with lengthening seasons. Measuring autumn phenology in 471 

higher latitudes is therefore an important knowledge gap in both marine and terrestrial 472 

systems. Because of this gap, we have little information on how growing seasons may be 473 

extended by warming (for an example see Moore�������, 2011).  474 

�������������	��������	������������475 

Based on the findings of our meta>analysis, we make several recommendations for measuring 476 

responses of organisms to climate change when analysing past studies of climate change 477 

impacts or designing new studies.  478 

(1) Re>analysis of existing time>series 479 

A critical question is whether the time>series can be used to address the study’s aim. For 480 

instance, a database of species occurrences across space and time can be used to examine 481 

colonisation of new areas, but is more limited in supporting inferences about the 482 

establishment and persistence of new populations. Similarly for phenology, a time>series of 483 

the most extreme individuals breeding timing does not necessarily reflect significant change 484 

in a whole population, although changes in a few individuals may be an early warning for 485 

population level change. Therefore, researchers should be careful to consider the potential 486 

limitations and biases in data when conducting re>analyses 487 

Covariates, particularly those not related to climate, are key to consider when analysing time>488 

series. A typical test is to ask whether warming is driving an observed change, with the null 489 

hypothesis being warming is not a factor. Greater consideration of other alternatives is 490 
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important (Brown�������, 2011), including non>climate drivers of distribution and phenology. 491 

For instance, changes in depth range of an organism could be driven by warming, but the 492 

potentially confounding effect of fishing pressure changing with depth should also be 493 

considered in such an analysis (Dulvy�������, 2008, Engelhard�������, 2014).  494 

Broadening the scope of climate change studies to include other drivers will require greater 495 

accessibility of data on human impacts – such as fishing and eutrophication at appropriate 496 

time and space scales. Climate time>series data are widely available as free downloads, 497 

whereas, data on other drivers are often less>easily available or do not exist at all. Efforts to 498 

share currently closed databases, such as those on fishing and efforts to collect more data, for 499 

instance using satellite images to map eutrophication, will enable better discrimination of 500 

climate from other signals and thus more robust climate attribution.  501 

(2) Qualitative comparisons with other studies  502 

Qualitative comparisons among rates of change are common in regional or taxon>specific 503 

studies of climate change (e.g. Richardson, 2008). The usual aim of qualitative comparisons is 504 

to give context for an observed rate of change being faster or slower than typical, and to 505 

speculate about the ecological or environmental drivers of a difference. However, differences 506 

will also be strongly influenced by measurement biases. Where possible, qualitative 507 

comparisons should be made with similar metrics used to measure observed change. For 508 

instance measurements of distribution based on occurrence at sites should not be compared 509 

with measurements based on abundance averages, which are typically slower. As the number 510 

of climate studies grows, it will become easier to compare studies that use similar methods.   511 

(3) Meta>analyses of species responses to climate change 512 

It is especially important for meta>analyses of species responses across many studies to 513 

include the influence of different variables explicitly in a statistical model. Important 514 
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covariates include measurement and ecological variables. Past studies have either ignored 515 

these differences (Poloczanska�������, 2013) or tried to removed non>similar studies (Parmesan 516 

&  Yohe, 2003, Parmesan, 2007, Przeslawski�������, 2012). While including additional 517 

measurement variables in analysis did not significantly change our results when compared to 518 

previous analyses (Poloczanska�������, 2013), it did shed important light on factors affecting 519 

distribution and phenology change. Removing studies from analysis focuses on a subset of 520 

potential biases (e.g. only including studies on multiple species or time series greater than a 521 

certain length) is a blunt approach that does not consider multiple other potential sources of 522 

bias (e.g. measurement type, latitude, non>climate factors) that are needed to provide more 523 

robust estimates of climate change on species. Removing studies from analysis reduces the 524 

power to detect real biological effects, and therefore should be avoided where possible. 525 

(4) Design of new studies 526 

Numerous time>series are currently being started, with the aim of monitoring effects of 527 

climate change (e.g. Robinson�������, 2015). Our findings provide some advice on designing 528 

sampling protocols. The aims of measuring the time>series should be explicitly defined and a 529 

protocol designed to address them. For example, a study that seeks to monitor invasion of pest 530 

species may focus on monitoring for occurrences, to obtain early warnings of ranges shifts. In 531 

contrast, a study that aims to detect ecologically significant might focus on monitoring 532 

abundance.  533 

When designing a study, abundance>based measures therefore offer more explanatory power 534 

because they can be used to measure both colonisation and establishment. Further, 535 

abundance>based measures will be less influenced by extreme occurrences of individuals, so 536 

may be a more robust measure of change (Brown�������, 2011). However, there may be trade>537 

offs in sampling effort that warrant consideration. Occurrences are cheaper to measure than 538 

abundances, particularly for rare species, so occurrence surveys may cover larger areas and a 539 
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greater range of species than abundance>based surveys could for the same cost. Further, 540 

occurrence>based measures are easier to obtain from non>experts, such as through citizen 541 

science programs or from observations from fishers (Robinson�������, 2015). Occurrence>542 

based measures could therefore provide a more useful early warning of invasion of new 543 

species, but do not necessarily indicate establishment of a new population.  544 

A common approach to detecting climate change impacts is to resurvey sites that had 545 

historical measurements of climate change. Such resurveys are important to fill data gaps, yet 546 

our results suggest some selection bias for sites with greater change, at least for distribution 547 

studies. It is important that resurvey sights that are selected randomly (or comprehensively) to 548 

provide a less biased global view of climate change impacts, for instance by systematically 549 

sampling across a species’ entire range.  550 

Large gaps remain in our knowledge of climate change responses in both terrestrial and 551 

marine systems. Key amongst these is that there is three times as much information on 552 

changes in distribution than phenology in the ocean, whereas on land there is 100 times more 553 

information on phenology than on distribution change (comparing Poloczanska et al. 2013 554 

with Rosenzweig�������, 2008). Expanding terrestrial studies of species’ distribution change 555 

and marine studies of phenology change, particularly in autumn and winter, is important to 556 

give a comprehensive view of life’s responses to climate change.  557 

������	���558 

We found that measurement biases can have a substantial effect on inferences about the 559 

impacts of climate change on distribution and phenology. Greater consideration of 560 

measurement bias in climate impacts studies will improve our understanding for how 561 

measurement methods affect observations and ultimately contribute to a more representative 562 

view of the impacts of climate change on organisms.  563 
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Tables 696 

Table 1 Analysis of rates of distribution and phenology change, with the WBIC calculated by 697 

adding (for non>significant variables) or removing (for significant variables) each variable 698 

from the reduced model. Variables with negative WBIC were not included in the reduced 699 

models. N.A. Not applicable 700 

Factor  Variable class Distribution 

data(set 

)BIC 

Phenology data(

set 

)BIC 

Abundance/occurrence 

based measure 

Methodological 

approach 

 23  >4.5 

Data sampling 

frequency 

Methodological 

approach 

 64 >9.7 

Non>climatic factors 

considered 

Methodological 

approach 

 >6.1 2.8 

No. spp. in study Methodological 

approach 

 >5.4  >4.0 

Timespan of study Methodological 

approach 

 >5.4 0.2 

Depth category Ecological trait  47  >9.5 

Exploitation status Ecological trait  >4.0 >4.9 

Latitude Ecological trait  >1.2 2.8 

Planktonic larval Ecological trait  >2.5 >5.6 
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dispersal type 

Range edge/centre Ecological trait  >6.9 N.A. 

Season Ecological trait N.A. 10.4 

Velocity of climate 

change 

Ecological trait  >2.2  >4.6 

  701 

Figure legends 702 

Fig 1 Frequency of different factors in studies of distribution and phenology: (a) number of 703 

species in a study; (b) occurrence>based or abundance>based measures of distribution and 704 

phenology; (c) sampling frequency; (d) latitude; (e) broad taxonomic groupings; and (f) 705 

season, for  706 

Fig 2 Term plot for analysis of rates of change in distribution using the final mixed effects 707 

model, showing the final model (selected using BIC, Full model BIC = 5713, reduced model 708 

BIC = 5686). For the fixed effects, points indicate mean predicted effects and bars are 95% 709 

confidence intervals. Taxa were treated as a random effect. Effects are standardised to the 710 

overall mean, so positive effects indicate a tendency toward distribution change that is greater 711 

and consistent with climate change, whereas negative effects indicate a tendency toward 712 

smaller changes or changes that are not consistent with warming (though those two cannot be 713 

distinguished in this figure). Note the varying scales for the y>axes; larger ranges indicate 714 

larger effect sizes.  715 

Fig 3 Term plot for analysis of rates of change in phenology using the final mixed effects 716 

model , showing the final model (selected using BIC, Full model BIC = 1153, reduced model 717 

BIC = 1112). Points indicate mean predicted effects and bars the 95% confidence intervals. 718 

Taxa were treated as a random effect. Effects are standardised to the overall mean, so 719 
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negative effects (upwards on the y>axis) indicate a tendency toward phenology change that is 720 

earlier and consistent with climate change, whereas positive effects indicate a tendency 721 

toward smaller date changes or changes that are not consistent with warming. Note the 722 

varying scales for the y>axes. 723 

Fig 4 Proportion of distribution observations by taxa and each covariate used in the final 724 

model for distribution rate of change. The maximum proportion of observations in any 725 

category was 0.4.  726 

Fig 5 Proportion of phenology observations by taxa and each covariate used in the final 727 

model for distribution rate of change. The maximum proportion of observations in any 728 

category was 0.4. 729 

 730 
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