
 

 

 University of Groningen

Ecological autocatalysis
Veldhuis, Michiel P.; Berg, Matty P.; Loreau, Michel; Olff, Han

Published in:
Ecological monographs

DOI:
10.1002/ecm.1292

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Veldhuis, M. P., Berg, M. P., Loreau, M., & Olff, H. (2018). Ecological autocatalysis: A central principle in
ecosystem organization? Ecological monographs, 88(3), 304-319. https://doi.org/10.1002/ecm.1292

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 27-08-2022

https://doi.org/10.1002/ecm.1292
https://research.rug.nl/en/publications/25018e4b-e9ef-4372-b3c8-e4c8968902bf
https://doi.org/10.1002/ecm.1292


Ecological autocatalysis: a central principle in ecosystem organization?
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Abstract. Ecosystems comprise flows of energy and materials, structured by organisms and their
interactions. Important generalizations have emerged in recent decades about conversions by organ-
isms of energy (metabolic theory of ecology) and materials (ecological stoichiometry). However, these
new insights leave a key question about ecosystems inadequately addressed: are there basic organiza-
tional principles that explain how the interaction structure among species in ecosystems arises? Here
we integrate recent contributions to the understanding of how ecosystem organization emerges
through ecological autocatalysis (EA), in which species mutually benefit through self-reinforcing circu-
lar interaction structures. We seek to generalize the concept of EA by integrating principles from com-
munity and ecosystem ecology. We discuss evidence suggesting that ecological autocatalysis is
facilitated by resource competition and natural selection, both central principles in community ecol-
ogy. Furthermore, we suggest that pre-emptive resource competition by consumers and plant resource
diversity drive the emergence of autocatalytic loops at the ecosystem level. Subsequently, we describe
how interactions between such autocatalytic loops can explain pattern and processes observed at the
ecosystem scale, and summarize efforts to model different aspect of the phenomenon. We conclude
that EA is a central principle that forms the backbone of the organization in systems ecology, analo-
gous to autocatalytic loops in systems chemistry.

Key words: autocatalytic loops; community ecology; ecosystem ecology; interaction structure; positive feedback;
pre-emptive resource competition; resource diversity; self-organization.

INTRODUCTION

The systems biology approach has radically changed the

fields of biochemistry, cell biology, and organismal physiol-

ogy in recent decades (Hartwell et al. 1999, Kitano 2002,

Raes and Bork 2008, Keurentjes et al. 2011). The recogni-

tion that non-living dynamic systems can exhibit complex

and self-organizing emergent behavior that are not simply

predictable from the properties of their basic building blocks

(Levin 1998, 1999, Sole and Goodwin 2008) inspired many

scientists to (re-)examine the organization of interactions in

cells and organisms, rather than to focus on the characteris-

tics of isolated components, such as genes (Rosen 1991,

Kitano 2002, Sun and Becskei 2010). Preceding this trend by

decades, the field of ecosystem ecology was one of the first

biological disciplines to adopt a complex systems perspec-

tive by mapping and quantifying fluxes of energy and nutri-

ents among biotic and abiotic compartments (Lindeman

1942, Odum 1953, 1968, Pace and Groffman 1998), and

describing them as circular causal systems (Hutchinson

1948). But despite this early start, and the revolutions

inspired by a complex (adaptive) systems perspective in cell

biology, genetics and developmental biology, the field of

ecosystem ecology still has few generally accepted principles

for how the organization of species interactions comes

about. If general principles of ecosystem organization exist,

they are expected to be found as regularities in the structure

of the hybrid network of different types of interactions

among species: predation, competition, mutualism, para-

sitism, and ecosystem engineering (Olff et al. 2009). Integra-

tive steps, based on knowledge of the dynamics of eco-

evolutionary interactions, are now needed to develop satisfy-

ing general concepts of ecosystem structure and organiza-

tion (Levin et al. 2001, Loreau et al. 2001, Naeem 2002,

Hooper et al. 2005, Loreau 2010a).

So far, the food web approach comes closest in examining

general rules of ecosystem organization (Ings et al. 2009,

Thompson et al. 2012), and provides a valuable starting

point. However, most present-day food web approaches lack

specific key elements of whole-ecosystem organization. First,

food web studies and models generally do not incorporate

non-trophic interactions, despite these having been shown to

be very important for ecosystem organization and functioning

(Goudard and Loreau 2008, Olff et al. 2009, K�efi et al. 2012,

2015). Second, most food web studies assume unidirectional

flows of energy and matter while ecosystems are characterized

by cycles, especially for limiting nutrients (Patten and Odum

1981; but see Loreau 2010b). Third, food web studies often

describe only parts of ecosystems or modules (e.g., plant–
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herbivore, detritus–detritivore, or herbivore– or detritivore–

mesopredator–top-predator trophic networks), yet the con-

nections among producers, consumers, and decomposers are

essential for understanding ecosystem organization (Wardle

et al. 2004a, Schrama et al. 2012, Bardgett and van der

Putten 2014). Therefore, incorporating insights from such

modules (as soil food webs, plant–mutualist networks) into a

more general framework is a first step toward a general theory

of ecosystem structure and dynamics. At this point, it is still

an open question whether main principles can be identified

that explain the organization of ecosystems from the large

number and variety of underlying types of species interactions.

Here, we review empirical and theoretical progress on the

emerging concept of ecological autocatalysis, an underap-

preciated regularity in interaction structure among species

in ecosystems that potentially plays a central role in ecosys-

tem organization. We further develop the concept of ecologi-

cal autocatalysis, which is a self-reinforcing circular species

interaction structure, captures the nutrient cycling aspect of

ecosystems, and links producers, consumers, decomposers,

and additional non-trophic interactions with important self-

organizing features at the system level.

ECOLOGICAL AUTOCATALYSIS

Autocatalytic loops

Several studies now suggest that the “core engine” of

many (if not all) ecosystems is formed by an autocatalytic

set of species populations that promote each other in a loop

through positive feedbacks (Table 1). From a systems biol-

ogy perspective, such autocatalytic loops or sets are not at

all new. Autocatalytic sets were originally defined in terms

of chemical species interacting in biochemical systems,

where reactions between interacting species catalyze enough

substrate for the next reaction so that the whole set of chem-

ical reactions is self-sustaining given sufficient input of

energy and essential materials (Kauffman 1986, Hordijk

and Steel 2004, Mossel and Steel 2005). This arises when a

set of chemical species form an autocatalytic loop (e.g., A

catalyzes the formation of B, B catalyzes C, and C catalyzes

the formation of A). Such chemical autocatalytic loops, such

as the regular and reverse Krebs cycle, are found at the heart

of the intermediate metabolism of all organisms. They are

often statistically and thermodynamically favored over alter-

native configurations, and may even explain the origin of life

(Eigen and Schuster 1979, Morowitz et al. 2000, Lincoln

and Joyce 2009, Giri and Jain 2012). Hence, they are not

trivial or rare structures in biochemical interaction net-

works. By analogue, interacting populations of different spe-

cies in an ecosystem can form an autocatalytic loop if each

species produces the resources needed by the next species in

the loop, in such a configuration that the whole set of spe-

cies is self promoting and self sustaining given sufficient

input of energy and essential materials (carbon, nutrients).

For example, species A produces the resources needed by

species B, B produces the resources needed by C, and C pro-

duces the resources needed by A. Similar to biochemical

autocatalytic loops in a cell, such ecological autocatalytic

loops in ecosystems are expected to be thermodynamically

favored over alternative and especially more open configura-

tions. The conceptual relationship between chemical stoi-

chiometry and the highly successful field of ecological

stoichiometry (Elser et al. 2000, Sterner and Elser 2002) is

the same as between chemical autocatalysis and ecological

autocatalysis. Ecological stoichiometry deals with basic

principles in organismal-level conversion of energy and

materials, while ecological autocatalysis deals with basic

principles in ecosystem-level organization of energy flows

and nutrient cycling.

A long history in ecosystem ecology

Building on the pioneering work of R. E. Ulanowicz

(Ulanowicz 1997, 2009a, Ulanowicz and AbarcaArenas

1997), we explore the idea that sets of biological species that

form autocatalytic loops logically arise at the ecosystem

level through self-organization. Further, particular configu-

rations of species that promote each other most are most

likely to prevail, with community assembly processes (Dia-

mond 1975) and ecosystem assembly processes (Schrama

et al. 2012, 2013) forming the underlying dynamics. The

work by Ulanowicz builds on initial efforts by Lindeman

(1942) and Hutchinson (1948), who were instigators of

cybernetic approaches in ecology that explored the origin,

structures, constraints, and possibilities of regulatory sys-

tems. Subsequently, Odum (1971) advanced their ideas in his

descriptions of “reward loops” that led later to recognition

of the importance of positive interactions (Bertness and

Callaway 1994), positive feedback (DeAngelis et al. 1986),

emergent properties (Jørgensen et al. 1992) and formal

causality (Ulanowicz 1997). From a theoretical perspective,

TABLE 1. Examples of autocatalytic sets in the fields of biochemistry and ecology.

Research field Observation References

Biochemistry The citric acid cycle. Krebs and Johnson (1937)

Biochemistry The protein FKBP catalyzes its own folding. Veeraraghavan et al. (1996)

Biochemistry In prion disease, misfolded proteins induce further misfolding of proteins. Małolepsza et al. (2005)

Ecology Utricularia serves as an substrate for periphyton growth, which in turn is grazed by
zooplankthon. Zooplankton provides nourishment to the Utricularia via mineralization
of periphyton

Ulanowicz (1995)

Ecology Phytoplankton produces dissolved organic matter that is rapidly mineralized by bacteria and
Protozoa and returned as nutrients for plankton uptake.

Stone and Weisburd (1992)

Ecology Bivalves and their endosymbiotic sulfide-oxidizing gill bacteria profit from seagrasses through
organic matter accumulation and radial oxygen release. In turn, the bivalve–sulfide-oxidizer
symbiosis reduces sulfide levels and increases seagrass production.

van der Heide et al. (2012)
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Loreau (1998, 2010a) made important contributions using

ecological and evolutionary models to investigate the stabil-

ity and behavior of such circular species configurations and

the implications for nutrient cycling. However, despite the

early origins and long development of this idea of self-enfor-

cing species interactions, the far-reaching implications of the

concept of autocatalytic loops for ecosystem organization

are only now gradually emerging (Gadgil and Kulkarni

2009, Ulanowicz 2009a, Hordijk et al. 2012).

The universality of circular interaction

structures (loops) in ecology

Nutrient cycling is one of the fundamental aspects of the

organization and dynamics of ecosystems. Producers, con-

sumers, and decomposers form interaction structures that

comprise circuits (loops) of chemical elements. Such struc-

tures form the backbone of ecosystem organization (Hutchin-

son 1948, Odum 1960, 1968) and key concepts such as

ecological stoichiometry (Elser et al. 2000, Sterner and Elser

2002). A simple example helps to illustrate this. Imagine a

grass species that grows using mineral nitrogen taken up from

the soil. In doing so, it produces detritus that stimulates the

growth of a population of a particular detrivorous bacteria

that, in turn, makes nitrogen again available for the plants

through organic matter decomposition (Fig. 1A), and thus

recycles it to the mineral pool. This circular causal relation-

ship between autotrophs that fix energy in complex organic

molecules and decomposers that break these down, recycling

the mineral nutrients required by autotrophs, forms the basic

structure of all ecosystems and is the generic motor on which

all life on earth depends. Subsequently, we can extend this

loop by adding an earthworm species that consumes the lit-

ter. Through fragmentation and mixing of litter, the earth-

worm stimulates bacterial growth and thus making a pre-

processing step before bacterial decomposition (Fig. 1B; Ing-

ham et al. 1985, Standing et al. 2006). Note that this loop of

species cannot simply be described by classic predator-prey

interactions, which would miss the elements of ecosystem

engineering (bioturbation by earthworms, facilitation of

microbes by earthworms) and nutrient recycling. Consumers

in this case do not negatively affect the growth rate of their

resource (as in standard predator–prey interactions), but

instead stimulate the production of their food by benefiting

other species and thus indirectly benefiting other species and

themselves. The result is a circular interaction configuration

(loop) based on a set of consumer–resources linkages through

which both energy and nutrients flow. These configurations

can be further extended by species that insert at different

positions in the loop, similar to the earthworm example. For

example, large herbivores can graze on plants and their dung

can replace the role of (higher quality) litter for earthworms

(Fig. 1C). Or earthworms can profit from this dung produc-

tion because it is a higher quality resource than plant litter.

Even in more general terms, such loops can be found in

plant–pollinator or plant–disperser interactions that also tend

to be compartmentalized (like nutrient cycling; V�azquez et al.

2009). Animals profit from some form of nutrition and, in

return, provide services other than nutrient recycling (e.g.,

fertilization, dispersal or recruitment of their host plants).

Although the universality of circular interaction structures

and its importance for ecosystem organization is well

accepted (as the concept of nutrient cycling), the autocat-

alytic (self-enforcing) nature of such loops is not. The impor-

tant question then arises as to what drives the emergence of

autocatalysis (causes) in these loops and how do we observe

it (consequences)?

The emergence of autocatalysis

The emergence of autocatalysis in material cycles lies at

the heart of resource competition theory, a link worked out

in more detail by Loreau (1998, 2010a). Resource competi-

tion theory states that when multiple species are limited by

the same resource, the species with the lowest steady-state

resource availability (R*) eventually outcompetes all other

species (Tilman 1982, 1988). A lower R* can arise from

higher per capita resource uptake or from lower per capita

resource losses (Huisman 1994). Therefore, competition

between species within a trophic level leads to selection for

species with more effective resource use, which is predicted

by Lotka’s maximum power principle (Lotka 1922, Odum

1971). This happens simultaneously at both the producer

and decomposer side of the material cycle (Fig. 2A). In a

closed ecosystem, this results in increased nutrient cycling

efficiency and internal locking of nutrients over successional

FIG. 1. (A) The most basic autocatalytic loop present in all ecosystems where autotrophs and decomposing microbes form a circular
configuration. (B) An extension of A including an earthworm species. A non-trophic positive feedback where earthworms improve condi-
tions for microbes through bioturbation (blue arrow). (C) Further extension of B with the insertion of an herbivore species. Herbivores can
increased the productivity of leaves through compensatory growth (blue arrow).
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and evolutionary times (Fig. 2B; Loreau 1998, 2010b).

Importantly, resource competition and natural selection

within trophic levels result in an emergent property of auto-

catalysis at the level of the material cycle. Such material

cycles where sets of interacting species increasingly “draw

more energy and materials toward them” have therefore

been termed “indirect mutualisms” as every change in pri-

mary productivity will increase secondary productivity and

vice versa (Ulanowicz 2009a, Loreau 2010b). Functional

traits are then expected to evolve where species promote

their own conditions through other species (Barot et al.

2014). This is similar to the evolution of two-species mutu-

alisms, but with potentially several more species involved.

Here, we argue that the resulting positive feedbacks form

the foundation of ecosystem organization, as they lead to

the emergence of autocatalytic sets of biological species.

The ecosystem consequences of autocatalysis

In a new habitat, when plants, macrodetritivores, and bac-

teria simultaneously arrive (e.g., at the start of primary suc-

cession in a terrestrial ecosystem), the populations of all

species are expected to grow and increasingly recycle more

nutrients together, resulting in an increase in the weight of the

autocatalytic loop. This increased productivity, biomass, and

nutrient cycling have been shown to continue during ecologi-

cal succession, when the initial plant and decomposer species

become replaced by other species. This is known as ecosystem

development (Fig. 2B; Odum 1969, 1983, Begon et al. 1990),

although eventually a decline phase may follow (Wardle et al.

2004b). Such initial ecosystem development follows naturally

from the previously described competition theory, where spe-

cies are continuously replaced by new species with a higher

resource-use efficiency during ecological succession. This has

been shown empirically (Wedin and Tilman 1993) and theo-

retically (Loreau 2010b). Similarly, evolution by means of

natural and sexual selection organizes ecosystems in such a

way that productivity tends to increase (Leigh and Vermeij

2002). Such enhanced nutrient cycling implies strong positive

feedback links within the autocatalytic loop that facilitates

the capture and localization of more nutrients and energy

(Bianchi et al. 1989, Stone and Weisburd 1992). Effective

recycling traps nutrients into a loop and make it possible to

reutilize them repeatedly, resulting in a more and more closed

nutrient cycle over time. This increases the productivity of all

compartments (Odum 1969, Schrama et al. 2013). This also

works outside of terrestrial ecological succession. For exam-

ple, the very high production of coral reefs is maintained by

this type of efficient recycling of nutrients to stimulate phyto-

plankton growth, pelagic grazing, and bacterial (re)mineral-

ization (Furnas et al. 2005). This effective recycling prevents

leakage of internal nutrient sources and captures external

source nutrients into the ecosystem. This increases the total

ecosystem nutrient stock and cycling, and results in nutrient

hotspots in otherwise oligotrophic landscapes. Similar

insights are achieved in studies on consumer-mediated nutri-

ent supply, for example, on promotion by herbivores of their

own food availability (McNaughton 1979, Allgeier et al.

2013). Ulanowicz (2009b) refers to these cumulative nutrient

retention mechanisms as “centripetality,” where the autocat-

alytic nature of the species interactions “pulls” more and

more nutrients into a set of interacting species or locations,

which in turn facilitates increased capturing of energy by pri-

mary producers. This in turn promotes energy availability to

heterotrophs and enhances nutrient recycling.

Key role for ecosystem engineers in autocatalytic loops

Although consumer–resource interactions form the back-

bone of autocatalytic loops, species within an autocatalytic

loop can potentially interact in many different ways (Olff

et al. 2009), thereby changing environmental conditions for

other species within the loop. Species can make local abiotic

conditions for their own population growth more beneficial

by habitat or niche construction, such as dam construction

by beavers and soil porosity promotion by earthworms. Not

only the original species profit, but also other species with

associated ecological requirements (Jones et al. 1994). As a

result, these positive feedbacks among species in an autocat-

alytic loop in combination with beneficial environmental

FIG. 2. (A) Competition for a single resource by two grass species and two microbe species, where the species with the lowest equilibrium
resource level is expected to outcompete the other species. (B) Because of this selection principle in A, the properties of ecosystems are expected
to change during succession or evolution, where resource-use intensity increase as expected from competition theory. The result is an increase
in primary and secondary production and cycling efficiency and a decrease in productivity/biomass ratio. Figure adapted from Loreau (1998).
Variables are defined in the subsection “Modeling basic ecological autocatalysis between plants and decomposers” (see below).
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modification by species can shift the range of local condi-

tions to the benefit of all participants (Ulanowicz 1997, Olff

et al. 2009). Continuing with our previous example, earth-

worms not only increase nutrient mineralization, but also

increase water infiltration, soil water-holding capacity, and

aeration through their burrowing activities, which benefits

both microbes and grasses (Fig. 1; blue arrows). Therefore,

organisms directly or indirectly modulating the availability

of resources to other species by causing state changes in bio-

tic or abiotic material are often referred to as keystone spe-

cies (Power et al. 1996), ecosystem engineers (Jones et al.

1994) or foundation species (Whitham et al. 2006). Such

species are expected to fulfill prominent roles within auto-

catalytic loops. These environmental modifications can sub-

sequently feedback causing a change in species composition

and even evolutionary processes, i.e., via alternative niche

constructions (Odling-Smee et al. 2003, Post and Palkovacs

2009, Kylafis and Loreau 2011). As Post and Palkovacs

(2009) point out, such niche construction is not limited to

the active engineering of the environment but includes all of

the by-products of living organisms (eating, excreting, dying,

nutrient uptake and mineralization, etc.). During this pro-

cess of engineering the structural properties and behaviors

arise at the ecosystems level through self-organization

(Levin 1998).

In summary, a circular species interaction structure

emerges from the simple fact that organisms frequently

depend on each other for resources and evolve to benefit

from each other’s waste products and environmental

impacts (between trophic levels). These loops can then

become autocatalytic because species compete with each for

resources (within trophic levels) leading to replacement of

species by others that contribute more benefits to themselves

and others. This, in turn, enhances the cycling of nutrients

and flow of energy at the ecosystem level. In the next sec-

tion, we outline how such autocatalytic loops in ecosystems

can be modeled and highlight important insights from such

models with respect to ecosystem-level emergent properties.

Modeling basic ecological autocatalysis between

plants and decomposers

Almost all ecosystems are characterized by a material

cycle that needs to involve at least two key partners: (1)

plants (or other autotrophs), which capture energy and inor-

ganic nutrients to produce first living and then dead organic

matter, and (2) heterotrophic decomposers, which consume

this dead organic matter and release nutrients in inorganic

form, to be used again by the primary producers. Their

reciprocal interaction is indirect because it is mediated by

the abiotic pools of dead organic matter (litter) and inor-

ganic nutrient. The two species groups thus produce each

other’s resources, making the system autocatalytic. Without

either group, the resources for either plants or decomposers

quickly run out, causing the system to cease to persist.

To explore the nature and functional consequences of the

material cycle that results from this basic interaction, con-

sider the simple ecosystem model depicted in Fig. 1A. The

ecosystem is assumed to be limited by a single nutrient;

accordingly, all compartment sizes and fluxes correspond to

the stocks and fluxes of that nutrient. The inorganic nutrient

pool (of size N) is supplied by a constant independent input

I of inorganic nutrient per unit time. Plants produce litter, of

which only that part (with nutrient stock M) readily accessi-

ble to decomposers is represented in the model (recalcitrant

organic matter such as wood is not represented). Plants and

decomposers have nutrient stocks P and D, respectively.

Their resource uptake depends on their respective stocks

and functional responses to resource availability, which are

represented by the functions fP(N) and fD(M). Plants and

decomposers release nutrients as a result of metabolic

processes and mortality at rates mP and mD per unit time,

respectively. A fraction kP or kD of these flows is lost from

the system, the rest (1 � kP or 1 � kD) being recycled

within the system in the form of readily available dead

organic matter (e.g., amino acids) or inorganic nutrient (e.g.,

ammonia). It should be noted that kP and kD reflect the

total losses from the compartments P and D, respectively,

irrespective of their species composition. Nutrients are also

lost from the pools of inorganic nutrient and litter at rates

qN and qM per unit time, respectively, for example by stream

flow, wind, or leaching from the soil.

This model translates into the following dynamical equa-

tions (Loreau 1998):

dN

dt
¼ I � qNN � fPðNÞPþ ð1� kDÞmDD;

dP

dt
¼ fPðNÞP�mPP;

dM

dt
¼ ð1� kPÞmPP� qMM � fDðMÞD;

dD

dt
¼ fDðMÞD�mDD:

: (1)

Assuming that primary production, ΦP, and secondary pro-

duction, ΦD, are proportional to the nutrient inflows to the

plant and decomposer compartments, respectively, we

obtain, at equilibrium (denoted by an asterisk)

U
�
p ¼ fPðN

�ÞP� ¼
S�
N

K
;

U
�
D ¼ fDðM

�ÞD� ¼
S�
M

K
:

(2)

where

S�
N ¼ I � qNN

� � ð1� kDÞqMM�
;

S�
M ¼ ð1� kPÞðI � qNN

�Þ � qMM�
;

K ¼ kP þ ð1� kPÞkD:

: (3)

S�
N and S�

M are the net supply rates of nutrient in inorganic

form and in the form of dead organic matter, respectively, at

equilibrium, while Λ represents the fraction of the nutrient

lost from the living compartments over a complete material

cycle.

A key insight from this model is that the equilibrium pro-

ductions of the living compartments (Eq. 2) are strongly

coupled: the material cycle binds them together in a single

ecosystem-level autocatalytic loop. Anything that affects

one component of an ecosystem simultaneously affects all

the other components of that ecosystem. Thus, material
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cycling generates an indirect mutualism between plants and

decomposers, the two partners in the autocatalytic loop

shown in Fig. 1A.

This simple indirect mutualistic interaction between

plants and decomposers has important ecosystem-level con-

sequences when more than one plant species and more than

one decomposer species are present (Fig. 2A). Such multiple

species within a functional group are competing for reso-

urces, but also indirectly benefitting both themselves and

their competitors. Two sets of critical parameters are under

the control of species traits and affect equilibrium produc-

tions: the resource competitive abilities; and nutrient cycling

efficiencies of the various plants and decomposers. Resource

competition theory predicts that the competitive ability of

either plants or decomposers is determined by their ability

to deplete their respective resources in a monoculture (Til-

man 1982). The plant species with the lowest N* will dis-

place all other plant species; similarly, the decomposer

species with the lowest M* will displace all the others. Thus,

competitive ability may be measured conveniently by the

inverse of N* or M*. As the competitive ability of either the

plants or decomposers present in the ecosystem increases as

a result of competitive replacement, the nutrient losses from

the abiotic compartment they control decrease, and hence,

by Eq. 3, the corresponding net nutrient supplies increase.

As a consequence, ecosystem cycling efficiency and, hence,

primary production and secondary production, increase

(Fig. 2B). This rule applies to both ecological and evolution-

ary time scales, and applies to competition between types

within a homogeneous material cycle, i.e., to individual

selection. Thus, within-cycle competition (between different

plants or decomposers) is a force that spontaneously leads

to more materially closed and more productive ecosystems.

In this case, evolution of these ecosystem properties (as the

primary productivity of all producers together) is a by-pro-

duct of the community dynamics and evolution of individual

organisms. This forms a fundamental link between commu-

nity and ecosystem ecology and is a key point often missed

in classic food web studies that ignore nutrient cycling. It

also sheds new light on classic discussions of the relative

importance of competition, predation, and coevolution as

evolutionary forces (Vermeij 1994). Competition within

trophic levels can lead to coevolution across trophic levels

and vice versa.

Plant biomass can at times also influence decomposition

rates (e.g., when shading alters the soil microenvironment). In

this case, the mortality rate and birth rate of the decomposers

would also be functions of P, not just M. Such effects are gen-

erally captured in the idea of ecosystem engineering (Jones

et al. 1994), which therefore can also be included in the present

framework. This approach can be further extended by includ-

ing competition–colonization trade-offs (Gravel et al. 2010).

Eq. 2 also predicts that species traits that improve the

nutrient cycling efficiency of either plants or decomposers

(i.e., that decrease either kP or kD) should have a strong posi-

tive effect on ecosystem cycling efficiency, primary produc-

tion, and secondary production (Fig. 2B). This nutrient

conservation efficiency, however, is a trait that is selectively

neutral within a homogeneous material cycle: it does not

affect resource competitive ability of either plants or decom-

posers. Although nutrient conservation is a strategy that is

strongly beneficial to all ecosystem components, the individ-

ual plants or decomposers expressing this trait would not

derive any fitness benefit from it relative to their competi-

tors. Therefore, individual selection cannot select for such

traits. But selection at the ecosystem level (so for sets of spe-

cies with these traits) can potentially act on these traits. For

example, Berendse and Scheffer (2009) suggest this type of

evolutionary mechanism for explaining how angiosperms

overtook gymnosperms during the Cretaceous Period. In

addition, nutrient conservation (how many nutrients are

retained in the cycle) should not be confused with nutrient

use efficiency. The latter is often inferred from the nutrient

loss rate (mP or mD), which is an important component of

the competitive ability for nutrients of species.

When different sets of species each are subject to ecologi-

cal autocatalysis, they can start interacting, with important

implications for ecosystem structure and dynamics. This is

explored in the next section.

INTERACTIONS BETWEEN MULTIPLE AUTOCATALYTIC LOOPS

Alternative autocatalytic loops

The presence of multiple loops (more closed as for nutri-

ents) or channels (more open, as for energy) seems to be the

rule in ecosystems rather than the exception (Baird and

Ulanowicz 1989), and can be identified using algorithms

(Ulanowicz 1983). Examples include coexisting “green”

(aboveground, herbivore-based) and “brown” (belowground,

detritivore-based) loops in ecosystems or belowground fast

(bacterial dominated) and slow (fungal dominated) energy

channels, respectively (Odum 1969, Moore et al. 2004, Roo-

ney et al. 2006, 2008). The mass distribution between these

different pathways has been shown to be often asymmetric

(Rooney et al. 2006), with one pathway dominating over the

other(s), and this dominance varying with environmental

conditions across space and time (Berg et al. 2001, Neutel

et al. 2007, Schrama et al. 2012). This asymmetry suggests

the possibility of competition for resources (energy and nutri-

ents) between pathways (so between sets of interacting spe-

cies) with an important effect on ecosystem structure,

dynamics, and functioning (Cebrian and Lartigue 2004,

Bardgett et al. 2005, Butler et al. 2008, Schrama et al. 2012).

The framework of ecological autocatalysis as outlined

here provides a step forward in understanding the formation

and existence of such multiple autocatalytic loops. We pose

two new hypotheses for the formation of multiple autocat-

alytic loops in ecosystems: (1) the pre-emptive resource com-

petition hypothesis and (2) the resource diversity hypothesis.

The pre-emptive competition hypothesis

We suggest that a first mechanism leading to multiple auto-

catalytic loops in ecosystem assembly is a process of sequential

pre-emptive resource competition (Fig. 3). Imagine a plant

species that produces leaves that over time become litter that is

subsequently mixed with soil and then decomposed by

microbes (Fig. 3A). Such a loop can be invaded by a loop

including macrodetritivores that get access to the resources

directly after leaves fall down and become litter. The energy

that the macrodetritivores respire thus pre-empts resources
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that otherwise would be used by bacteria. Along similar lines,

herbivores can consume the resources as green leaves still

attached to the plant before they can turn to litter, pre-empting

resources that would otherwise be available to macrodetriti-

vores and bacteria. Sequential pre-emptive resource competi-

tion can lead to alternative loops. Switches from a microbe-

dominated loop to a macrodetritivore- (Steinberg et al. 1997)

or herbivore-dominated loop (McNaughton et al. 1997,

Belovsky and Slade 2000) generally contribute to enhance

nutrient cycling rates (Loreau 1995) or nutrient conservation

(de Mazancourt et al. 1998). Furthermore, this order in

increasingly earlier access to material produced by plants (mi-

crobes, macrodetritivores, herbivores) follows the evolution of

these functional groups (Labandeira 1998, Labandeira and

Currano 2013), suggesting evolutionary drivers for earlier

resource exploitation, resulting in increased nutrient conserva-

tion. Similar patterns might be found at the plant nutrient

uptake side. Mutualisms with specialized mycorrhizal fungi

enable the uptake of nutrients as more complex organic mole-

cules, shortcutting parts of the decomposition pathway

(Hodge et al. 2001). Also, resources produced by plants that

are not directly related to nutrient cycling can be subject to

similar pre-emptive resource competition interactions among

consumers. For example, neotropical palm trees produce fruits

that are first available to arboreal frugivores (including large-

bodied birds and some of the Pleistocene megafauna), then to

scatter-hoarding rodents, and the remainder is targeted by

invertebrates (Jansen et al. 2012). Seed dispersal distances,

which are generally assumed to represent survival probability

(Janzen 1970, Nathan and Muller-Landau 2000, Jansen et al.

2014), decrease from megafauna/birds to rodents to inverte-

brates, again suggesting that plants benefit most from organ-

isms that can get to the resources earliest. Also here, recent

evidence suggests that seed-dispersing birds evolved later than

FIG. 3. The pre-emptive resource competition hypothesis. (A) Representation of a change in plant resource from leaves to litter to litter
mixed with soil with specialized consumers and associated loop. (B) Ecological (blue) and evolutionary (red) feedbacks from consumers on
resources can result in different plant strategies that benefit the overall flow into each loop. The notation t + 1 indicates one time step.
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seed-dispersing rodents (Eriksson 2016) and those again later

than invertebrate seed predators.

These processes can be reinforced when consumers not

only indirectly (through nutrient cycling pathways), but also

directly affect the plant resource (Fig. 3B) through ecologi-

cal (blue arrows) and/or evolutionary (red arrows) feed-

backs. Large herbivores, for example, can increase the

productivity and nutritional quality of their forage through

defoliation that keeps plants in a physiologically young

active stage (McNaughton 1976, Hik and Jefferies 1990,

McNaughton et al. 1997, Ruess et al. 1997). Also, grazing

lawns consist of distinct grass species, with specific func-

tional traits, that reveal a long coevolutionary history of

grasses and large mammalian grazers (McNaughton 1984,

Hempson et al. 2014). At first, this seems counterintuitive

because defoliation should be disadvantageous to plants.

However, plants adapted to grazing can get a relative fitness

advantage over plants without such adaptations. Indeed,

theoretical models have shown that grazing tolerance can be

adaptive both ecologically and evolutionary under specific

conditions (Loreau 1995, de Mazancourt et al. 1998). Fur-

thermore, empirical data show that grazing almost always

increases the nutritional quality of the plant (Hempson et al.

2014) and under specific conditions also increases its pro-

ductivity. The overall result is that some plants are ecologi-

cally and/or evolutionarily adapted to grazing and attract

grazers so that most (if not all) biomass produced enters the

herbivore loop (Fig. 3B). Other plants might display an her-

bivore avoidance strategy, for example, through structural

or chemical defense, and therefore most biomass produced

will flow into the macrodetritivore loop. Altogether, this

yields the hypothesis that the emergence of different con-

sumer groups (and associated loops) is driven by selection

for consumers that utilize plant resources earlier during their

formation, and produces the emergent property of increased

autocatalysis. Subsequently, ecological and evolutionary

feedback of consumers on plants have produced different

plant strategies that further optimize and determine the

energy and material flow through each loop.

The resource diversity hypothesis

The first autotrophs in evolutionary history, as cyanobac-

teria, were unicellular organisms that performed all their

specialized functions in a single cell and reproduced through

cell division. Three billion years later, modern multicellular

plants have evolved specialized organs for all different

aspects of their functioning: roots for the uptake of nutrients

and water, leaves for photosynthesis, seeds for reproduction,

stems for structure, etc. Each of these specialized organs

requires resource investment and the allocation of resources

among different organs. Their structure differs greatly

between species, representing a set of distinct plant strategies

(Grime 1979, Westoby 1998). Such different resources pro-

duced by plants can subsequently be consumed by different

groups of consumers (which is frequently intended by the

plant), forming a starting point for alternative loops

(Fig. 4A). Often, the consumers benefit from the resources

and provide specialized services to the plant (e.g., nutrient

recycling [herbivores], pollination [nectar], and seed disper-

sal [fruit]). Therefore, the higher the diversity in the number

of resources produced by the plant, the more possible loops

exist.

Feedback by consumers on the production of these

resources is evident and suggests ecological autocatalysis.

For example, granivorous harvester ants have been shown to

increase both the number and size of the plant species

involved (Rissing 1986). Furthermore, the large diversity in

plant reproductive organs (flowers, fruits, seeds) suggests

evolutionary feedbacks between consumer diversity and

plant functional differentiation (Fig. 4B; e.g., Georgiadis

et al. 1989).

The two hypotheses outlined above for the emergence of

multiple autocatalytic loops in ecosystems are intricately

linked. Which loop prevails or dominates in a specific situa-

tion or whether multiple loops are able to coexist depends

on the interactions between loops, mediated by environmen-

tal conditions.

Alternative loops and spatial heterogeneity

As outlined before, autocatalytic sets of species may arise

as a result of local internal fine-scale interactions through

self-organization, and therefore provide a mechanistic basis

for the occurrence of alternative energy channels. This dif-

ferentiation is often a result of interacting self-reinforcing

processes (Peterson 2002, Van de Koppel et al. 2002) and

emerges from internal fine-scale interactions (Rohani et al.

1997). This corresponds well with interaction–redistribution

models of vegetation dynamics (Lejeune et al. 2002, Rietk-

erk and van de Koppel 2008) based on the balance between

short-range facilitation (positive feedbacks within loops)

and long-range competition (negative feedbacks between

loops). This is supported by empirical data on woody vege-

tation, with local nutrient accumulation through positive

feedbacks, resulting in “islands of fertility” in nutrient-poor

environments (Schlesinger et al. 1990, Belsky 1994, Call-

away et al. 2002, Bruno et al. 2003). These positive interac-

tions within loops and competition between loops may

result in ecosystem-level competition between alternative

autocatalytic sets of species (Ulanowicz 1997, Petchey et al.

2009).

The self-reinforcing nature of coexisting autocatalytic

loops can thus be seen as a causal agent for spatial hetero-

geneity of landscapes at the regional scale. Fig. 5A suggests

how this could work for alternative herbivore (H) and a

macrodetritivore (D) loops. Plants can be consumed by large

herbivores, which produce dung for dung-feeding macrode-

tritivores, that further process the dung to fine detritus for

microbes, and that in turn mineralize detritus to provide

plants with nutrients. In contrast, when plants are not eaten,

they release litter fragmented by macrodetritivores (e.g.,

earthworms), which is further decomposed by microbes to

supply nutrients for plants. Besides these consumer–resource

interactions that form the backbone of both loops, they

exhibit important additional feedback mechanisms. Large

herbivores contribute to stress-adapted vegetation by com-

pacting the soil, which induces hydrological and anaerobic

stress (Veldhuis et al. 2014). However, macrodetritivores

bioturbate the soil, increasing aeration and water-holding

capacity. This generally decreases stress, with subsequent

consequences for the plant community (Meysman et al.
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2006). This battle between biocompaction and bioturbation

is an example of ecosystem-level competition between two

autocatalytic loops that arises a result of positive feedbacks

within each loop (Howison et al. 2017).

The outcome of such competition between sets of species is

likely conditional on environmental conditions. In our exam-

ple, rainfall is an important determinant, where plant nutri-

tional quality decreases with rainfall and therefore becomes

less attractive to large herbivores (Olff et al. 2002). Therefore,

it is expected that the percentage of biomass consumed by

herbivores declines along the rainfall gradient, resulting in a

gradual shift from an herbivore- to a detritivore-dominated

system (Fig. 5C). Importantly, the biocompaction and

bioturbation mechanisms promote the dominance of their

loops, by shifting the local conditions toward favorable con-

ditions (Howison et al. 2017). Biocompaction by large her-

bivores creates locally dry conditions due to reduced water

holding capacity and infiltration (Thurow 1991, Veldhuis

et al. 2014). Bioturbation by macrodetritivores, on the other

hand, increases infiltration rates and water-holding capacity

(Joschko et al. 1989, Meysman et al. 2006), pulling the

system to the wet end of the gradient and stimulating the

detritivore loop. This results in the well-known grazing-

lawn–bunch-grass mosaics at intermediate rainfall (400–

1,200 mm/yr). Locally, either loop can dominate (Howison

et al. 2017), while at larger scales, a gradual shift from an

herbivore-dominated to a detritivore-dominated system is

observed (Fig. 5B).

FIG. 4. The resource diversity hypothesis. (A) Representation of three different plant resources with specialized consumers and associ-
ated loop. (B) Ecological (blue) and evolutionary (red) feedbacks from consumers on resources are hypothesized to result into different plant
strategies that benefit the overall flow into each loop.
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Modeling multiple autocatalytic loops in ecosystems

A key finding in the study of autocatalytic processes is

that a significant fraction of nutrient cycling takes place at

much smaller spatial and temporal scales than previously

believed. For instance, about two-thirds of nitrogen uptake

by grasses originates from rapid mineralization of dead

roots within their rooting system in some tropical savannas

(Abbadie et al. 1992). These grasses even control nitrifica-

tion in their immediate vicinity through a balance between

inhibitory and stimulatory effects on nitrifying bacteria

(Lata et al. 2000, 2004). This is to their own benefit, as

nitrate is easier to metabolize for plants than ammonia. In

this case, a relatively tight association between individual

plants and microbial populations should be expected. In

addition, evidence is accumulating that grasses in nutrient-

limited conditions can promote nitrogen fixing bacteria in

their rhizosphere through exudation, which promotes

directly available nitrate in the immediate vicinity of their

roots (Gupta et al. 2014). Such strongly localized spatial

structures tend to generate between-cycle competition, i.e.,

competition between sets of organisms involved in spatially

distinct cycles. Such tight associations between plants and

rhizosphere micro-organisms involved in decomposition

can imply that plants indirectly compete with free-living

microbial decomposers for detritus instead of mostly being

facilitated by them. Further evaluation of the importance of

such mechanisms is needed.

As an extreme case of such between-cycle competition,

consider a perfectly structured environment in which each

individual plant occupies an isolated site during its lifetime

and is associated with a single decomposer individual or col-

ony of similar life span. Assume that sites become vacant

when previous occupant pairs are extirpated by natural

death or disturbance, and establishment of both plants and

decomposers at vacant sites obeys a competitive lottery.

Finally, assume that the probability of a genotype’s success-

ful establishment at a site is proportional to its total produc-

tion in all other sites, because higher production means

production of more propagules of a higher quality.

The dynamics of site occupancy by plants then obeys the

equation (Loreau 1998)

dpPi

dt
¼ pPiðrPiVP �mPiÞ (4)

where

rPi ¼ aPi

P

j

UPij

pPiT

0

B

@

1

C

A
(5a)

FIG. 5. (A) Representation of two different ecological autocatalytic sets of species, an herbivore loop (H) and a detritivore loop (D).
Within each autocatalytic loop, species promote each other by providing resources and changing environmental conditions. Between loops,
negative feedbacks occur, resulting in competition between autocatalytic loops at the ecosystem scale. (B) Expected patch size distribution and
(C) loop strength across a gradient of rainfall. Feedback strength of autocatalytic loops is expected to change over environmental conditions.
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VP ¼ 1�
X

k

pPk: (5b)

In this equation, T is the total number of sites available,

pPi the proportion of sites occupied by plant genotype i, mPi

its mortality rate, ΦPij its productivity at site j (see Eq. 2),

and aPi its reproductive efficiency, a constant of proportion-

ality that incorporates both the allocation of plant genotype

i’s production to reproduction and its ability to disperse and

establish at new sites. The aggregated parameter rPi, which is

plant genotype i’s average productivity times its reproduc-

tive efficiency, represents a potential reproduction rate,

reproduction here being considered completed after the

establishment of offspring at new sites. Last, VP is the pro-

portion of vacant sites; only dispersal to vacant sites leads to

successful reproduction.

An equivalent equation holds for decomposers with a

mere change in subscripts

dpDi

dt
¼ pDiðrDiVD �mDiÞ: (6)

At equilibrium, the fraction of vacant sites, V�
X , in Eqs. 4

and 6 must satisfy

V�
X ¼

mXi

rXi
(7)

where X = P or D. This relation can be satisfied only by a

single species or genotype. Therefore V�
X here plays the same

role as R* in classical resource competition, and the species

or genotype with the lowest V�
X , and hence the highest basic

reproductive capacity (the inverse of V�
X ), eventually dis-

places all the others.

In the simplest case, where plants and decomposers dis-

perse independently and their effects on their local environ-

ment are additive, the outcome of this dual selective process

is the selection of the material cycle that combines the plant

and decomposer genotypes with the highest basic reproduc-

tive capacities. Since the basic reproductive capacity of a

genotype is proportional to its average productivity at a site

(Eq. 5a), traits that contribute to increasing equilibrium pro-

ductivities may be selected for. This assumes that dynamics

of site occupancy (dispersal, establishment) is slow compared

with the dynamics of material cycles (nutrient uptake,

growth) within sites. In particular, selection for increased

nutrient conservation is possible, leading to enhanced ecosys-

tem properties, in particular increased ecosystem cycling effi-

ciency and primary and secondary productivities.

A feature of this scenario is that material cycles within

sites behave very much like “superorganisms” (Wilson and

Sober 1989), where genotypes play the role of alleles at the

plant and decomposer “loci” and the basic reproductive

capacity is the measure of fitness. Like organisms, these spa-

tially separated cycles have a temporary existence: their

properties result from the random assortment of their con-

stituent genotypes, and the unit of selection is the entire

meta-genome of the species set. Selection of traits advanta-

geous to the whole cycle (set of interacting species) is then

just as natural as selection of traits advantageous to the indi-

vidual organism in classical individual selection theory.

Unlike organisms, however, the biotic components of the

material cycle reproduce separately, but this does not affect

the overall direction of the outcome.

This so-called ecosystem selection is a rather extreme evo-

lutionary scenario that requires species interactions to be

both long-lasting and strongly localized (Loreau 2010a).

Therefore, one should generally expect ecosystem selection

to co-occur with, and often be weaker than, individual selec-

tion. In Modeling basic ecological autocatalysis between

plants and decomposers, we showed that classical individual

selection driven by within-cycle competition can sometimes

lead to similar evolutionary outcomes as ecosystem selec-

tion. But this convergence of outcomes is not expected to

hold generally, in particular when there is pre-emptive com-

petition between different autocatalytic loops.

Consider, for example, the widespread case of plant–her-

bivore interactions. Both plants and herbivores recycle limit-

ing nutrients, leading to two alterative recycling pathways.

But herbivores eat plants, hence there is a direct antagonism

between the two partners. The ecological and evolutionary

dynamics of this interaction are much more complex than in

the indirect positive interaction between plants and decom-

posers. Over ecological time-scales, plants can benefit from

the presence of herbivores in the form of enhanced plant

production despite the negative direct effect of herbivores

on their biomass. This occurs when herbivores recycle limit-

ing nutrients more effectively than do plants, i.e., when they

enhance the overall nutrient conservation efficiency of the

ecosystem, and grazing intensity is not too high (de Mazan-

court et al. 1998). Thus, the more efficient alternative auto-

catalytic loop provided by herbivores benefits plants

indirectly. This is despite the direct cost plants incur from

being eaten and generates an indirect mutualism between

the two partners. Such indirect effects of predation benefit-

ing prey are surprisingly widespread in ecosystem networks

and play a much more important role than is generally

assumed (Bondavalli and Ulanowicz 1999).

Over evolutionary time scales, however, this ecological ben-

efit is not necessarily selected for. Indeed, it is not absolute,

but relative fitness that counts. If two plant types are mixed,

one of them being tolerant (mutualistic”)and the other resis-

tant (antagonistic) to herbivory, the resistant type is expected

to outcompete the tolerant type because it benefits from the

positive indirect effect of increased nutrient cycling (as pro-

moted by the tolerant plant) but does not suffer the negative

direct effect of herbivore consumption. As a result, the fitness

of the resistant type is higher than that of the tolerant type

and tolerance does not evolve, even though it is indirectly

beneficial to both types. Two factors can counteract the

advantage of antiherbivore defense: spatial heterogeneity and

the cost of defense. Just as in plant–decomposer interactions,

spatial heterogeneity in nutrient recycling by herbivores can

lead to the selection of “mutualistic” tolerant plant types if

herbivores recycle nutrients in the vicinity of the grazed

plants or if plants from the same type are aggregated (de

Mazancourt and Loreau 2000). The cost of defense generates

a trade-off in plants between antiherbivore defense and

growth or nutrient uptake, which can lead to a complex set of

evolutionary outcomes including plant–herbivore mutualism

(de Mazancourt et al. 2001). The interplay between ecologi-

cal and evolutionary outcomes, however, is so complex that it
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required a redefinition of the very concept of mutualism (de

Mazancourt et al. 2005).

Similar to the plant–herbivore example, Harte and Kinzig

(1993) modeled the dynamics of microbial decomposers that

compete with plants for inorganic nutrients and also benefit

from plants through their carbon input via dead organic mat-

ter. Therefore, there is a direct negative effect of plants on

microbes but, at the same time, an indirect positive effect.

Also, the indirect mutualistic interactions could prevail only

in a spatially explicit model where local autocatalysis pro-

moted “mutualistic microbes” that were able to outcompete

“selfish microbes” (Kinzig and Harte 1998). In contrast, in a

homogeneous environment mutualistic microbes were not

selected for. These examples of plant-microbe and plant-her-

bivore interactions reveal the huge potential of jointly consid-

ering ecological and evolutionary dynamics of autocatalytic

loops in ecosystems.

PERSPECTIVES

Throughout this paper, we have reviewed the importance of

ecological autocatalysis as a key internal driver of ecosystem

organization. Furthermore, we have emphasized that the con-

cept of autocatalytic sets of species roots in biochemistry and

systems biology (Eigen and Schuster 1979, Morowitz et al.

2000, Lincoln and Joyce 2009, Giri and Jain 2012). This may

hint at a basic process that re-emerges across levels of organi-

zation, and suggests generality of autocatalytic sets as a

driving force of structure across all levels of biological organi-

zation (Gadgil and Kulkarni 2009). These “nested autocat-

alytic sets” can stabilize higher level structures, even with

relatively low catalytic strength, suggesting statistical or ther-

modynamic favor over alternative configurations (Giri and

Jain 2012). These nested autocatalytic sets now require further

quantification and theoretical study, especially with regard to

the interplay of ecological and evolutionary dynamics.

The universality of circular interaction structures follows

from the simple fact that organisms produce resources that

are subsequently used by other organisms, culminating

in chains of such resource-consumer interactions. As many

chemical elements are essential for life and often limiting,

the reuse of such elements results in the closure of such

interaction chains (formation of loops), where material cir-

culates and autotrophs fuel these interaction structures with

an input of energy. Autocatalysis emerges in such circular

interaction structures through basic principles from commu-

nity ecology (resource competition and natural selection)

and evolutionary biology (with indirect mutualism as an

extended form of coevolution). As a result, nutrient avail-

ability and nutrient cycling can be viewed as emergent prop-

erties of the actual configuration of trophic and non-trophic

interactions at the ecosystem level (De Ruiter et al. 1994,

Berg et al. 2001, Vos et al. 2011). This is in contrast to the

accepted view that they “determine” the outcome of species

interactions. In addition, development of the concept yields

key patterns observed at the ecosystem scale, such as alter-

native stable states, landscape heterogeneity, and ecosystem

resilience. These arise as a consequence of autocatalytic

loops instead of having to be seen as independent processes

(Fig. 6). Furthermore, the resulting system-level interaction

structures (autocatalytic loops) have large consequences for

community structure and evolutionary radiation instead of

the classic view that community structure is only determined

by functional traits or assembly rules of component species,

which in turn determines ecosystem functioning (bottom-up

causality).

Ecosystems have been referred to as complex adaptive sys-

tems because their macroscopic properties, such as patterns

of nutrient and biomass flux, diversity–productivity relation-

ships, or trophic structure, emerge from local, small-scale

interaction where interaction structures reflect self-organiza-

tion (Levin 1998, Morowitz 2002). More importantly, the

resulting macroscopic properties may feed back as a selective

force to lower levels of organization (diffuse feedback), and

affect the future development of its components. These

higher-level structures (biotic and produced abiotic condi-

tions) are a large part of the environment of an evolving

organism (Kauffman 1993, Odling-Smee et al. 2003, Hoelzer

et al. 2006, Hastings et al. 2007, Matthews et al. 2014).

Therefore, self-organization and natural selection should be

FIG. 6. Overview of the positioning of the concept of ecological autocatalysis. Autocatalytic loops represent the interaction structure of
species through self-organization and follow from principles in community ecology. At the same time, the autocatalytic loops feedback on
the individual species as they constitute their environment. Last, autocatalytic loops form the mechanistic basis for understanding the
processes and patterns observed within ecosystems.
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seen as processes that interact across levels of organization

(Fig. 6). At the ecosystem level, ecological autocatalysis “cre-

ates” the environmental conditions that different species in

different loops encounter. Hence, they shape the course of

natural selection, which changes the role different species may

play in an autocatalytic loop with system-level consequences.

CONCLUSION

The historic focus of ecology on pairwise interactions and

on responses of species to ecological factors has obscured

the importance of higher level ecosystem organization and

species–environment feedback. The framework of ecological

autocatalysis proposed here aims to include all these interac-

tions and at the same time reduce overall complexity. We

suggest that it provides a rich set of opportunities in further

developing, formalizing, modeling, and experimentally test-

ing the fundamental principles of ecosystem organization.
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