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Ecological collapse and the emergence of
travelling waves at the onset of shear turbulence
Hong-Yan Shih, Tsung-Lin Hsieh and Nigel Goldenfeld*
The mechanisms and universality class underlying the
remarkable phenomena at the transition to turbulence remain
a puzzle 130 years after their discovery1. Near the onset to
turbulence in pipes1, plane Poiseuille flow2 and Taylor–Couette
flow3, transient turbulent regions decay either directly4 or
through splitting5–8, with characteristic timescales that exhibit
a super-exponential dependence on Reynolds number9,10.
The statistical behaviour is thought to be related to directed
percolation (DP; refs 6,11–13). Attempts to understand
transitional turbulence dynamically invoke periodic orbits and
streamwise vortices14–19, the dynamics of long-lived chaotic
transients20, and model equations based on analogies to
excitable media21. Here we report direct numerical simulations
of transitional pipe flow, showing that a zonal flow emerges at
large scales, activated by anisotropic turbulent fluctuations;
in turn, the zonal flow suppresses the small-scale turbulence
leading to stochastic predator–prey dynamics. We show that
this ecological model of transitional turbulence, which is
asymptotically equivalent to DP at the transition22, reproduces
the lifetime statistics and phenomenology of pipe flow
experiments. Our work demonstrates that a fluid on the edge
of turbulence exhibits the same transitional scaling behaviour
as a predator–prey ecosystem on the edge of extinction, and
establishes a precise connectionwith theDPuniversality class.

Turbulent fluids are ubiquitous in nature, arising for sufficiently
large characteristic speeds U , depending on the kinematic viscosity
ν and a characteristic system scale, such as the diameter of a pipe
D. Turbulent flows are complex, stochastic, and unpredictable in
detail, but transition at lower velocities to a laminar flow, which is
simple, deterministic and predictable. This transition is controlled
by the dimensionless parameter known as the Reynolds number,
which in the pipe geometry of interest here is given by Re≡UD/ν,
and occurs in the range 1,700.Re. 2,300. The laminar-turbulence
transition has presented a challenge to experiment and theory since
Osborne Reynolds’ original observation of intermittent ‘flashes’
of turbulence1.

To explore this transitional regime, we have performed direct
numerical simulations of the Navier–Stokes equations in a pipe of
length L= 10D, using the open-source code ‘Open Pipe Flow’23,
as described in Supplementary Methods. The Reynolds number at
which transitional turbulence occurs is higher for short pipes23,
and the simulations reported here for L= 10D were performed at
a nominal value Re= 2,600, which we estimate to be equivalent
to Re. 2,200 in long pipe data7 based on estimates of when puff
decay transitions to puff splitting.We confirmed that our results did
not qualitatively change for a longer pipe with L=20D. We denote
the time-dependent velocity deviation from the Hagen–Poiseuille
flow by u= (uz ,uθ ,ur). Because we were interested in transitional
behaviour, we looked for a decomposition2,6,24,25 of large-scalemodes

that would indicate some form of collective behaviour, as well
as small-scale modes that would be representative of turbulent
dynamics. In particular, we report here the behaviour of the velocity
field (uz ,uθ ,ur), where the bar denotes average over z and θ , and
ur=0. We refer to this as the zonal flow. In Fourier space, the zonal
flow is given by ũ(k=0,m=0, r), where k is the axial wavenumber
and m is the azimuthal wavenumber, r is the real space radial
coordinate and the tilde denotes Fourier transform in the θ and
z directions only. Turbulence was represented by short-wavelength
modes, whose energy is ET(t)≡(1/2)

∑
|k|≥1,|m|≥1

∫
|ũ(k,m, r)|2 dV .

Shown in Fig. 1a is a time series for the energy
EZF(t)≡(1/2)

∫
|ũ(0,0, r)|2 dV of the zonal flow, compared with the

energy ET(t) of the turbulent energy. The curves show clear persis-
tent oscillatory behaviour, modulated by long-wavelength stochas-
ticity, as shown in the phase portrait of Fig. 1b. In Fig. 1c, we have
calculated the phase shift between the turbulence and zonal flows,
with the result that the turbulent energy leads the zonal flow energy
by∼π/2. This suggests that these oscillations can be interpreted as
a time-series resulting from activator–inhibitor dynamics, such as
occurs in a predator–prey ecosystem. Predator–prey ecosystems are
characterized by the following behaviour: the ‘prey’ mode activates
the ‘predator’ mode, which then grows in abundance. At the same
time, the growing predator mode begins to inhibit the prey mode.
The inhibition of the prey mode starves the predator mode, and it
too becomes inhibited. The inhibition of the predator mode allows
the prey mode to re-activate, and the population cycle begins again.

The flow configuration for the predatormode is shown in Fig. 1d,
and consists of a series of azimuthally symmetric modes with
direction reversals as a function of radius r . Such banded shear
flows are known as zonal flows and are of special significance in
plasma physics, astrophysical and geophysical flows, owing to their
role in regulating turbulence26. The purely azimuthal component of
the zonal flow, denoted by uθ (r), is spatially uniform in z , and the
lack of a radial component means that it is not driven by pressure
gradients. Thus, it can exist only as a result of nonlinear interactions
with turbulent modes. In this sense, it is a collective mode, one with
special significance for transitional turbulence.

The simplest way for such an azimuthal shear flow to couple to
turbulent fluctuations is through the Reynolds stress τ : however,
a uniform Reynolds stress cannot drive a shear flow, so the first
symmetry-allowed possibility is the radial gradient of the Reynolds
stress26, as expressed in the Reynolds momentum equation. Thus,
to probe the dynamics that govern the emergence of the zonal
flow, we have calculated the time-averaged radial gradient of the
instantaneous Reynolds stress, τ ≡ u′

θ
u′r , where u′(z ,θ , r)≡u−u,

and show in Fig. 1f the 4.5-time-unit-running-mean time series
of −∂tuθ and the radial gradient ∂rτ . Both quantities have been
averaged over 0 ≤ z ≤ L, 0 ≤ θ ≤ 2π and R0 ≤ r < R, where
R=D/2, R0 = 0.641R, and the resulting time series are clearly

Loomis Laboratory of Physics, University of Illinois at Urbana-Champaign, 1110W. Green Street, Urbana, Illinois 61801, USA. *e-mail: nigel@uiuc.edu

NATURE PHYSICS | VOL 12 | MARCH 2016 | www.nature.com/naturephysics 245

© 2016 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nphys3548
mailto:nigel@uiuc.edu
www.nature.com/naturephysics


LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS3548

0.5 0.6
0.10

0.15

0.20

ω

1.0

0.5

0.0
0.0 0.05 0.10 0.15 0.20 0.25 0.30

2,400 2,600 2,800 3,000 3,200 3,400 3,600

0.5

0.6

Time (R/U)

Zo
na

l fl
ow

 e
ne

rg
y 

(U
2 R

3 )

Zonal flow energy (U2R3)

0.10

0.15

0.20

Turbulence energy (U
2R

3)

Tu
rb

ul
en

ce
 e

ne
rg

y 
(U

2 R
3 )

Zonal flow
Turbulence

a

0.2 0.4 0.6 0.8

r(R)

−4

−2

0

2

4 ∂rτ

∂rτ

1
−1.0

−1 0

−0.5

0.0

0.5

1.0

x (R)

y(
R)

−0.2

−0.4

0.0

0.2

0 100 200 300 400 500
Time (R/U)

−1

0

1

b

d

f

e

c

 (π
)

θ

−∂tuθ

∂ r
, −

∂ t
u

 (×
10

−4
 U

2 /
R)

τ
θ

∂ r
, −

∂ t
u

 (×
10

−4
 U

2 /
R)

τ
θ

−∂tuθ

Figure 1 | Predator–prey oscillations in transitional turbulent pipe flow at
nominal Re=2,600, for a pipe of radius R=D/2. a, Energy versus time for
the zonal flow (orange) and turbulent modes (green). b, Phase portrait of
the zonal flow and turbulent modes as a function of time, with colour
indicating the earliest time in dark blue progressing to the latest time in
light green. c, Phase shift between the turbulent and zonal flow modes as a
function of frequency, showing that the turbulence leads the zonal flow by
π/2, consistent with predator–prey dynamics. The phase shift
θ(ω)= tan−1 (Im[C̃(ω)]/Re[C̃(ω)]) and is shifted to be positive, where
C̃(ω) is the Fourier transform of the correlation function between the
turbulence and the zonal flow in a. The red line corresponds to the
dominant frequency in the power spectrum. The phase shift near small ω is
scatter due to the finite time duration of the time series. d, Velocity field
configuration of the zonal flow mode u. The colour bar indicates the value
of uz. e, Snapshot of the Reynolds stress gradient and zonal flow time
derivative as functions of r. f, Reynolds stress gradient and zonal flow time
derivative as functions of time. The agreement shows that zonal flow
dynamics is driven by the radial gradient of the Reynolds stress.

highly correlated. In general, it is the case that zonal flows are
driven by statistical anisotropy in turbulence, but are themselves
an isotropizing influence on the turbulence through their coupling
to the Reynolds stress27–29. The fact that turbulence anisotropy
activates the zonal flow, and that zonal flow inhibits the turbulence,
is responsible for the predator–prey oscillations observed in the
numerical simulations.

These numerical results suggest that the large-scale zonal flow
and the small-scale turbulence are necessary, and perhaps even
sufficient components of an effective coarse-grained description of
transitional turbulence in the spirit of Landau theory. Following the
usual logic of themodern theory of phase transitions30, we construct
the effective theory from symmetry principles alone, as there are no
small parameters with which to perform a systematic derivation. If
correct, this effective predator–prey theory should undergo spatio-
temporal fluctuations whose functional form matches the observa-
tions for the lifetime and splitting time of turbulent puffs in a pipe.

The simplest system that corresponds to our direct numerical
simulations of the Navier–Stokes equations has three trophic levels:
nutrient (E), Prey (B) and Predator (A), which correspond in the
fluid system to laminar flow, turbulence and zonal flow respectively.
The interactions between individual representatives of these levels
are given by the following reactions:

Ai
dA
−→Ei, Bi

dB
−→Ei, Ai+Bj

p
−→
〈ij〉

Ai+Aj, Bi+Ej
b
−→
〈ij〉

Bi+Bj,

Bi
m
−→Ai, Ai+Ej

DA
−→
〈ij〉

Ei+Aj, Bi+Ej
DB
−→
〈ij〉

Ei+Bj (1)

where dA and dB are the death rates of A and B, p is the predation
rate, b is the prey birth rate due to consumption of nutrient,
〈ij〉 denotes hopping to nearest neighbour sites, and DA and DB
are the nearest-neighbour hopping rate for predator and prey
respectively, assumed for simplicity here to be the same value DAB
for predator and prey. The ‘mutation’ term (B→A) is symmetry-
allowed and has the interesting consequence that the diagram of the
predator–prey model matches that of pipe transitional turbulence
(Supplementary Methods).

We simulated this predator–prey model, using methods de-
scribed in Supplementary Methods, in a thin two-dimensional strip
on a 401×11 lattice. The control parameter is the prey birth rate b.
When b is small enough, the population is metastable, and cannot
sustain itself, decaying with a finite lifetime τ d(b). As b increases,
the lifetime of the population increases rapidly: in particular the
prey lifetime increases rapidly with b. At large enough values of b,
the decay of the initial population is not observed, but instead the
initially localized population splits after a time τ s(b), spreading out-
wards and spontaneously splitting into multiple clusters, as shown
in the space–time plot of clusters of prey of Fig. 2a.

To quantify these observations, we have measured both the
lifetime of population clusters in the metastable region and
their splitting time using a procedure directly following that of
the turbulence experiments and simulations7, and described in
Supplementary Methods. We comment that both timescales involve
implicitly measurements of quantities that exceed a given threshold,
and thus it is natural that the results are found to conform to extreme
value statistics12,31.

In Fig. 2a we show the phenomenology of the dynamics of initial
clusters of prey, corresponding to the predator–prey analogue for the
experiments in pipe flow which followed the dynamics of an initial
puff of turbulence injected into the flow4. Depending on the prey
birth rate, the cluster decays either homogeneously or by splitting,
precisely mimicking the behaviour of turbulent puffs as a function
of Reynolds number. The extraction from data of decay times is
described in Supplementary Methods. In Fig. 2b is shown the semi-
log plot of lifetime for both decay and splitting as a function of prey
birth rate, the upward curvature indicative of super-exponential
behaviour. The inset to Fig. 2b shows a double exponential plot of
puff lifetime and splitting time versus prey birth rate, the straight
line being the fit to the functional form indicated in the caption.
These figures indicate a remarkable similarity to the corresponding
plots obtained for transitional pipe turbulence in both experiments4
and direct numerical simulations7, and demonstrate conclusively
that experimental observations are well captured by an effective
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Figure 2 | Stochastic predator–prey model reproduces the
phenomenology of transitional pipe turbulence. Lifetime and splitting time
of clusters of prey are memoryless processes and obey super-exponential
statistics as a function of prey birth rate. To compare with the
experiments4, predator–prey dynamics are performed in a two-dimensional
pipe geometry as described in the text. a, World line of clusters of prey
splitting to form predator–prey travelling waves. The colour measures the
local density of prey, corresponding to the intensity of turbulence in pipe
flow. In the simulation, the dimensionless parameters are
DAB=0.1,b=0.1,p=0.2,dA=0.01,dB=0.01 andm=0.001. In the model
simulated, di�usion is isotropic, not biased as would be the case
corresponding to a mean flow, where the clusters will accumulate at large
times with a well-defined separation set by the depletion zone of nutrient
behind each predator–prey travelling wave. b, Log lifetime of prey cluster
and splitting time as a function of prey birth rate. The upward curvature
signifies super-exponential behaviour. The parameters are
DAB=0.01,p=0.1,dA=0.015,dB=0.025 andm=0.001. Inset: Double log
lifetime versus prey birth rate, showing the fit to the following functional
forms: the dashed curve is given by τ d/τ0=exp(exp(46.539b−0.731)),
and the solid curve is given by τ s/τ0=exp(exp(−31.148b−3.141)).

two-fluid model of pipe flow turbulence with predator–prey inter-
actions between the zonal flow and the small scale turbulence.

Our simulations show that the predator–prey model expressed
by equation (1) exhibits a rich phase diagram that captures the
main features observed in transitional turbulence in pipes. We can
understand the qualitative features of the phase diagram from linear
stability analysis of the mean field solution of the predator–prey
equations22. Near the transition, the solutions are linearly stable, all
eigenvalues are real and there are no spatial-temporal oscillations.
But for higher values of b, the eigenvalues develop an imaginary part,
a necessary condition for the breakdown of spatially homogeneous
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Figure 3 | Schematic phase diagram for transitional pipe turbulence as a
function of Reynolds number compared with the phase diagram for
predator–prey dynamics as a function of prey birth rate. For each phase is
shown a typical flow or predator–prey configuration, indicating the
similarity between the turbulent pipe and ecosystem dynamics.

prey domains into periodic travelling wave states32. The phase
diagram is sketched in Fig. 3, along with the corresponding
phase diagram for transitional pipe turbulence as determined
by experiment. The phenomenology of the predator–prey system
mirrors that of turbulent pipe flow.

To determine the universality class of the non-equilibrium phase
transition from laminar to turbulent flow, we use the two-fluid
predator–prey mode in equation (1). Near the transition to prey
extinction, the prey population is very small and no predator can
survive, and thus equation (1) simplifies to

Bi
dB
−→Ei, Bi+Ej

b
−→
〈ij〉

Bi+Bj, Bi+Ej
DAB
−→
〈ij〉

Ei+Bj (2)

These equations are exactly those of the reaction-diffusionmodel for
directed percolation33. The argument here is heuristic but the result
is correct and can be obtained systematically from statistical field
theory techniques, as described in Supplementary Methods.

The observation of the emergence of a zonal flow, excited by
the developing turbulent degrees of freedom and the demonstration
of its role in determining the phenomenology of transitional pipe
turbulence has an interesting consequence: the zonal flow can be
assisted by rotating the pipe, and this should catalyse the transition
to turbulence, causing it to occur at lower Re. Indeed experiments
on axially-rotating pipes34 are consistent with this prediction.

Our work underscores not only the potential importance of zonal
flows in other transitional turbulence situations9,10, but also shows
the utility of coarse-grained effective models for non-equilibrium
phase transitions, even to states as perplexing as fluid turbulence.
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