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9 Abstract Systematic comparisons of the ecology

10 between functionally similar fish species from freshwater

11 and marine aquatic systems are surprisingly rare. Here, we

12 discuss commonalities and differences in evolutionary

13 history, population genetics, reproduction and life history,

14 ecological interactions, behavioural ecology and physio-

15 logical ecology of temperate and Arctic freshwater core-

16 gonids (vendace and ciscoes, Coregonus spp.) and marine

17 clupeids (herring, Clupea harengus, and sprat, Sprattus

18 sprattus). We further elucidate potential effects of climate

19 warming on these groups of fish based on the ecological

20features of coregonids and clupeids documented in the

21previous parts of the review. These freshwater and marine

22fishes share a surprisingly high number of similarities. Both

23groups are relatively short-lived, pelagic planktivorous

24fishes. The genetic differentiation of local populations is

25weak and seems to be in part correlated to astonishing

26variability of spawning times. The discrete thermal win-

27dows of each species influence habitat use, diel vertical

28migrations and supposedly also life history variations.

29Complex life cycles and preference for cool or cold water

30make all species vulnerable to the effects of global

31warming. It is suggested that future research on the func-

32tional interdependence between spawning time, life history

33characteristics, thermal windows and genetic differentia-

34tion may profit from a systematic comparison of the pat-

35terns found in either coregonids or clupeids.

36

37Introduction

38Fishes are the most diverse group of vertebrates, and

39almost all aquatic systems (apart from ground-water) sup-

40port their populations. They have developed an astonishing

41variety of life styles, feeding modes, morphological adap-

42tations and physiological specializations. However, a major

43distinction seems to exist between fishes living in fresh-

44water and those living in marine environments. This dis-

45tinction is less a biological reality and more a difference in

46the traditional conceptualisation by the researchers who

47work within these two different aquatic habitats. This

48division has likely arisen and continues to be supported by

49the physical separation of working groups between marine

50and freshwater research institutes, which prevents contin-

51ued exchange of ideas and fruitful collaborations across

52aquatic borders. Our contribution aims to bridge this
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53 division by explicitly comparing groups of fish residing in

54 either of these two main aquatic habitats to find com-

55 monalities and fundamental differences. By merging teams

56 of freshwater and marine researchers, the aim of this syn-

57 thetic work is to identify research gaps and future topics

58 common across aquatic habitats.

59 We focus on dominant pelagic planktivores, the core-

60 gonids in freshwater lakes and the clupeids in marine and

61 brackish waters. Both groups of fish are of high importance

62 to commercial and recreational fisheries (Nyberg et al.

63 2001; Stockwell et al. 2009; Geffen 2009; Dickey-Collas

64 et al. 2010). We refer in particular to the temperate, boreal

65 and Arctic zones, with a comparison between freshwater

66 ciscoes (Coregonus spp.) living in lakes, and the Baltic and

67 North Sea herring (Clupea harengus) and sprat (Sprattus

68 sprattus). We give more examples for the species of the

69 European temperate zone, because the authors’ long

70 research history on these groups facilitates a detailed

71 understanding of the ecology and evolution of these fishes.

72 We explicitly add reference and comparison to Siberian

73 and North-American coregonids for some patterns or pro-

74 cesses, but do not cover the species from these geograph-

75 ical areas with similar detail. The emerging reason for our

76 comparison, to be demonstrated by this review, is a sur-

77 prisingly high number of biological features that are shared

78 by coregonids and clupeids, not least a similar morphology

79 and coloration (Fig. 1). We start by reviewing results on

80 evolutionary history and population genetics to elucidate

81 the local variability of the focal fish groups. We continue

82 reviewing reproduction and life history, ecological inter-

83 actions, behavioural ecology and physiological ecology.

84 Finally, we elucidate potential effects of climate change on

85 both groups of fish, thus mirroring the general theme of the

86 AQUASHIFT priority program (see this Special Issue of

87 Marine Biology for more examples). Generally, we start by

88 discussing aspects of the biology of coregonids and then

89 report on similar aspects of clupeids. We close each part by

90 a summary, in which we explicitly compare the two groups

91 and suggest future research topics.

92 Evolutionary history and population genetics

93 In the European temperate and boreal zones, only a few

94 species of pelagic planktivorous coregonids can be found.

95 Especially in deep lakes with a low number of other

96 competing fish species, coregonid populations are known

97 to segregate in their niches, mainly by specializations to

98 either littoral, pelagic or profundal habitats. Ecological

99 segregation is often observed for populations of whitefish

100 (Coregonus lavaretus) (Østbye et al. 2005; Kottelat and

101 Freyhof 2007; Hudson et al. 2011; Kahilainen et al. 2011b).

102 Typically, a smaller planktivorous form residing in the

103pelagic area lives sympatrically with one or two larger

104benthivorous forms found in littoral or profundal zones

105(Siwertsson et al. 2010). However, because usually only

106one morph is strictly pelagic, we do not consider popula-

107tions of C. lavaretus in more detail here.

108The other widely distributed European pelagic Coreg-

109onus species is vendace (Coregonus albula) (Fig. 1) that is

110common in deep, oligo- to mesotrophic lakes of Scandi-

111navia and northern Germany, Poland and Russia (Kottelat

112and Freyhof 2007; Mehner et al. 2007a). Vendace spawn in

113late autumn in most of the lakes. In a few lakes of Scan-

114dinavia, Russia and Germany, spring-spawning ciscoes are

115found, primarily sympatric with vendace. Lake-endemic

116spring-spawning species with viable populations are

117C. lucinensis (Fig. 1) from Lake Breiter Luzin (Germany)

118(Thienemann 1933), C. fontanae from Lake Stechlin

119(Germany) (Schulz and Freyhof 2003), C. trybomi from

120Lake Fegen (Sweden) (Svärdson 1979) and C. kiletz and

121C. ladogae from Lakes Onega and Ladoga (Russia),

122respectively (Pravdin 1936). Similar spring-spawning spe-

123cies usually referred to as C. trybomi have existed or still

124exist in some lakes of Finland and Karelia (Airaksinen

1251968) and may have gone extinct in three other Swedish

126lakes (Kottelat and Freyhof 2007).

127Studies on genetic differentiation between these popu-

128lations of sympatric and allopatric ciscoes are rare. By

129studying enzyme gene variability of Finnish populations,

130Vuorinen et al. (1981) concluded that autumn-, winter- and

131spring-spawning populations do not form monophyletic

132units. More detailed genetic analyses by using a range of

133marker sets revealed a complex phylogeographical history

134of the German sympatric populations (Schulz et al. 2006;

135Mehner et al. 2010b). Spring-spawning ciscoes were

136genetically most closely related, but formed a separate

137cluster together with their sympatric vendace populations

138relative to other allopatric vendace populations. This pat-

139tern suggests the potential of parallel sympatric speciation

140in both lakes, but the genetic signature modified by sec-

141ondary contacts and partial hybridization with other

142Coregonus lineages (Mehner et al. 2010b). Furthermore,

143there was a significant isolation-by-distance pattern in the

144genetic differentiation between German vendace popula-

145tions (Mehner et al. 2009). Therefore, partial isolation and

146local adaptation in the often small lakes contribute to the

147evolutionary history of Coregonus populations despite the

148relatively short time since last glaciation.

149Well-defined cisco species from Siberia and Northwest

150America encompass least cisco (Coregonus sardinella),

151Bering cisco (C. laurettae) and Arctic cisco (C. autumnalis)

152(Turgeon and Bernatchez 2003; Politov et al. 2004), the

153latter also occurring in Ireland (Harrod et al. 2001).

154Only C. sardinella are primarily living in lakes, whereas

155C. laurettae andC. autumnalis are anadromous (Brown et al.
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156 2007), and C. atumnalis phenotypically resemble more the

157 European whitefishes than ciscoes (Kottelat and Freyhof

158 2007). A centre of coregonid diversity in North America are

159 the Laurentian Great Lakes, with eight species recognized

160 (Scott and Crossman 1973; Todd and Smith 1992) from

161 which longjaw cisco (C. alpenae) and deepwater cisco

162 (C. johannae) have gone extinct. Four of the other six species

163 (C. zenithicus, C. reighardi, C. kiyi, C. nigripinnis) are

164 threatened or vulnerable, whereas only bloater (C. hoyi) and

165 lake herring (C. artedi) (Fig. 1) occur in abundant popula-

166 tions. Recent analyses by mitochondrial and microsatellites

167markers elucidated that genetic variation between the cisco

168populations in the Great Lakes reflected geography rather

169than taxonomy, and hence, it was recommended that a single

170taxon (C. artedi sensu lato) be recognized, covering all cisco

171species in the Great Lakes (Reed et al. 1998; Turgeon et al.

1721999; Turgeon and Bernatchez 2003). In the Great

173Slave Lake (NT, Canada), C. artedi, C. zenithicus and

174C. sardinella coexist (Vecsei et al. 2011).

175The mechanisms and strength of genetic differentiation

176between populations differ between freshwater and

177marine fishes because marine environments present fewer

Fig. 1 Photographs of a number of coregonids and clupeids
discussed in this paper. From top to bottom Coregonus albula (Lake
Breiter Luzin, 120 mm total length (TL), picture: Jörg Freyhof);
Coregonus artedi (Lake Superior, 386 mm TL, picture: Gary
Cholwek); Coregonus lucinensis (Lake Breiter Luzin, 122 mm TL,

picture: Jörg Freyhof); Coregonus hoyi (Lake Superior, 212 mm TL,
picture: Zach Woiak); Clupea harengus (Western Baltic, 285 mm TL,
picture: Sophie Bodenstein); Sprattus sprattus (Bornholm basin of
Baltic Sea, 123 mm, picture: Holger Haslob)
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178 geographical barriers to dispersal and higher levels of

179 connectivity. Accordingly, effective population sizes are

180 large resulting in limited genetic drift, and hence, low

181 levels of genetic population structure are common among

182 marine fish species (DeWoody and Avise 2000; Puebla

183 2009). Surprisingly, few studies exist on cases of ecolog-

184 ical divergence and sympatric speciation in marine

185 fishes similar to those often observed in the more iso-

186 lated freshwater systems (Puebla 2009), although

187 local adaptation and limited dispersal cannot be excluded

188 to be important also in marine systems (Jørgensen et al.

189 2008).

190 The Atlantic herring (Clupea harengus) (Fig. 1) might

191 be a good example. This species exhibits a complex pop-

192 ulation structure with several divergent populations refer-

193 red to as subspecies, stocks or groups (Iles and Sinclair

194 1982; McQuinn 1997a). Significant, albeit weak, genetic

195 differentiation has been found between local stocks

196 (Larsson et al. 2010), but the greatest differences were

197 detected between the highly saline North Sea and the

198 brackish Baltic Sea subpopulations (Bekkevold et al. 2005;

199 Ruzzante et al. 2006; Larsson et al. 2007). A striking

200 similarity to coregonids is the variation of spawning times

201 of herring populations, with spawning peaks in spring,

202 autumn and winter all occurring in the Atlantic and the

203 adjacent North and Baltic Seas. In the Western Baltic,

204 spring- and winter spawning, populations of herring locally

205 coexist (Bekkevold et al. 2007). The herring stocks from

206 the Northwest Atlantic can be divided into northern and

207 southern groups and have different spawning times. The

208 northern group is found from the Gulf of St Lawrence to

209 the south coast of Greenland and spawns in spring. The

210 southern population occupies the area south of the Gulf of

211 St Lawrence to the Virginia coast and spawns in autumn

212 (Klinkhardt 1996; Stephenson et al. 2009).

213 Genetic analyses by microsatellites revealed two dif-

214 ferent processes by which winter spawning may have

215 arisen from the otherwise dominant spring-spawning mode.

216 In one population from inner Danish waters, a founder

217 effect from a distant winter-spawning population was

218 likely. In contrast, ‘spawning time switching’ (McQuinn

219 1997b) from spring to winter spawning has been suggested

220 for the herring population close to the island of Rügen

221 (Germany), as suggested by low differentiation between

222 spring- and winter spawners (Bekkevold et al. 2007).

223 No genetic differences between spawning populations

224 have been found for sprat (Sprattus sprattus) (Fig. 1), the

225 other common pelagic clupeid in European temperate

226 marine ecosystems (Limborg et al. 2009). This is in part

227 surprising because sprat show distinctly separate spawning

228 grounds in the Baltic Sea (Arkona, Bornholm and Gotland

229 basins) as well as seasonally changing circulation patterns,

230 which could provide regionally self-sustaining populations.

231Similarly, no significant genetic differentiation exists

232between North Sea and Baltic Sea populations of sprat

233(Debes et al. 2008). In contrast, strong genetic differenti-

234ation exists between Atlantic and Mediterranean or Black

235Sea stocks, coinciding with different temperature prefer-

236ences of the respective populations with subspecies rec-

237ognized (Debes et al. 2008).

238Summary and comparison

239Evolutionary significant units can be found in both core-

240gonids and clupeids of the temperate and Arctic zones that

241are considered valid species in European, Siberian and

242Northwest American coregonids (Turgeon and Bernatchez

2432003; Kottelat and Freyhof 2007), discrete phenotypes of

244one lineage (C. artedi) as the result of incipient processes of

245parallel diversification in the Great Lakes (Turgeon and

246Bernatchez 2003), and subspecies or stocks in clupeids

247(McQuinn 1997a). Among the coregonids, genetic differ-

248entiation is primarily driven by geographical distance. If

249different lineages came into secondary contact after last

250glaciation, introgression and hybridization promoted adap-

251tive radiations along ecological gradients (Turgeon and

252Bernatchez 2003; Mehner et al. 2010b). If combined with

253allochrony of spawning times, populations in geographi-

254cally isolated lakes split into discrete species (C. fontanae of

255Lake Stechlin, C. lucinensis of Lake Breiter Luzin) (Mehner

256et al. 2010b). In contrast, genetic differentiation remained

257weak in less-isolated systems where the populations still

258show overlapping spawning times (C. artedi sensu lato of

259the Great Lakes).

260The situation is less clear for clupeids where the popu-

261lations show only weak genetic differentiation, and where

262genetic exchange between the stocks is likely due to dis-

263persal and straying into various reproductive areas from

264populations that coexist at feeding grounds (McQuinn

2651997a; Gaggiotti et al. 2009). Therefore, the Atlantic

266herring stocks are considered to form a meta-population

267(McQuinn 1997a). Furthermore, there is no clear corre-

268spondence between spawning time and genetical identity,

269because both ‘spawning-time switching’ within popula-

270tions and founder effects from extant populations have

271been shown to form local populations with deviating

272spawning times (Bekkevold et al. 2007). Only the latter

273process may produce genetical distinctness between

274spring- and autumn spawners and hence can be assumed to

275facilitate local adaptive ecological divergence similar to

276the processes known for coexisting spring- and autumn-

277spawning coregonids.

278Overall, the pelagic fish species covered in this review

279mirror the gradient of ecological speciation typically found

280in fishes (Hendry 2009). Systems vary from continuous

281adaptive variation without reproductive isolation in the
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282 clupeids, over discontinuous adaptive variation with minor

283 reproductive isolation in the Great Lakes ciscoes, to

284 adaptive differences with reversible reproductive isolation

285 in the sympatric European ciscoes and the allopatric

286 Siberian and Northwest American ciscoes. Recent evidence

287 for hybrids between vendace and European whitefish

288 (Kahilainen et al. 2011a) supports that irreversible repro-

289 ductive isolation has not yet been achieved in these post-

290 glacial diversifications of species.

291 Reproduction and life history

292 Despite its broad distribution range, comparative over-

293 views on the life history and reproduction of vendace are

294 rare. Vendace is a relatively small, short-lived species with

295 a plastic life history strategy (Bøhn et al. 2004; Gregersen

296 et al. 2011). Maximum length and age are reported to be

297 25–30 cm and 5–7 years, respectively, in the majority of

298 lakes (Schultz 1992; Bøhn et al. 2004), although fish older

299 than 10 years have been found in single lakes (Salonen

300 2004). Age at maturation is between 2 and 5 years, with

301 males usually reproducing earlier than females (Sandlund

302 1992; Bøhn et al. 2004). An increased investment into

303 spawning in cold years with low zooplankton abundance

304 has recently been demonstrated (Gregersen et al. 2011).

305 Spawning occurs along the shores, usually in 4–10 m

306 depth, but spawning depth can vary between 1 and 20 m

307 with shallowest spawning observed in the most humic lakes

308 (Heikinheimo et al. 2006). Eggs sink to the bottom.

309 Vendace spawn between early autumn and early winter

310 (late October to November in Scandinavia, December in

311 Northeast Germany) at water temperatures of ca. 6–7 �C

312 (Koho et al. 1991; Nyberg et al. 2001). Larvae hatch in

313 early spring a few days after ice-off in the lakes and spend

314 the first 4–6 weeks close to surface, primarily inhabiting

315 littoral areas (Karjalainen 1992; Nyberg et al. 2001; Karj-

316 alainen et al. 2002; Urpanen et al. 2005). This is assumed

317 the most critical phase due to the limited habitat extension

318 and hence high density of larvae. Juveniles of 20–30 mm

319 length move into the pelagic zone and continue to be

320 strictly pelagic over their lifetime. It has to be noted,

321 however, that in some lakes, vendace larvae are exclusively

322 pelagic already immediately after hatch (Karjalainen et al.

323 2002). An early nearshore phase and migration to deeper

324 areas at about 15–20 mm fish length has been documented

325 also for larval Coregonus artedi (summarized by Stockwell

326 et al. 2009).

327 Year-class strength (YCS) of mature coregonids can

328 vary up to 20-fold (Helminen et al. 1993; Helminen and

329 Sarvala 1997; Nyberg et al. 2001; Stockwell et al. 2009),

330 whereas even higher inter-annual variation has been doc-

331 umented for densities of young-of-the-year (yoy) fish

332(Mehner et al. 2011a). Recruitment success of vendace is

333only moderately proportional to the size of the spawning

334stock (Helminen et al. 1997; Karjalainen et al. 2000). The

335abundances of spawners and recruits are best characterized

336by a compensatory relationship (Valtonen and Marjomäki

3371988; Marjomäki 2004). In contrast, larval density at age of

3383 weeks and YCS of mature fish are strongly correlated,

339indicating that the critical period occurs during the first

340weeks after hatching (Viljanen 1988; Huusko and Sutela

3411998; Karjalainen et al. 2000; Marjomäki et al. 2004).

342Large-scale synchrony in population abundances of core-

343gonids suggests that there is an important density-inde-

344pendent mechanism influencing recruitment (Marjomäki

345et al. 2004; Bunnell et al. 2010), most likely driven by the

346temperature development during winter and early spring

347and date of ice break (Nyberg et al. 2001; Mehner et al.

3482011a).

349There is little information available on the life history of

350sympatric coregonids in European lakes (subsequently

351referred to as ciscoes, including C. fontanae, C. lucinensis

352and C. trybomi). These species are characterized by

353spawning in spring and early summer, with the spawn-

354ing time extending from late April until July (Table 1).

355C. fontanae is smaller than the sympatric vendace in Lake

356Stechlin (maximum length about 15 cm) (Anwand et al.

3571997), whereas C. lucinensis (Scharf et al. 2008) and

358C. trybomi are presumably only slightly smaller than

359vendace. Hatching dates and ecology and distribution of

360early life stages are widely unknown for these species.

361Adults of spring-spawning species are pelagic and co-occur

362locally with vendace where sympatric, but may display

363vertical segregation from vendace (Mehner et al. 2010a).

364Among the ciscoes from the Great Lakes, only the allo-

365patric C. artedi population of the Lac des Écorces (Quebec,

366Canada) is a spring-spawner that hatches in later July and

367has low size after first summer and matures at age 3

368(Henault and Fortin 1989, 1993). The other ciscoes of the

369Great Lakes and Siberia are autumn to winter spawners

370with comparable maximum size or age, and age at matu-

371ration, as found for vendace (Table 1). Interestingly,

372C. reighardi was originally described as spring-spawning

373species, but a switch towards autumn spawning has been

374reported in the Great Lakes (Scott and Crossman 1973).

375The life history of clupeids in temperate marine systems

376is well studied. Sprat is a batch spawner and exhibit high

377spawning activity in different months depending upon the

378latitude. At the lower latitudinal limit in the Mediterranean

379(Adriatic) Sea, sprat generally spawns during the

380winter months (October to April) with peak spawning in

381November and December at water temperatures between 9

382and 14 �C (Dulcic 1998). At the northern latitudinal limit,

383sprat spawns between March and August in the Baltic Sea

384(Elwertowski 1960; Parmanne et al. 1994; Baumann et al.
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385 2006a) and a bit later (May through August) in the North

386 Sea (Wahl and Alheit 1988). Observations in the Baltic

387 detected spawning females as early as January (Haslob

388 et al. 2011), and in 2003, a second spawning peak was

389 observed in autumn, both related to exceptional inflow

390 events of warm North Sea water penetrating deep basins

391 such as the Bornholm Basin (Kraus et al. 2004). Another

392 possible explanation for this second spawning peak is the

393 fact that sprat are able to extend their spawning period by

394 directly channelling energy from food consumption into

395 reproduction and not only relying on the energy stored until

396 maturation (Blaxter and Hunter 1982).

397 In the Baltic, sprat spawning primarily occurs within

398 deep basins, but occurs in both coastal and offshore waters

399 in the North Sea (Whitehead 1985) and the time of peak

400 spawning, relative fecundity and batch fecundity vary

401 significantly between years and regions (Wahl and Alheit

402 1988). Batch fecundity is positively correlated with water

403 temperature during the pre-spawning period (Haslob et al.

404 2011). Salinity changes during the spawning season can

405 modify the buoyancy of the eggs and yolk sac larvae

406 (Petereit et al. 2009). Higher salinity at fertilization

407 increases the specific gravity of eggs and therefore induces

408 a deeper vertical distribution. The resulting variability in

409 vertical distribution can affect the mortality of the sprat

410 eggs by altered temperature and oxygen conditions (Pete-

411 reit et al. 2008) and a changing overlap of predators and

412 prey. Model simulations by Hinrichsen et al. (2005) have

413 shown that larvae drift to the nearshore juvenile nursery

414 grounds on the Swedish or Polish coastline. The drift

415depends on wind direction and forcing thus leading to a

416mixing of the juveniles from the different spawning stocks.

417Adult sprat are generally mature at 2 year though some

418members of the population may spawn at 1 year (Bailey

4191982). After the spawning season in the Baltic, adults of

420sprat leave the deep basins to feed in shallower, coastal

421waters. Age-0 juveniles join adult schools in the autumn

422and re-emigrate with adults to the spawning grounds in late

423winter. In the North Sea, the spawning and migration

424dynamics of sprat as well as herring can be considered a

425marine estuarine opportunist strategy (Thiel and Potter

4262001; Guelinckx et al. 2006).

427Atlantic herring spawns in coastal and shelf regions

428across the northern Atlantic Ocean while its sister species

429(Pacific herring, Clupea pallasi) spawns in similar habitats

430throughout the northern Pacific. Atlantic herring displays

431remarkable flexibility in its spawning phenology utilizing

432every season depending upon the specific ecosystem such

433as summer (northern Baltic), spring (Norway), autumn

434(northern North Sea) and winter (southern North Sea) (see

435Hufnagl and Peck 2011, their Fig. 7). In the North Sea,

436four different stocks (Shetland/Orkney, Buchan, Banks,

437Downs) have been described, which differ in growth rates,

438migration routes (Harden Jones 1968) and recruitment

439patterns (Dickey-Collas et al. 2010). In the North Sea,

440herring show anti-clockwise migration patterns with the

441fish leaving the overwintering grounds in the eastern North

442Sea (Norwegian coast) to move westwards to the feeding

443grounds. Spawning starts on the east coast of Scotland in

444August/September and continues to September/October for

Table 1 Overview on maximum length (Lmax, cm), maximum age (Amax, years), age at maturity (Amat, years), spawning months and dominant
diet for temperate and arctic freshwater coregonids inhabiting lakes, and for marine clupeids

Species Lmax (cm) Amax (y) Amat (y) Spawning months Diet

Coregonids

Coregonus albula 25 (43) 6 (19) 2 (5) Oct–Dec Planktonic

Coregonus fontanae 15 3 2 Apr–Jul Planktonic

Coregonus lucinensis 20 6 2 Apr–Jul Planktonic/benthic

Coregonus trybomi 20 ? ? Apr–May ?

Coregonus artedi 25 (47) 7 (17) 3 (6) Nov–Dec Planktonic

Coregonus hoyi 25 (38) 7 (12) 3–4 Dec–Mar Planktonic/benthic

Coregonus kiyi 25 (35) 7 (10) 3–4 Oct–Dec Benthic

Coregonus zenithicus 28 (43) (11) 4–6 Sep–Nov Benthic

Coregonus reighardi 25 (36) (8) ? Oct–Nov (Maya) Benthic

Coregonus nigripinnis 33 (39) (14) 4–5 Sep–Jan Benthic

Coregonus sardinella 23 (47) 11 (22) 3 (7) Sep–Nov Planktonic/benthic

Clupeids

Clupea harengus 30 (45) 15 (22) 3 (6) Jan–Dec Planktonic

Sprattus sprattus 12 (16) 5 (20) 2 Feb–Jul Planktonic

Average values are given together with maximum reported values (in parentheses) where available. Data were compiled primarily from
taxonomic handbooks (Scott and Crossman 1973; Kottelat and Freyhof 2007) and online sources (www.fishbase.org)
a C. reighardi was considered a spring-spawner according to earlier descriptions (Scott and Crossman 1973)
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445 the herring spawning in the Dogger Bank area. October to

446 January is the spawning time for the Downs and Channel

447 herring (Harden Jones 1968; Blaxter and Hunter 1982).

448 Once entrained as juveniles to a spawning ground by

449 joining migrating adults, the majority of the spawning

450 group returns to the same grounds from year to year

451 (homing) (Stephenson et al. 2009).

452 In the eastern North Sea, the Norwegian Sea, the

453 Skagerrak and the Baltic Sea, spawning primarily

454 takes place in spring, but with smaller autumn- and

455 winter-spawning population components occurring locally

456 (Blaxter and Hunter 1982). Spring spawners also are more

457 abundant in the western Atlantic herring stocks in colder

458 waters where the larvae have to grow during summer to

459 reach the juvenile stage in late summer or autumn.

460 Autumn spawners in the western Atlantic are found in

461 southern areas where larvae spent a longer time in colder

462 winter waters before they reach metamorphosis in spring.

463 This represents two strategies to cope with different

464 environments during early development of the offspring

465 (Messieh 1975; Melvin et al. 2009). In the northwest

466 Atlantic, herring utilizes spawning areas from Labrador to

467 Cape Hatteras (Messieh 1988; Safford and Booke 1992;

468 Armstrong and Cadrin 2001).

469 Autumn spawners mostly deposit eggs on specific

470 spawning grounds in deeper offshore areas, whereas

471 spring-spawning herring utilize shallow near-coast habitats

472 (Klinkhardt 1996). As opposed to sprat, herring are single-

473 batch spawners spawning only one batch per year in

474 schools with the composition of the school changing over

475 time, since individuals appear and disappear from the

476 spawning ground (Blaxter and Hunter 1982; Axelsen et al.

477 2000; Skaret et al. 2003; Geffen 2009). Individual females

478 leave the school, deposit their ‘‘sticky’’ demersal eggs

479 mainly on plant material (like Fucus, Laminaria, Zostera)

480 on the sea floor in the Baltic and mainly on gravel and rock

481 and mussel beds in the North Sea (Geffen 2009) and are

482 followed by one or more males which fertilize the newly

483 spawned eggs (Aneer 1982). After spawning, there is a

484 mixing in the central North Sea when the fish migrate

485 easterly to the overwintering grounds near the Norwegian

486 coast and the Skagerrak. Cushing (1975) modified the

487 ‘‘triangle of migration’’ (Harden Jones 1968) by including

488 the early life stages and linking their larval drift patterns to

489 circulation features.

490 Herring show a very flexible life history strategy with

491 embryos and larvae from these different herring stocks

492 experiencing different salinities, temperatures and day

493 lengths as well as predator fields and food availabilities

494 on their spawning grounds (Klinkhardt 1996; Geffen

495 2009). The composition of mesozooplankton communities

496 in the Baltic Sea changes regionally due to differences in

497 ambient salinity and temperature (Möllmann et al. 2000).

498Thus, herring and their offspring will be faced with dif-

499ferent food sources in the different spawning regions

500(Möllmann et al. 2005). Autumn and winter spawners

501have larger eggs than spring and summer spawners

502(Blaxter and Hempel 1963; van Damme et al. 2009). The

503eggs of the spring spawners are larger than those of the

504summer spawners, a strategy used to compensate for

505the greater variability in the production cycle during the

506spring-spawning phase (Blaxter and Hunter 1982). Sur-

507vival of the offspring in autumn/winter in a season of low

508productivity is possible, since herring larvae are able to

509survive long periods of little or no growth and the larger

510size of the larvae affects their survival chance (Johann-

511essen et al. 2000; Geffen 2009).

512Summary and comparison

513The life histories of coregonids and clupeids are strikingly

514similar with both groups maturing early in life, having low

515to moderate longevity and maximum sizes not exceeding

516about 30–35 cm (Table 1). Likewise, both groups often

517utilize nearshore areas for spawning, the eggs of corego-

518nids and herring are attached to substrates or sink to the

519shallow bottom, and the early larvae can occur in shallow

520nearshore areas. The benefit from this benthic spawning

521strategy is that growth of the larvae occurs in a very spe-

522cific region at a very specific time without large dispersal

523losses after long incubation periods (Blaxter and Hunter

5241982). After the nearshore phase, older larvae leave their

525initial feeding habitat, and either migrate over short

526(freshwater coregonids) or passively drift long (marine

527clupeids) horizontal distances to their pelagic habitats

528where they spend the juvenile and adult phases before

529returning to the nearshore habitats for spawning. Baltic

530sprat are an exception in that they also utilize offshore,

531deeper areas for spawning with larval drift to shallower

532areas.

533Another important characteristic for both groups is that

534a high variety of spawning times (from autumn over

535winter to spring and early summer) are utilized by distinct

536populations (particularly herring and ciscoes) and that

537spawning-times appear to have evolved as an adaptation

538to intense competition and local conditions at the

539spawning grounds (in both groups) or within larval/juve-

540nile nursery areas (in clupeids) (Gaggiotti et al. 2009). A

541systematic understanding of the correspondence between

542spawning time, spawning duration, fecundity and egg

543size, larval mortality and the abiotic conditions at the

544spawning location (temperature, salinity) might be a

545promising research avenue within the framework of the

546plasticity of life history strategies in fishes. This approach

547could benefit from an explicit comparison of coregonids

548and clupeids.
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549 Inter- and intraspecific ecological interactions

550 Coexisting populations of coregonids have repeatedly been

551 used as model organisms to study competitive interactions

552 within the process of ecological speciation (Østbye et al.

553 2006; Bernatchez et al. 2010; Siwertsson et al. 2010). Most

554 of these populations follow the typical benthic-pelagic

555 segregation, but other types of ecological divergence are

556 also found (reviewed by Hudson et al. 2007). Ecological

557 segregation along the depth gradient within the pelagic area

558 is less frequently reported than the benthic-pelagic diver-

559 gence, but is nevertheless described in a few lakes.

560 Examples include ciscoes in Lake Nipigon, North America

561 (Turgeon et al. 1999), and coexisting vendace and white-

562 fish in Lake Skrukkebukka, northern Norway (Gjelland

563 et al. 2007).

564 Vendace has a high number of gill rakers and is regarded

565 a specialist zooplanktivore (Hamrin 1983; Viljanen 1983;

566 Northcote and Hammar 2006), although recent observa-

567 tions suggest some flexibility in diet choice (Liso et al.

568 2011). Due to its efficient zooplankton foraging, vendace

569 may outcompete and hence exclude other planktivorous

570 fish species from the pelagic area (Beier 2001; Bøhn and

571 Amundsen 2001) and cause changes in the zooplankton

572 community (Karjalainen and Viljanen 1993; Helminen and

573 Sarvala 1997; Amundsen et al. 2009). A strong influence of

574 planktivory on the zooplankton community has also been

575 found for C. artedi (Rudstam et al. 1993). Inter-cohort food

576 competition in vendace populations is strong, in particular

577 during the warmer summer months, and hence, population

578 dynamics of vendace in many lakes is characterized by bi-

579 annual cycles (Hamrin and Persson 1986; Helminen et al.

580 1993; Helminen and Sarvala 1994; Karjalainen et al. 2000).

581 A recent comparison of several lakes (Kahilainen et al.

582 2011b) illustrated that the predation efficiency for zoo-

583 plankton increased with the number of coregonid (vendace

584 and whitefish) forms that coexist in a lake. Along this

585 gradient of planktivore efficiency, the zooplankton com-

586 munities were modified accordingly, resulting in smaller-

587 sized prey in the lakes containing the most efficient

588 planktivorous forms with highest number of gill rakers

589 (Kahilainen et al. 2011b). In contrast, for sparsely rakered

590 forms, this reduction in prey size has probably reduced the

591 opportunity to utilize the zooplanktivorous niche in these

592 lakes. As a result of this eco-evolutionary feedback

593 between predators and prey, the formation of intermediate

594 phenotypes has decreased and resource segregation among

595 the coregonids increased (Kahilainen et al. 2011b). In this

596 context, almost nothing is known on the competitive

597 strength of the spring-spawning Coregonus species. In

598 Lake Stechlin, both vendace and Fontane cisco are truly

599 pelagic and utilize the same planktonic food source

600 (Helland et al. 2008), suggesting strong exploitative

601competition. Similar feeding efficiencies for zooplankton

602in vendace and Fontane cisco from Lake Stechlin

603(Ohlberger et al. 2008a) suggest no advantage of vendace

604over cisco in exploiting pelagic zooplankton resources.

605Competition and niche partitioning between the

606North-American ciscoes in the Great Lakes have not been

607thoroughly studied, but recently Gamble et al. (2011a)

608simulated a food web of the pelagic fish community in

609Lake Superior. This study showed that the dominant

610planktivores in the lake are cisco (C.artedi) and kiyi

611(C. kiyi). Additionally, a third coregonid species, bloater

612(C. hoyi), also inhabits the pelagic area. In spite of some

613seasonal variations, the three species appear to largely

614overlap in diet, with Mysis as the most important prey,

615similar to the dominance ofMysis in the diet of C. lucinensis

616in the German Lake Breiter Luzin (Scharf et al. 2008). Yet,

617cisco has a more flexible diet compared to the other species

618which includes more calanoid copepods, Daphnia and

619Bythotrephes (Gamble et al. 2011a). This is probably rela-

620ted to the fact that cisco also exhibits more variation in the

621seasonal diel migration than the other coregonids. Another

622recent study examined trophic niche partitioning among all

623deepwater coregonids in the Great Lakes, based on stable

624isotopes of both historical and contemporary data (Schmidt

625et al. 2011). These results indicate that within all lakes,

626individual species have occupied distinct ecological niches.

627The ecological distinctness has been dynamic, but yet

628maintained over time in spite of ecological disturbances.

629The study suggests that segregation in habitat depth seems

630to be the major driver of the niche divergence among

631coregonids in the Laurentian Great Lakes.

632Great Slave Lake, Canada, consists of several coregonid

633populations that have remained more intact compared to

634those in the Laurentian Great Lakes, thanks to fewer

635human-induced changes. Also here the taxonomy is not

636resolved, and the ecological diversity is not well described.

637It seems, as if the lacustrine cisco (C. artedi) might have

638overlapping diet or habitat with some of the other forms

639in the pelagic area (Muir et al. 2011). In Barrow Lake,

640Canada, cisco is reported to coexist with shortjaw cisco

641(C. zenithicus). Shortjaw cisco mainly eats Mysis, and only

642limited amounts of copepods and cladocerans (Steinhilber

643et al. 2002).

644Also in marine environments, pelagic clupeids are

645known to influence zooplankton dynamics, which conse-

646quently regulate competitive interactions among planktiv-

647orous fishes. For example, variations in herring condition

648have been explained by plankton availability, partly regu-

649lated by both intraspecific (density-dependence) and

650interspecific competition with sprat (Möllmann et al. 2005;

651Casini et al. 2010). Sprat is a strict zooplanktivorous spe-

652cialist, while herring may feed upon zooplankton and

653benthic food organisms as large juveniles and adults.
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654 Hence, the interspecific competition between sprat and

655 herring is likely strongest at smaller size (Casini et al.

656 2004). However, the diet overlap between herring and sprat

657 does not only change ontogenetically, but also varies sea-

658 sonally and with prey abundance and composition (Casini

659 et al. 2004).

660 As mentioned above, ecological divergence and local

661 adaptations seem to be highly important in both freshwater

662 coregonids and marine clupeids, and in both systems

663 genetically distinct spawning populations likely have

664 resulted, at least in part, from competitive interactions.

665 However, while comparisons of sympatric populations of

666 coregonids mostly have focused on variation in feeding

667 habitat resulting from competition among adults, studies of

668 sympatric herring populations have mainly described var-

669 iation in spawning behaviour, probably related to compe-

670 tition between younger stages. Although a comprehensive

671 mechanistic understanding has not yet been achieved, it has

672 been proposed that competition for a suitable substratum

673 for eggs and for food among larvae could be involved in

674 the spawning time divergence in herring (Jørgensen et al.

675 2005).

676 A similar competition among younger life stages may

677 have been important in the development of the segregated

678 spawning periods between the coregonids in Lake Stechlin

679 (Helland et al. 2008, 2009). Although adults of vendace

680 and Fontane cisco show only subtle ecological differences,

681 their larvae most likely share much less ecological simi-

682 larities. Because the larvae of the two species hatch at

683 different times of the year, autumn- and spring spawners

684 probably face highly dissimilar environments (e.g. tem-

685 perature, predation risk, food abundance) during their first

686 weeks of life (Nyberg et al. 2001). Development of

687 reproductive isolation in sympatry cannot happen without

688 simultaneous reduction in the competition, to allow the

689 divergent populations to coexist (Coyne and Orr 2004).

690 Asynchrony in timing of spawning and hatching may

691 contribute directly to the coexistence of sympatric popu-

692 lations, through temporal partitioning of resources and

693 habitat.

694 Predatory interactions are functionally similar for core-

695 gonids and clupeids. Substantial mortality of coregonids is

696 found during the larval phase, primarily induced by perch

697 (Perca fluviatilis) predation (Helminen and Sarvala 1994;

698 Huusko et al. 1996). Juvenile and adult coregonids are

699 important prey items of the few pelagic piscivores, such as

700 perch, brown trout (Salmo trutta) or lake trout (Salvelinus

701 namaycush) (Heikinheimo 2001; Valkeajärvi and Marjo-

702 mäki 2004; Hrabik et al. 2006; Gamble et al. 2011a, b).

703 Cod is the main predator on sprat and herring in the

704 Baltic Sea (Sparholt 1994). It could be shown that sprat and

705 herring stocks substantially benefited from the decreased

706 predation pressure imposed by cod and from concurrently

707low rates of fishing mortality (Köster et al. 2003). In the

708Baltic Sea, predation on eggs of herring and sprat is tem-

709porally variable and seems to depend upon the extent of

710vertical overlap between adults and eggs (Köster and

711Möllmann 2000a, b). Sprat larvae were only occasionally

712discovered in low numbers in the stomachs of clupeid

713(herring and sprat) predators, suggesting low predation

714mortality of larvae by clupeids (Köster and Möllmann

7151997). The feeding impact of medusae and chaetognaths on

716fish early life history stages in the Baltic is also very low

717(Barz and Hirche 2005). Another predator for sprat in the

718Baltic are piscivorous seabirds, for example the common

719guillemot Uria aalge that directly affects the sprat popu-

720lation in the Baltic and is indirectly affected by the fishery

721strategies on sprat and cod (Österblom et al. 2006).

722In marine systems, herring and sprat form important

723trophodynamic links between lower (zooplankton) and

724upper (piscivores) trophic levels. In different regions, the

725populations of both sprat and herring exhibit out of phase

726oscillations with populations of their key predators sug-

727gesting strong top-down control. Examples of this tight

728coupling between populations of sprat and herring and

729those of gadoid predators include sprat and Atlantic cod

730(Gadus morhua) in the Baltic Sea and herring and haddock

731(Melanogrammus aeglefinus) on Georges Bank in the

732northwest Atlantic ((Richardson et al. 2011). Although

733heavily exploited in fisheries, multispecies virtual popula-

734tion analyses suggest that removal of these clupeids by

735predators exceeds that by commercial fisheries (Tyrrell

736et al. 2008).

737Similarities between coregonids and clupeids can be

738found also with respect to host–parasite interactions. The

739dominant parasites of coregonids are cestodes, primarily

740transmitted via copepods that are part of the planktonic diet

741of coregonids (Hoff et al. 1997; Pulkkinen et al. 1999;

742Pulkkinen and Valtonen 1999). In Atlantic herring, 41

743marine parasite species including metacercaria, nematodes

744and gastrointestinal trematodes were found (Arthur and

745Arai 1984; MacKenzie 1987). Transmission of most of

746these parasites seems to be restricted to the coastal waters.

747Tolonen and Karlsbakk (2003) studying the parasitic

748assemblage in Norwegian spring-spawning herring found

749very similar assembly as in other North Atlantic fish stocks.

750In Baltic herring, 31 parasitic species have been recorded

751and 23 species in the North Sea (MacKenzie 1987). Para-

752sitic infestation with the larvae of Anisakis simplex (nem-

753atode) was shown for sprat and herring in the Baltic Sea

754varying significantly with geographical region. Highest

755infection rates were found in areas of low salinity, low

756temperature and reduced oxygen conditions. Sprat was less

757affected than herring (Grygiel 1999) indicating differ-

758ences in susceptibility to diseases between herring and

759sprat. Endoparasitic infections with metacercaria, larval
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760 nematodes and larval cestodes in herring were analysed for

761 their use in stock identifications. The study showed a

762 remarkable stability in the parasite fauna over time and

763 showed a significant difference in the prevalence and

764 infection of the parasite infracommunities validating the

765 use of parasites as biological tags and as a method for stock

766 discrimination (Campbell et al. 2007).

767 In the North Sea, herring larvae are known to suffer

768 mortality due to both endo- and ectoparasites including

769 nemotodes and cestodes, and certain copepod species,

770 respectively (Rosenthal 1967). Heath and Nicoll (1991)

771 reported that larvae infected by the cestode (Scolex pleu-

772 ronectis)) had nearly a 50 % reduction in feeding incidence

773 (24 %) compared to those that did not contain endopara-

774 sites (44 %). Furthermore, no larvae smaller than 15 mm

775 contained these endoparasites, whereas incidences of

776 infection increased with increasing body size in larvae

777 [15 mm and were highest in coastal waters. Those authors

778 speculated that this biological mechanism may interact

779 with changes in drift trajectories to affect YCS of herring in

780 the North Sea. More recent work (Lusseau et al. 2009)

781 utilized the prevalence of endoparasites as an index of

782 larval feeding incidence, overwinter survival and YCS.

783 Summary and comparison

784 In both clupeids and coregonids, planktivory is the domi-

785 nant feeding strategy, although single populations may

786 show locally deviating strategies with an enhanced uptake

787 of benthic animals or even fish. However, a complete

788 switch to benthivory, as often observed in one of the

789 coexisting freshwater whitefish populations, has been

790 documented only in the deepwater forms of C. artedi s.l of

791 the Great Lakes (Table 1). Therefore, there is a fixed

792 connection of niche dimensions between pelagic habitat

793 use and planktonic feeding strategy. The dominant plank-

794 tivory may intensify intra- and interspecific competition

795 because there is no further specialization and niche segre-

796 gation possible (in contrast to the variety of benthivorous

797 or piscivorous feeding strategies). This limited niche seg-

798 regation along the diet axis in the pelagic habitat may

799 contribute to forced microhabitat segregation along the

800 depth and temperature gradients as found in pelagic core-

801 gonids. However, it may also explain why divergent

802 selection operates primarily on the early life stages in both

803 groups. The result, spawning-time switching, might be the

804 most efficient strategy to reduce competition by avoidance

805 of simultaneous occurrence of comparable life history

806 stages and similar-sized individuals. The primarily pelagic

807 life style of coregonids and clupeids also results in preda-

808 tor–prey and host–parasite interactions that are functionally

809 comparable. There is growing evidence that these ecolog-

810 ical interactions likewise contribute to local adaptation of

811populations (Fraser et al. 2011). However, these interac-

812tions and their correspondence to ecology and life history

813of the species are much better studied in the marine than in

814the freshwater species.

815Behavioural ecology

816Diel vertical migration (DVM), one of the most striking

817patterns of rhythmic population behaviour, has been

818repeatedly documented from planktivorous coregonids.

819The regular DVM consists of the occurrence of fish in

820relatively dark and cold hypolimnetic areas during day-

821time, an ascent into warmer metalimnetic waters during

822dusk, a night-time occurrence in metalimnetic waters, and

823a descent back into deep layers during dawn. DVM in

824coregonids has been reported from several lakes (Dem-

825binski 1971; Hamrin 1986; Hrabik et al. 2006; Stockwell

826et al. 2010). Ascent and descent are proximately triggered

827by the change of illumination threshold during dusk and

828dawn (Jurvelius and Marjomäki 2008; Busch and Mehner

8292009). The ultimate causes of coregonid DVM have

830been widely discussed with some controversy, but most

831researchers suggest that fish leave the well-lit near-surface

832layers during daytime to avoid visually oriented predators

833(Hrabik et al. 2006; Gjelland et al. 2009). Interestingly,

834however, evidence for high predation risk of coregonids in

835shallower layers of lakes could rarely be found, because the

836density of piscivores was in most cases surprisingly low

837(Hrabik et al. 2006; Stockwell et al. 2010; Mehner et al.

8382010a). Therefore, a genetically fixed migration has been

839discussed as a response to the ‘ghost of predation past’

840(Mehner et al. 2007b; Jurvelius and Marjomäki 2008).

841An additional ultimate cause of DVM was put forward

842for the coregonids of Lake Stechlin, where hydroacoustic

843observations of population depths at night revealed strong

844seasonal fluctuations, with fish occurring in deeper water in

845spring and autumn than during the summer months

846(Mehner et al. 2005, 2007b). There was a significant cor-

847relation between population depths and vertical tempera-

848ture gradients (Mehner et al. 2007b; Busch and Mehner

8492009), suggesting that fish seek layers with metabolically

850optimum temperatures at night (Mehner et al. 2010a).

851However, a bioenergetics benefit of DVM for Lake

852Stechlin coregonids could not be demonstrated. Busch

853et al. (2011) used a bioenergetics model to explore that the

854regular DVM is not the most efficient strategy. They sug-

855gested that multiple factors, rather than bioenergetics effi-

856ciency alone, are the evolutionary basis to explain DVM. In

857addition, no growth advantage (that should be expected

858when bioenergetics efficiency is assumed to drive DVM)

859was found for vendace switching in experiments between

860high and low temperatures relative to fish held at constant
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861 temperatures (Mehner et al. 2011c). However, fish per-

862 forming DVM may benefit from predation avoidance

863 without compromising their metabolic balance and hence

864 growth rates (Mehner et al. 2011c).

865 Regular DVM is also well described from populations of

866 Atlantic herring and sprat in the North and Baltic Seas

867 (Nilsson et al. 2003; Cardinale et al. 2003; Axenrot et al.

868 2004; Orlowski 2005). The utilization of DVM by sprat in

869 the Baltic appears to have changed in the last decade.

870 Previously (in the 1990s), sprat larvae in the Bornholm

871 Basin performed a normal DVM, being captured during the

872 day in deeper water layers (e.g. below the thermocline,

873 40 m) and at night in surface waters. In contrast, a con-

874 sistent lack of DVM was observed when sprat were

875 re-sampled in the same system from 2002 to 2005 (Voss

876 et al. 2007). The lack of DVM in recent years is hypoth-

877 esized to be due to changes in the abundance of copepod

878 species that have different depth preferences. Specifically,

879 the abundances of Acartia and Temora species which

880 prefer warmer, surface waters have increased, whereas the

881 abundance of Pseudocalanus which inhabits deeper,

882 colder, more saline depths has decreased (Voss et al. 2007).

883 Biophysical modelling results of larval feeding and growth

884 that included these decadal changes in prey fields and water

885 temperatures suggested fitness benefits related to the

886 change in larval DVM behaviour (Hinrichsen et al. 2010).

887 Modelled larvae that maintained the originally normal

888 DVM in recent years could not meet energy requirements

889 due to the poor foraging environment at depth.

890 A variety of mechanisms have been proposed to modify

891 DVM of herring larvae such as hydrographic characteris-

892 tics (mixed or stratified water body), tidal influences

893 (Stephenson and Power 1988), the combination of light and

894 turbulence (Heath et al. 1988), dependency of light and

895 food availability (Munk et al. 1989) and predator–prey

896 relationships (Bailey and Houde 1989; Houde 1989). For

897 North Sea herring, Heath et al. (1991) and Haslob et al.

898 (2009) observed that herring larvae had a distinct vertical

899 migration to upper water layers during the day and more

900 homogenous depth distribution during the night with larger

901 larvae showing a more pronounced behaviour. The size-

902 dependent vertical distribution pattern of the herring

903 appears to be due to the vertical distribution of their prey

904 organisms (Munk et al. 1989). Since herring larvae are

905 visual predators that cannot feed at low light intensities

906 (Blaxter 1962), they have to swim to the upper water layers

907 to be able to feed, a behaviour that will be influenced by the

908 degree of mixing or stratification present within the water

909 column. During the summer in deep Baltic basins, the

910 adults of both sprat and herring perform DVM with fish

911 moving towards surface layers (upper 20 m) at dusk and

912 back to daytime depths of 60–80 m at dawn (Stepputtis

913 2006).

914Reverse migration patterns with an ascent into shallower

915layers during dawn and a descent during dusk have recently

916been documented for young-of-year herring in a brackish

917bay of the Baltic Sea (Jensen et al. 2011). Furthermore, the

918vertical distribution at midday was bimodal, suggesting

919two alternative migration strategies in these small herring,

920somehow similar to a pattern found in coregonids in Lake

921Stechlin (Mehner and Kasprzak 2011). Similar to the larval

922sprat example, the change in DVM pattern was consistent

923with bioenergetics-based predictions of net energy gain. In

924the case of herring, the occurrence in warmer water during

925the daytime facilitated rapid digestion at intense feeding

926phase, whereas herring do not feed at night and hence save

927energy by descending into colder layers (Jensen et al.

9282011). These bioenergetics-based explanations of behav-

929ioural patterns are expanded upon in the next section.

930Summary and comparison

931Diel vertical migrations are common behavioural strategies

932in both coregonids and clupeids. This commonality sug-

933gests that the vertical gradients of the pelagic habitats in

934both freshwater and marine ecosystems create comparable

935selective forces on habitat-choice behaviour. The primary

936gradients triggering DVM seem to be illumination strength

937as the proximate factor, and temperature that may be

938considered as both proximate (guiding the fish into pre-

939ferred habitats) (Levy 1990) and ultimate (fitness advan-

940tage at increased bioenergetics efficiency of growth) (Brett

9411971) factor. However, vertical distributions of prey, intra-

942and interspecific competitors, and predators are locally

943variable, and hence, a single unique evolutionary causation

944of DVM across all populations and habitats cannot be

945achieved. In turn, this variety of local conditions may

946explain why DVM patterns have been found to be both

947seasonally and annually highly variable in some of the

948studied populations and may respond to drastic change in

949environmental factors (Hinrichsen et al. 2010). The indi-

950vidual variability within population-wide migration pat-

951terns and its evolutionary causation has just started to be

952explored (Mehner and Kasprzak 2011). During early

953ontogeny, physostome fishes such as clupeids and core-

954gonids must ascend to surface waters and gulp air to fill

955their swim bladders. Thus, ontogenetic changes in depth

956distribution are also related to this functional, morpholog-

957ical constraint (Blaxter and Batty 1984).

958Physiological ecology

959Abiotic gradients contribute to the structuring of freshwater

960and marine fish assemblages. Factors of major interest are

961temperature and oxygen, and additionally salinity in
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962 marine ecosystems. Ecological specialization along these

963 gradients in response to strong competition involving traits

964 not related to feeding strategies has been discussed to

965 contribute to speciation in fishes (Mehner et al. 2011b).

966 Often, these traits are directly or indirectly related to

967 spawning time and location, thermal habitat use and

968 energetic trade-offs.

969 Vendace and Fontane cisco in Lake Stechlin display an

970 ecological and physiological segregation with respect to

971 water depth and thermal habitats, which is as well asso-

972 ciated with differences in spawning time. The sister spe-

973 cies show differences in metabolic rates with respect to

974 temperature (Ohlberger et al. 2008b) and thermal prefer-

975 ences (Ohlberger et al. 2008c) that correspond to the

976 ecological divergence in habitat use (Helland et al. 2007,

977 2008) and suggest different energetic strategies. Ohlberger

978 et al. (2012) demonstrated that the scaling of metabolic

979 rate with body mass is temperature-dependent in both

980 vendace and Fontane cisco in contrast to other species.

981 This intra-specific temperature dependence of metabolic

982 rates most likely represents a plastic response of energy

983 metabolism to the changing thermal conditions and sug-

984 gests a more pronounced competitive superiority of small

985 compared to large individuals at lower temperatures.

986 Differences in size-dependent competition may thus be

987 related to the species’ thermal habitats (Ohlberger et al.

988 2012). Ciscoes in the Great Lakes occupy different water

989 depths and can be grouped into pelagic (C. artedi, in part

990 C. hoyi) and deepwater phenotypes (C. kiyi, C. zenithicus,

991 C. reighardi, C. nigripinnis), corresponding to their pri-

992 mary diet (Table 1). The adaptive diversification of the

993 deep-water ciscoes is associated with different physio-

994 logical abilities to occupy different water depths, which

995 has been related to body size, mass-specific metabolic

996 rates and buoyancy characteristics (Clemens and Craw-

997 ford 2009).

998 Thermal windows supporting the survival of embryos

999 in the laboratory as well as threshold (warm and cold)

1000 temperatures avoided by adults in the field have been

1001 investigated in coregonids (Dembinski 1971; Crowder and

1002 Crawford 1984; Hamrin 1986; Tapaninen et al. 1998) and

1003 clupeids (Reid et al. 1996; Peck et al. 2012) (Fig. 2).

1004 Embryos of coregonids such as C. clupeaformis and

1005 C. albula can tolerate colder temperatures but have more

1006 narrow thermal windows compared to both the embryos

1007 of both clupeids considered in this review (sprat and

1008 herring). Adult clupeids can exploit a wider range of

1009 water temperatures and can grow well at warmer tem-

1010 peratures than adult coregonids. Preferred temperatures

1011 often coincide with those optimal for growth (e.g. Jobling

1012 1981), but this depends heavily upon the acclimation

1013 characteristics of specific populations (e.g. Pörtner and

1014 Peck 2010). Temperatures preferred by juvenile (P*)

1015C. albula and adult (P) C. hoyi (8–10 �C) are half those at

1016which sprat juveniles obtained maximum growth rates

1017(GMAX) in the laboratory and field (Peck et al., unpubl.

1018manuscript) (see Fig. 2). This brief review of the thermal

1019constraints of Coregonus congeners and clupeids (sprat

1020and herring) reinforces the notion that the life stages of

1021coregonids are more constrained to colder water habitats

1022compared to these clupeids but that both groups display

1023ontogenetic expansion of thermal habitat during the late

1024larval/early juvenile phase and have similar thermal

1025ecologies at spawning (e.g. preferred/optimum at

10268–12 �C).

1027Both clupeids tolerate a wide range of salinities and

1028hence are both abundant in brackish waters of the Baltic

1029Sea and marine waters of the North Atlantic. The transition

1030zone between the North Sea and the Baltic Sea is an area

1031with a strong salinity gradient spanning from 30 to 34 % in

1032the North Sea to 6–8 % in the Baltic proper, with levels

1033decreasing even down to 3 % in the innermost (north-

1034eastern) parts of the Baltic (Gaggiotti et al. 2009). Thus,

1035changes in salinity levels may shape fish growth rates both

1036indirectly by changing the zooplankton community struc-

1037ture and abundance and/or directly via effects on growth

1038physiology and metabolism (Cardinale et al. 2002). It

1039appears likely that adaptation to the varying salinity at the

1040spawning location contributes to ecological divergence

1041between herring populations, but there are no physiological

1042studies to support this hypothesis.

Fig. 2 Thermal windows supporting the survival of embryos in the
laboratory as well as threshold (warm and cold) temperatures avoided
by adults in the field for three species of coregonids and two species
of clupeid fishes. The range in temperatures preferred by juvenile or
adult coregonids and that corresponding to maximum growth (in
sprat) are also indicated. Data sources are listed in the text
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1043 Summary and comparison

1044 The study of metabolic divergence of coexisting pelagic

1045 populations requires further investigations, because tem-

1046 perature seems to be important for vertical micro-habitat

1047 segregation, bioenergetics efficiency of growth, body size

1048 and life history. It would be promising to explore whether

1049 temperature conditions during spawning season and at

1050 spawning location, egg size, growth rate, size at matura-

1051 tion, maximum size, optimum metabolic temperature and

1052 final temperature preferendum correspond across the

1053 coregonid and clupeid populations of the temperate zone.

1054 This would suggest a functional interaction between life

1055 history, metabolism and environmental conditions, as

1056 recently proposed (Killen et al. 2010).

1057 Potential effects of climate change

1058 Studies addressing the effects of global climate change on

1059 coregonids in lakes are relatively rare (Magnuson et al.

1060 1990; Elliott and Bell 2011). It is generally assumed that

1061 the thermal guild of cold-water stenothermal fish to which

1062 coregonids belong is most vulnerable to global warming

1063 (Graham and Harrod 2009). This assumption is primarily

1064 based on the predicted decline of suitable habitats for

1065 coregonids in lakes due to warming and de-oxygenation of

1066 deeper water layers (Jacobson et al. 2010; Elliott and Bell

1067 2011). Nyberg et al. (2001) discussed that the YCS of

1068 autumn-spawning coregonids whose larvae hatch in early

1069 spring is expected to decline with warming, whereas the

1070 YCS of spring spawners might increase because the later-

1071 hatching larvae of spring spawners can more precisely

1072 match the temporally shifting peak of zooplankton prey in

1073 late spring. The coexisting coregonid species in Lake

1074 Stechlin were an appropriate study system to test this

1075 assumption. In contrast to the prediction, densities of

1076 young-of-the-year vendace in June were higher after warm

1077 winters. However, metalimnetic temperatures in June

1078 affected densities of juvenile and adult vendace and Fon-

1079 tane cisco in opposite direction. Cisco densities were

1080 higher in warm years, whereas high vendace densities were

1081 primarily found when June temperatures were cold.

1082 Metalimnetic temperatures seem to modify the competition

1083 strength between the interacting coregonids, because high

1084 densities of cisco forced vendace to occupy shallower and

1085 hence warmer waters at night, whereas high vendace

1086 densities forced cisco to stay deeper and hence in too cold

1087 water (Mehner et al. 2011a).

1088 By using a coupled lake physics and bioenergetics

1089 model, growth rates of vendace and Fontane cisco were

1090 simulated for a predicted global change scenario in the year

1091 2100 (Busch et al. 2012). Two behavioural strategies were

1092distinguished, with coregonids either performing behav-

1093ioural thermoregulation (keeping their temperatures at

1094night constant), or fish performing migrations with fixed

1095amplitudes (keeping their depth at night and hence illu-

1096mination threshold constant). In almost all simulations,

1097coregonids were predicted to increase their growth rates,

1098even by assuming that zooplankton densities might decline

1099by about 10 %. The reason for this unexpected outcome is

1100the opposed temperature development of hypolimnetic and

1101metalimnetic water layers in Lake Stechlin predicted for the

1102warming scenario. Whereas epi- and metalimnetic layers

1103between 0 and 18 mwill warm, layers deeper than 20 mwill

1104cool down by up to one degree. Accordingly, fish will

1105experience colder water during their daytime residence that

1106reduce their metabolic expenditures, and the energy saved

1107will more than balance the slightly reduced feeding rates

1108from the lower prey densities. However, if fish would follow

1109behavioural thermoregulation under these warming condi-

1110tions and keep their currently observed temperatures at night,

1111their vertical microhabitat segregation will completely col-

1112lapse because layerswith preferred temperatures for vendace

1113and cisco will then largely overlap. Accordingly, tempera-

1114ture development of the main habitats is coupled with biotic

1115interaction strength, a pattern that has only recently emerged

1116as a main research area (Kordas et al. 2011).

1117Clupeid fish have been one of the best bio-indicators of

1118climate-driven changes in marine systems, exhibiting

1119strong changes in stock size and distribution because of

1120their short lifespan and tight coupling to zooplankton

1121dynamics and mesoscale hydrodynamic features sensitive

1122to physical forcing (Lluch-Belda et al. 1992; Alheit et al.

11232005; Tourre et al. 2007). Similar to the climate discussion

1124of coregonids in lakes, climate change will affect sprat and

1125herring (and other marine fish) in both direct and indirect

1126ways. Direct effects include changes in water temperature,

1127causing species-specific impacts due to differences in

1128thermal windows supporting growth and survival (Pörtner

1129and Peck 2010). Sprat occurs at the northern boundary of

1130its geographical distribution in both the Baltic and North

1131Seas suggesting that additional warming (when considered

1132in isolation of other factors) would benefit these popula-

1133tions (MacKenzie and Köster 2004). On the other hand, at

1134its lower latitude limit, sprat has shown dramatic declines

1135in recent decades such as the disappearance of the

1136spawning population in the Northwest Mediterranean

1137(Calvo et al. 2011). These changes are consistent with the

1138inter-stock, dome-shaped relationship between recruitment

1139and water temperature experienced during spawning

1140(MacKenzie and Köster 2004). Herring, which occurs with

1141sprat at the lower latitudinal extent of its range in the North

1142and Baltic Sea, will also likely experience losses in the

1143productivity of specific spawning stocks in southern

1144regions due to climate warming (as discussed below).
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1145 Compared to lake systems, climate change may have

1146 potentially more complex impacts in open marine systems

1147 due to losses in connectivity between key habitats. Many

1148 marine fish, including clupeids, have evolved complex life

1149 history strategies that help promote philopatry, habitat

1150 connectivity, life cycle closure and population persistence

1151 (Harden Jones 1968; Sinclair 1988). Herring displays

1152 spawning site fidelity, an adaptive strategy that has likely

1153 evolved to place progeny within environments providing

1154 favourable transport to areas promoting high rates of

1155 feeding, growth and survival during early life (Cushing

1156 1975). Sprat also displays specific preferences for

1157 spawning areas such as deep Baltic Basins and the

1158 German Bight in the southern North Sea. The YCS of

1159 sprat, herring and other marine clupeids has been corre-

1160 lated to atmospheric climate oscillations such as in the

1161 North Atlantic (NAO) and Pacific (PDO) (Gröger et al.

1162 2010). These oscillations are not only highly correlated to

1163 changes in water temperature but also the strength and

1164 direction of regional wind fields causing changes in the

1165 drift trajectories of early life stages (Peck et al. 2009),

1166 potentially disrupting the connectivity between essential

1167 habitats. In the Baltic, sprat year-class strength has been

1168 strongly and significantly correlated to the spawning stock

1169 biomass and a drift index (Baumann et al. 2006b) with

1170 high year classes resulting when larvae are retained near

1171 spawning grounds. Recent biophysical modelling work on

1172 sprat in the North Sea comparing different NAO years

1173 predicted very little change in potential larval survival;

1174 despite differences in drift trajectories and water tem-

1175 peratures North Sea sprat larvae matched well (spatially

1176 and temporally) with modelled prey fields (Daewel et al.

1177 2008).

1178 In North Sea herring, year-class success of autumn

1179 spawners appears to be regulated by processes acting

1180 during the early life, as larvae drift from western spawning

1181 grounds to eastern juvenile nursery areas (Nash and

1182 Dickey-Collas 2005). Using a physiology-based foraging

1183 and growth model constructed for larval herring, Hufnagl

1184 and Peck (2011) estimated the ability for herring to switch

1185 spawning times (or spawning areas) in response to climate-

1186 driven changes in key factors (temperature, prey fields).

1187 The model suggested that climate-driven changes in bot-

1188 tom-up factors will affect spring- and autumn-spawned

1189 herring larvae in different ways. It is unlikely that autumn-

1190 spawning herring will be able to avoid unfavourable con-

1191 ditions by delaying their spawning time or by utilizing

1192 more northern spawning grounds because of limitations in

1193 day-length to larval growth and survival. Conversely, for

1194 spring spawners, the success of earlier or later spawning

1195 will be tightly constrained by match–mismatch dynamics

1196 between larvae and their zooplankton prey (Hufnagl and

1197 Peck 2011).

1198Summary and comparison

1199Climate warming may affect both fish groups comparably.

1200The most sensitive ontogenetic stages seem to be the fish

1201larvae because of their exposed nearshore habitats in which

1202changes in temperature will occur more pronouncedly than

1203in the much larger pelagic volumes of lakes and seas (see

1204Mehner 2000). Furthermore, volumetric densities of larvae

1205are highest, their daily food demand is highest during

1206ontogeny, and their ability to detect and avoid predators is

1207poorly developed (Houde 1987; Mehner and Thiel 1999;

1208Bochdansky et al. 2008). Therefore, abiotic and biotic

1209factors at nearshore habitats that respond to global warm-

1210ing will have the strongest effect on year-class strengths of

1211coregonids and clupeids, in particular because early life

1212stages have narrower thermal windows than juvenile or

1213adult fish (Pörtner and Peck 2010). For the marine clupeids,

1214the passive transport of late larvae to their juvenile habitats

1215over large distances might be another important phase that

1216can presumably be neglected in coregonids due to the

1217immediate connection of nearshore and pelagic habitats in

1218lakes. Given the potential decline of suitable thermal

1219habitats and limited dispersal opportunity, coregonids in

1220lakes will face changes in competitive interactions and

1221competition strength with changes in the thermal regime

1222(Mehner et al. 2011a).

1223Because warming may modify autumn, winter and

1224spring seasons differently, the variability of spawning

1225times will cause a response that is specific to each popu-

1226lation. In this context, spring-spawning herring seem to be

1227more robust against warming, a pattern that was predicted

1228also for freshwater spring spawners relative to the more

1229vulnerable autumn spawners (Nyberg et al. 2001). A sys-

1230tematic comparison of locally coexisting populations with

1231non-overlapping spawning times could be therefore a

1232promising approach to achieve mechanistic understanding

1233of the most important factors that make pelagic fish pop-

1234ulations sensitive to global change.

1235Conclusions

1236Our review has explored commonalities and differences in

1237pelagic fish species inhabiting either freshwater or estua-

1238rine and marine systems. The potential effects of global

1239change on populations of these fishes will arise from

1240changes in either indirect (trophodynamic) or direct (abi-

1241otic, physiological) factors. The severity of impacts will

1242depend to some extent on whether species have the

1243capacity and speed to adapt to these changes via behav-

1244ioural modification and phenotypic selection.

1245However, the interplay between genetic differentiation,

1246spatiotemporal distribution, ecological interactions, life
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Fig. 3 Conceptual graphics showing the interplay of processes
related to genetic differentiation, spatiotemporal distribution, meta-
bolic specialization, life history and ecology of coregonids (a) and
clupeids (b). Solid arrows indicate good scientific understanding of

links. Stippled arrows indicate links that are suggested to be studied in
the next years. Seasonal migrations are not described in coregonids,
and hence, this box is coloured in grey
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1247 history and metabolic specialization has differing research

1248 deficits in clupeids and coregonids (Fig. 3). Whereas in cor-

1249 egonids, the interaction of thermalwindows and bioenergetics

1250 with habitat choice and vertical migrations is well understood

1251 (Fig. 3a), these effects are less explored in clupeids. Clupeids

1252 show large-scale migrations between reproductive and feed-

1253 ing areas, and individual homing and straying is likely

1254 important for genetical population differentiation (Fig. 3b). In

1255 contrast, the spatial and temporal organization of spawning in

1256 coregonids is not really understood, in particular for the rare

1257 spring-spawning species.

1258 A central research theme for both groups can be found in

1259 the interplay between life history and physiological spe-

1260 cialization, and the resulting genetical differentiation by

1261 ecological divergence (Fig. 3a, b). Furthermore, the effect

1262 of host–parasite interactions on local adaptation in this

1263 context is not understood. It will be important to study

1264 whether hybrids between species or populations that differ

1265 in spawning season are fertile, and whether they display

1266 additive genetic effects with respect to the thermal win-

1267 dows of their parental populations. This may offer insight

1268 into the processes that enforce speciation, for example

1269 through fitness disadvantages of hybrids relative to their

1270 parents. It cannot be excluded that hybridization between

1271 metabolically specialized parents is a possible outcome of

1272 effects of global warming, for example by induction of

1273 temporal overlap of previously distinct spawning times, or

1274 habitat temperatures intermediate between those currently

1275 dominating in the native habitats.

1276 Acknowledgments Research that has generated a part of the results
1277 mentioned in this contribution was primarily funded by the AQUA-
1278 SHIFT priority program of the German Research Council (DFG)
1279 (contract numbers: Me 1686/5-1, 5-2, 5-3 to TM; Pe 1129/2-3 to MP;
1280 Cl 126/3-1, 3-2, 3-3 to CC). The German Bundesländer Mecklenburg-
1281 Vorpommern and Schleswig–Holstein, the Leibniz-Institute of
1282 Freshwater Ecology and Inland Fisheries (IGB), the EU FP7 program
1283 ‘‘Forage Fish Interactions (FACTS—EU # 244966) and the ‘‘GLO-
1284 BEC-Germany’’ program (German Federal Ministry for Education
1285 and Research, FKZ 03F0320E) provided additional financial support.

1286 References

1287 Airaksinen KJ (1968) Preliminary notes on the winter-spawning
1288 vendace (Coregonus albula L.) in some Finnish lakes. Ann Zool
1289 Fenn 5:312–314
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1480Gröger JP, Kruse GH, Rohlf N (2010) Slave to the rhythm: how large-
1481scale climate cycles trigger herring (Clupea harengus) regener-
1482ation in the North Sea. ICES J Mar Sci 67:454–465
1483Grygiel W (1999) Synoptic survey of pathological symptoms in
1484herring (Clupea harengus) and sprat (Sprattus sprattus) in the
1485Baltic Sea. ICES J Mar Sci 56:169–174
1486Guelinckx J, Maes J, De Brabandere L, Dehairs F, Ollevier F (2006)
1487Migration dynamics of clupeoids in the Schelde estuary: a stable
1488isotope approach. Estuar Coast Shelf Sci 66:612–623
1489Hamrin SF (1983) The food preference of vendace (Coregonus
1490albula) in South Swedish forest lakes including the predation
1491effect on zooplankton populations. Hydrobiologia 11:121–128
1492Hamrin SF (1986) Vertical distribution and habitat partitioning
1493between different size classes of vendace, Coregonus albula, in
1494thermally stratified lakes. Can J Fish Aquat Sci 43:1617–1625
1495Hamrin SF, Persson L (1986) Asymmetrical competition between age
1496classes as a factor causing population oscillations in an obligate
1497planktivorous fish species. Oikos 47:223–232

Mar Biol

123
Journal : Large 227 Dispatch : 17-3-2012 Pages : 21

Article No. : 1922
h LE h TYPESET

MS Code : MABI-D-11-00489 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

1498 Harden Jones FR (1968) Fish migration. Edward Arnold, London
1499 Harrod C, Griffiths D, McCarthy TK, Rosell R (2001) The Irish
1500 pollan, Coregonus autumnalis: options for its conservation.
1501 J Fish Biol 59:339–355
1502 Haslob H, Rohlf N, Schnack D (2009) Small scale distribution
1503 patterns and vertical migration of North Sea herring larvae
1504 (Clupea harengus, Teleostei: Clupeidea) in relation to abiotic
1505 and biotic factors. Sci Mar 73:13–22
1506 Haslob H, Tomkiewicz J, Hinrichsen HH, Kraus G (2011) Spatial and
1507 interannual variability in Baltic sprat batch fecundity. Fish Res
1508 110:289–297
1509 Heath M, Nicoll N (1991) Infection of larval herring by helminth
1510 parasites in the North Sea and the effect on feeding incidence.
1511 Cont Shelf Res 11:1477–1489
1512 Heath MR, Henderson EW, Baird DL (1988) Vertical distribution of
1513 herring larvae in relation to physical mixing and illumination.
1514 Mar Ecol Progr Ser 47:211–228
1515 Heath MR, Brander K, Munk P, Rankine P (1991) Vertical
1516 distribution of autumn spawned larval herring (Clupea harengus

1517 L.) in the North Sea. Cont Shelf Res 11:1425–1452
1518 Heikinheimo O (2001) Effect of predation on the low-density
1519 dynamics of vendace: significance of the functional response.
1520 Can J Fish Aquat Sci 58:1909–1923
1521 Heikinheimo O, Huuskonen H, Karjalainen J (2006) Location of
1522 spawning grounds of vendace (Coregonus albula (L.)): implica-
1523 tion for dispersion of newly hatched larvae. Verh Int Ver Limnol
1524 29:1725–1728
1525 Helland IP, Freyhof J, Kasprzak P, Mehner T (2007) Temperature
1526 sensitivity of vertical distributions of zooplankton and planktiv-
1527 orous fish in a stratified lake. Oecologia 151:322–330
1528 Helland IP, Harrod C, Freyhof J, Mehner T (2008) Coexistence of a
1529 pair of pelagic planktivorous coregonid fish. Evol Ecol Res
1530 10:373–390
1531 Helland IP, Vøllestad LA, Freyhof J, Mehner T (2009) Morphological
1532 differences between two ecologically similar sympatric fishes.
1533 J Fish Biol 75:2756–2767
1534 Helminen H, Sarvala J (1994) Population regulation of vendace
1535 (Coregonus albula) in Lake Pyhäjärvi, southwest Finland. J Fish
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1708Marjomäki TJ (2004) Analysis of the spawning stock-recruitment
1709relationship of vendace (Coregonus albula (L.)) with evaluation
1710of alternative models, additional variables, biases and errors.
1711Ecol Freshw Fish 13:46–60
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