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Abstract There is growing realisation that integrat-

ing genetics and ecology is critical in the context

of biological invasions, since the two are explicitly

linked. So far, the focus of ecological genetics of

invasive alien species (IAS) has been on determining

the sources and routes of invasions, and the genetic

make-up of founding populations, which is critical

for defining and testing ecological and evolutionary

hypotheses. However an ecological genetics approach

can be extended to investigate questions about

invasion success and impacts on native, recipient

species. Here, we discuss recent progress in the

field, provide overviews of recent methodological

advances, and highlight areas that we believe are

of particular interest for future research. First, we

discuss the main insights from studies that have

inferred source populations and invasion routes using

molecular genetic data, with particular focus on the

role of genetic diversity, adaptation and admixture in

invasion success. Second, we consider how genetic

tools can lead to a better understanding of patterns

of dispersal, which is critical to predicting the spread

of invasive species, and how studying invasions

can shed light on the evolution of dispersal. Finally,

we explore the potential for combining molecular

genetic data and ecological network modelling to

investigate community interactions such as those

between predator and prey, and host and parasite.

We conclude that invasions are excellent model

systems for understanding the role of natural selec-

tion in shaping phenotypes and that an ecological

genetics approach offers great potential for address-

ing fundamental questions in invasion biology.
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Introduction

Ecological genetics, a field pioneered by EB Ford and
his pivotal book of 1964 (Ford 1964), is the study of
(1) evolution in modern-day populations, (2) the
genetics of ecologically important traits, and (3)
genetics in the context of interactions among organ-
isms and between organisms and their environment.

Although not directly discussed in Ford’s book, all
three of these definitions are highly relevant to the
study of biological invasions, which are one of the
greatest threats to biodiversity, agriculture, health and
the global economy (Pimentel et al. 2001; Roy et al.
2011a). Integrating genetics with ecology in the

context of biological invasions is indeed crucial, since
the two are explicitly linked: ecological condi-tions in
a new environment may be considerably different
from the native range, and this can present major

adaptive challenges for an invasive population

(Reznick and Ghalambor 2001; Schierenbeck and
Ainouche 2006; Ciosi et al. 2008). It is only in recent
years that biological invasions have become regarded
as ‘‘natural experiments’’, offering unique insights
into ecological and evolutionary processes occurring
in real-time (Lee 2002; Sax et al. 2007), and

increasingly, understanding these processes is seen as
crucial for implementing successful management

policies.

Information on the demographic history and

genetic make-up of an invasive founding population is
critical for answering one of the most fundamental

questions in invasion biology: what determines the
success of invasive alien species (IAS)? In this case,
an ecological genetics approach refers to the ecology
of particular genotypes, and the role they play in
adaptation to new environments, and ultimately

invasion success. This question has already received
considerable attention in the ecological and evolu-
tionary genetics communities, and we are starting to
uncover general insights (see below). In addition,
genes (or more commonly, neutral molecular genetic
markers) can be used as tools to study ecological
processes such as colonization, dispersal or commu-

nity interactions. While the field of ‘‘molecular

ecology’’ has been established for decades, and there
have been exciting new developments in both data
generation (particularly from next generation

sequencing, see ‘‘Appendix 3’’ section and Metzker

2010 for a recent review) and statistical analyses

(e.g. Approximate Bayesian Computational

approaches, ‘‘Appendix 1’’ section; and landscape

genetics, ‘‘Appen-dix 2’’ section) there has so far been
relatively little uptake of these applications to studying
invasive pop-ulations. Initial focus has been on

determining the sources and routes of invasions, and
the genetic make-up of founding populations, which is
critical for defining and testing ecological/evolutionary
hypotheses (Estoup and Guillemaud 2010, and see
below). Now that considerable progress has been made

in this area, we envisage a growth in the number of
ecological genetics studies applied to IAS in the near
future.

The aims of this paper are to (1) function as a
review of ecological genetics in the context of IAS,
(2) introduce new methods in the field and discuss
how they can be applied to questions on invasive
species, and importantly, (3) promote dialogue

between ecologists and geneticists regarding funda-
mental questions in invasion biology. We begin with
a review of recent progress in determining source
populations and invasion routes, and advances in our
understanding of the role of genetic variation in
invasion success. We then focus on two areas that
are beginning to be investigated in the context of
ecological genetics of IAS: dispersal and community

interactions.

Inferring source populations and invasion routes

Inferring source populations and invasion routes is a
key first stage in invasion biology, with obvious
practical applications for designing and implement-

ing quarantine strategies, identifying natural enemies

as potential biological control agents (Roderick and
Navajas 2003), defining ecological characteristics of
introduced populations to predict their spread (Kolar
and Lodge 2001), and potentially direct the focus of
conservation strategies. It is also a critical step for
defining and testing ecological and evolutionary

hypotheses and ultimately understanding the reasons
for invasion success (see below, and Estoup and
Guillemaud 2010). Historical and observational data
on the spread of invasive populations is often sparse,
but even when there is good documentary evidence,
molecular genetic data can offer unique insights into
the sources, routes and mechanisms of spread (e.g.
Hoos et al. 2010; Lombaert et al. 2010, and see
‘‘Appendix 1’’ section and Fig. 1). However,
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inferring routes using molecular genetic methods

should supplement observational and historical

records, not attempt to replace them. Indeed, when
using an Approximate Bayesian Computational

(ABC) approach (‘‘Appendix 1’’ section), having
observational data is a necessary requirement for
defining a limited set of invasion scenarios that can be
tested against each other statistically (Fig. 1).

Main insights from molecular genetic studies

of invasion routes

Arguably the main insight from molecular genetic
studies of invasion routes is that multiple introductions
are commonplace, and go some way to explaining how
populations of IAS overcome founder effects associ-
ated with colonization since they can lead to similar or
even greater levels of genetic diversity in the invasive
compared to native ranges (see below and e.g. thiarid
snails, Melanoides tuberculata (Muller) (Sorbeocon-
cha: Thiaridae), Facon et al. 2003; anole lizards, Anolis
sagrei (Cocteau in Dume´ril and Bibron) (Squamata:

Iguanidae), Kolbe et al. 2004; western corn rootworm,

Diabrotica virgifera (LeConte) (Coleoptera: Chryso-
melidae), Miller et al. 2005; Ciosi et al. 2008;

amphipods, Gammarus tigrinus (Sexton) (Amphipoda:

Gammaridae), Kelly et al. 2006; and scotch broom,

Cytisus scoparius (L.) (Fabales: Fabaceae), Kang et al.
2007).

A particularly interesting case is highlighted by the
western corn rootworm, D. virgifera, which is native
to Mexico and the east coast of North America, but
was first observed near Belgrade in 1992, and is
expanding in central and eastern Europe at a rate of
100 km per year. The expansion is essentially

continuous, but there have been several isolated

outbreaks peripheral to the main invasion front, which
were thought to stem from a ‘‘leap-frogging’’ effect
from the expanding eastern Euro-pean population.
Molecular genetic studies however revealed that this
hypothesis was incorrect, and that most of the separate
outbreaks result instead from repeated trans-Atlantic
introductions (Miller et al. 2005; Ciosi et al. 2008). In
contrast to most studies performed so far, D. virgifera
shows higher genetic variation between invasive

populations than within (Ciosi et al. 2008).

Molecular genetic studies have also revealed that

invasions can lead to rapid adaptive evolution in spite

of strong bottlenecks (e.g. Amsellem et al. 2000;
Dlugosch and Parker 2008), and that successful

invasions may involve ‘‘bridgehead effects’’ in which
widespread secondary invasions stem from a partic-
ularly successful invasive population (Fig. 1e) e.g.
harlequin ladybird, Harmonia axyridis (Pallas) (Cole-
optera: Coccinellidae), Estoup and Guillemaud 2010;

Fig. 1 Hypothetical scenarios of invasion routes that can be 
formally tested using DIYABC (Cornuet et al. 2008). N Native 
range populations, I invasive range populations, subscript 
numbers indicate different populations. a putative source 
populations of IAS can be identified. This is greatly facilitated if
there is genetic differentiation (illustrated by different coloured
shading) between source populations; b and c exam-ples of 
independent introductions from the native range. In b native 
populations are genetically differentiated, whereas in c the 
native range is one panmictic population; d and e examples of 
serial introductions or stepping-stone colonisa-tion events,

where e corresponds to a ‘‘bridgehead effect’’ scenario, as seen 
in H. axyridis (Lombaert et al. 2010); f and g correspond to 
admixture scenarios between native popula-tions, or between
native and invasive populations respectively. The latter case is
illustrated by H. axyridis in Europe, which results from a 
combination of European biocontrol stocks and invasive East
USA individuals (Lombaert et al. 2010)
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Lombaert et al. 2010). In H. axyridis, the recent burst
of worldwide invasions followed a bridgehead sce-
nario, with the invasive population in Eastern North
America acting as a source population for colonists
invading Europe, South Africa and South America

(Lombaert et al. 2010). Although the bridgehead
effect is a new concept in invasion biology, it is
potentially a common phenomenon (for example it
could apply to the invasions described by Downie
2002; H ¨a nfling et al. 2002; Kolbe et al. 2004; Miller

et al. 2005). There are important practical reasons for
identifying bridgehead populations (Estoup and

Guillemaud 2010). Invasive populations are generally
thought to experience a lag phase between coloniza-
tion and expansion, during which time they evolve
adaptations that determine invasion success (Keller
and Taylor 2008). Unless the native population is
preadapted to become invasive, these adaptations must

occur independently in the case of multiple

independent introductions directly from the native
area. During a bridgehead scenario however, the
‘‘evolutionary shift’’ occurs in a single introduced
population, which makes this scenario parsimonious

(Estoup and Guillemaud 2010). Identifying such

populations should therefore be a high priority for
preventing subsequent spread (Estoup and Guille-
maud 2010).

In addition to information about the demographic

history of invasive populations, recent analyses have

provided insights into the genetic make-up of found-

ing populations, and the role of genetic variation in

invasion success. We now outline three key questions

that can be addressed with this data: (1) what is

the role of genetic diversity in invasion success

(i.e. successful establishment and spread of an IAS),

(2) does admixture during multiple introductions

increase invasion success, and (3) does invasion lead

to non-neutral evolution and novel adaptation?

The role of genetic diversity in invasion success

Genetic variability determines a population’s capac-
ity to adapt to new or changing environmental

conditions (Fisher 1930; Sakai et al. 2001), and
should therefore play an important role in determin-

ing its potential to become invasive (Lee 2002; Kolbe
et al. 2004; Drake and Lodge 2006; Facon et al. 2006;
Lavergne and Molofsky 2007; Roman and Darling
2007). Populations of IAS are traditionally thought to

have reduced genetic variation relative to their source
populations, because of genetic founder effects linked
to small population size during the introduction and
establishment phases of an invasion. The low genetic
variability associated with founder effects should, in
theory, inhibit successful invasion, by limiting the
population’s ability to respond to selective pressures
(but see Goodnight 1987, 1988). Moreover, small

population size is predicted to increase the chance of
inbreeding, which can result in exposure of delete-
rious recessive mutations in homozygous individuals.
How invasive populations overcome the low vari-
ability associated with founder effects, and adapt
to their new environments, was once regarded as a
‘‘paradox of invasion biology’’ (Roman and Darling
2007; Dlugosch and Parker 2008), but thanks to the
considerable amount of molecular data that has now
been collected to address this question, the paradox
has essentially been put to rest.

Instead, data indicates that most invasions are not
characterized by significant loss in neutral genetic
diversity (see for instance Bossdorf et al. 2005), as
typically measured using nuclear microsatellites or
maternally-inherited mitochondrial DNA (mtDNA).

Comparatively high neutral genetic diversity in

invasive populations can be explained by multiple

introductions, particularly when source populations
are genetically divergent (e.g. Facon et al. 2003;
Kolbe et al. 2004; Kang et al. 2007). However
multiple introductions do not necessarily explain high
genetic diversity (and evolutionary potential) in

invasive populations (Lavergne and Molofsky 2007).
For example, Eales et al. (2010) demonstrated, in an
elegant study that illustrates the marriage between
genetics and ecology, that high genetic diversity in an
invasive population of anole lizards, Anolis cristatel-
lus (Dume´ril and Bibron) (Squamata: Iguanidae), was
a consequence of a single introduction event con-
taining several genotypes. In this case the reproduc-
tive mechanism of the study species was also deemed

important, since female anole lizards mate multiple

times, and can store sperm from several males. This
could have increased the number of genotypes above
that of the number of founding individuals if the
founding population included recently-mated females.

Studies that compare levels of genetic diversity in
multiple independent introductions in different

locations of the same species are particu-larly useful,
since these are equivalent to natural
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biological replicates (Bossdorf et al. 2005), although
note that this is tempered by difficulties of sampling

introductions that fail to become invasive. In the case
of D. virgifera, mentioned above, levels of genetic
diversity differed considerably between the five

independently introduced populations studied (Ciosi
et al. 2008). When taken together with examples of
successful invasions that are characterised by very low
genetic diversity at neutral loci, this suggests that
genetic variation is not an essential component of
invasion success (Dlugosch and Parker 2008). The
important point to make here is that there is a key
difference between genetic variability at neutral

molecular markers, which are irrelevant for selection
and adaptation, and additive genetic variation, which
is needed to respond to selection. Future studies need
to focus on quantifying additive genetic variation
(ideally in species characterised by multiple, inde-
pendent introductions) to fully address the role of
genetic diversity in invasion success.

Does admixture from multiple introductions

increase invasion success?

As discussed above, multiple introductions are a

common feature of biological invasions, but one major

question that deserves attention is the role of intraspe-
cific hybridization (i.e. ‘‘admixture’’) in invasion

success. Admixture, like interspecific hybridization,
can change the distribution of phenotypes in a popu-
lation, and admixed individuals are able to outcompete

their parental genotypes as a result of either heterosis
effects or by creating new genotypes through recom-

bination (Facon et al. 2005), or via phenotypic

plasticity (e.g. Lavergne and Molofsky 2007). Both
interspecific hybridization and intraspecific admixture

are therefore important potential stimuli of invasion
success (Lee 2002; Facon et al. 2005).

Admixture has been documented in invasive pop-
ulations that stem from multiple introductions (e.g.
Facon et al. 2005; Kolbe et al. 2008; Lavergne and
Molofsky 2007), and may be driving invasion success
in these examples. However, so far there have been
few direct tests of this hypothesis. One direct and
compre-hensive test of the effects of admixture on
invasive success was carried out in invasive

parthenogenetic thiarid snails, M. tuberculata, using a
combination of genetic analyses, laboratory

experiments and field data (Facon et al. 2005, 2008).
In the invasive range

(Martinique) five introduced asexual morphs from
Japan, Indo-Malaysia and the Philippines are found,
plus two sexual morphs produced locally through
sexual reproduction. Sexual morphs exhibit novel
combinations of traits that differ significantly from the
parents (e.g. they produce larger but fewer offspring),
suggesting non-additive interaction (heterosis)

between parental genotypes, which allowed them to
outcompete parents in natural habitats, and increase
invasiveness, strongly suggesting their novel life-
history strategies provided a strong selective

advantage (Facon et al. 2005, 2008). Combining

molecular genetic data on source populations, with
field and quantitative genetic data, provided the first
direct evidence that multiple introductions are

primarily responsible for accumulation of adaptive
potential in key ecological traits in this species (Facon
et al. 2008).

The potential for invasion success to be increased
by admixture was also recently tested in laboratory
crosses between individuals from flightless biocontrol
stocks and invasive European populations of the

harlequin ladybird, H. axyridis (Facon et al. 2010).
The authors tested the three criteria, outlined by Wolfe

et al. (2007), that must be met for admixture to play a
role in biological invasions, namely: (1) parental
populations should be genetically differentiated from
each other, (2) crosses should be possible between
individuals from different parental populations and (3)
admixed indi-viduals should differ from their parents
in life-history traits crucial to invasion success (e.g.
fecundity, dispersal ability, parasite resistance etc.).
All three criteria were met, and admixed individuals
developed more quickly and were slightly bigger than
parentals, indicating possible heterosis effects. This
could have serious negative consequences for the
native compet-itors and prey with which H. axyridis
interacts. Admixture also increased genetic variance
for survival during starvation periods, which could
boost the efficacy of selection and give admixed H.
axyridis an advantage during periods of famine.

Evaluating whether effects of heterosis persist over
several gener-ations, and whether admixture occurs in
the wild, are important avenues for future research in
this area.
Does invasion lead to non-neutral evolution
and novel adaptation?
Biological invasions happen over contemporary

time-scales, and so, they can be viewed as windows
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to observe evolution in action. Not surprisingly

therefore, there is considerable interest in using

invasions as model systems to better understand the
role of natural selection and adaptation in shaping
phenotypes (Keller and Taylor 2008). A comprehen-

sive knowledge of sources and invasion routes is
needed in this case to successfully disentangle the
effects of demographic and stochastic events from
selection. So far, although many examples of evolu-
tion during biological invasions have been described
(see Whitney and Gabler 2008 for a review), it is not
always clear whether changes in phenotypic and life-
history traits during establishment and range expan-
sion reflect adaptive evolution during the invasion
process, or neutral changes linked to genetic drift
(Keller and Taylor 2008). However, even in cases of
clear adaptation, it is not always clear whether

adaptation allowed the invasion, coincided with the
invasion, or was a consequence of the invasion (Estoup
and Guillemaud 2010). Indeed, not all invasions need
adaptation. Again, investigations using independent
introductions from separate loca-tions should be

fruitful here, and ideally they should include a subset
of populations that have been introduced but have not
become invasive (Estoup and Guillemaud 2010). If the
same phenotype occurs in independent successful
introductions, this is strong evidence that phenotypic
evolution is adaptive rather than plastic (Keller and
Taylor 2008).

Another approach that has been useful for investi-
gating adaptation during invasions is to compare

population differentiation at neutral molecular

markers and quantitative traits (FST and QST 
respectively, Keller and Taylor 2008). If adaptation
occurs in the new environment, QST is expected to be 
significantly greater than FST, in line with a response 
to selection (e.g. Lavergne and Molofsky 2007; Keller
and Taylor 2008). For example, in invasive A.

cristatellus, in Dominica, QST �  FST, and an 
altitudinal cline in scalation traits similar to those for
related endemic species convinc-ingly indicated that
trait divergence in the invasive population was due to
directional natural selection acting in just ten

generations since introduction (Eales et al. 2010). This
study demonstrates the combined power of using
molecular genetic, ecological and experimental

studies to fully explain observed pheno-types in

introduced populations (Eales et al. 2010).
On a cautionary note, recent studies (e.g. Klopf-

stein et al. 2006; Excoffier and Ray 2008) have

shown that a neutral phenomenon occurring during a

population range expansion could be interpreted as a

signature of positive selection. This phenomenon,

coined ‘‘gene surfing’’, is due to strong genetic drift

taking place in populations located on the edge of the

expansion. Low-frequency alleles can thus surf on the

wave of advance of a population range expansion,

reaching high frequencies and spreading over large

areas, leading to potentially large allele frequency

differences between the source and the edge of the

spatial expansion. This can be explored using simu-

lations, and should be taken into consideration when

investigating adaptation at range margins.

Dispersal

Dispersal is a key life-history trait of fundamental

importance to invasion success since it influences the
genetic and demographic structure of expanding

populations and their ability to adapt to new envi-
ronments. Although awareness of the crucial role that
dispersal plays in biological invasions is increasing
(Kokko and Lopez-Sepulcre 2006; Ronce 2007), so
far few studies have actually tried to measure the
dispersal ability of IAS, except in the context of
biological control (but see below and Heimpel and
Asplen 2011). This information is crucial for under-
standing and predicting spread of invasive species and
biological control agents (Heimpel and Asplen 2011),
as well as consequences of other global environmental

change (Urban et al. 2008; Niitepo˜ld et al. 2009).
Since there is a direct, causal relationship between
dispersal, gene flow and population struc-ture, detailed
analyses of genetic structure can be used to quantify
‘‘effective’’ dispersal (i.e. dispersal with breeding) in
wild populations, and this approach can be particularly
useful in species that are difficult to study using
traditional mark-release-recapture experiments.

Traditionally, methods were based on estimating the
genetic distance between populations (i.e. FST), 
however in recent years, great progress has been made

in individual-based methods to detect migrants, and in
incorporating geographically explicit information (e.g.
geographic features, habitat quality) into analyses in
order to detect barriers to dispersal (i.e. landscape
genetics, ‘‘Appendix 2’’ section). Here we identify
and discuss two main objectives that we believe are
particularly relevant: (1) studying
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dispersal patterns (i.e. mechanism, rate, dispersal

barriers) of IAS to learn more about their dispersal
ability and predict future spread, which is also highly
relevant in a biological control context (see e.g.
Heimpel and Asplen 2011), and (2) using IAS as
model organisms to increase understanding of the
fundamental processes of dispersal and colonization.

Patterns of dispersal

Our ability to predict the spread of IAS is still limited,

and in order to successfully do so, we need to
understand the mechanisms underlying range

expansion (e.g. Urban et al. 2008). The simplest

model of range expansion is a random-diffusion

process, often referred to as Fisher’s ‘‘wave of

advance’’ model, in which the range of an invading
species is predicted to increase linearly with time

(Fisher 1937; Skellam 1951). Although there are
examples where this model applies (e.g. muskrat,

Ondatra zibethicus (L.) (Rodentia: Cricetidae), in
Europe, Skellam 1951; coypu, Myocaster coypus

(Molina) (Rodentia: Myocastoridae), in the UK,

Reeves and Usher 1989), other cases demand more

complex range expansion models that include, for
example, probability of long-distance dispersal (LDD)
events (either by wind or human transport), which can
accelerate the rate of range expansion as the length of
the invasion front increases (Shigesada et al. 1995;
Ciosi et al. 2010). A combination of both short and
long distance dispersal (i.e. ‘‘stratified’’ dispersal)
may be a common feature of invasions, and has
already been described in several species of invasive
insect (e.g. firethorn leaf miner, Phyllon-orycter

leucographella (Zeller) (Lepidoptera: Grac-illariidae),
Nash et al. 1995; gypsy moth, Lymantria dispar (L.)
(Lepidoptera: Lymantriidae), Sharov and Liebhold
1998; horse chestnut leaf miner, Cameraria ohridella
(Deschka and Dimic) (Lepidoptera: Grac-illariidae),
Gilbert et al. 2004). This has important implications

for control measures, which could be improved by
preventing establishment of new focal populations or
eliminating new ones rather than focusing on

established invasion fronts (Moody and Mack 1988;
Suarez et al. 2001).

The simplest models of range expansions are based
on (1) the intrinsic growth rate and (2) a diffusion
coefficient that assumes normally-distributed dis-

persal distances (Skellam 1951; reviewed in Suarez

et al. 2001), but in reality this assumption is often
violated, and the utility of these models therefore
limited, as a proportion of the population undergo
LDD. Both rare LDD and stratified dispersal skew the
distribution of dispersal distances so that distributions
are often leptokurtic (i.e. normal with a narrow
variance) rather than normal (Ibrahim et al. 1996;
Suarez et al. 2001). LDD can increase invasion rate by
an order of magnitude (Higgins and Richardson 1999)
and even rare LDD events can result in conflicts
between theoretical predictions and empirical data
(Suarez et al. 2001).

Differentiating between different mechanisms of
dispersal, and quantifying the rate and distance of
LDD events is therefore essential for constructing
accurate predictive models (Suarez et al. 2001).

Unfortunately though, measuring LDD is not trivial
because of the scarcity and unpredictability of LDD
events (Gilbert et al. 2004) and so far few studies have
quantitatively estimated its importance. Genetic

methods offer some hope for determining dispersal
mechanism and quantifying LDD since the process of
expansion leaves unique genetic ‘‘signatures’’ in the
population (Ciosi et al. 2010). A simple pattern of
geographic ‘‘isolation-by-distance’’ (IBD), where

there is strict agreement between pairwise genetic and
geographic distances because gene-flow is pre-

dominantly via neighbouring populations, is expected
under the wave of advance model (Slatkin 1993),
whereas a weak pattern of IBD may reflect a more

complex dispersal process. More sophisticated statis-
tical frameworks are now in place to identify indi-
vidual migrants (‘‘Appendix 2’’ section). Of course,
these methods are most powerful when used in

conjunction with observational and/or historical

records. A combination of these approaches was
recently used to infer that the European outbreak of D.
virgifera expanded its range via stratified dispersal
(Ciosi et al. 2010).

The models of range expansion we have discussed
so far assume that dispersal is through homogeneous

environments or independent of the environment,

which is likely to be an oversimplification. Environ-
mental heterogeneity is expected to be an important

determinant of range expansion, with invasions accel-
erating as individuals encounter favourable condi-
tions, and decelerating as they reach less favourable
environments (Urban et al. 2008). Heterogeneous
environmental conditions can now be incorporated
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into theoretical frameworks for predicting expansion
(Hastings et al. 2005) and ecological and landscape
variables (including spatial structure and metapopula-

tion dynamics) can be explicitly linked to invasion
rates (e.g. Facon and David 2006; Urban et al. 2008).
For example, Urban et al. (2008) analysed invasion
trajectories in invasive cane toads, Bufo marinus (L.)
(Anura: Bufonidae), in Australia to determine whether
range expansion accelerated, decelerated or was

linear, and if certain environmental conditions influ-
enced population growth. Cane toad invasion dynam-

ics include both accelerating and decelerating range
expansions, and sensitivity to temperature, topogra-
phy, road networks and patch connectivity, indicating
that environmental influences are essential for accu-
rate theoretical predictions (Urban et al. 2008).

Recently, spatially explicit models, developed using
an ABC framework for investigating dynamics of
invasions, have been applied to cane toads (landscape-
ABC, Estoup et al. 2010). From these, it is evident that
there was a small initial founder population, which
was followed by a dispersal distance of 19 km genera-
tion-1 resulting in a spread of 50 km year-1.

Understanding what constitutes a barrier or corri-
dor to dispersal is critical for predicting and manag-

ing the spread of IAS. Recent developments in

landscape genetics (see ‘‘Appendix 2’’ section) offer
great promise for understanding how landscapes shape
gene-flow, and identifying barriers and corri-dors to
dispersal, but so far few studies of invasive species
have taken advantage of them. However, in one
notable exception, Zalewski et al. (2009) inves-tigated
genetic structure of invasive American mink,

Neovison vison (Schreber) (Carnivora: Mustelidae) in
Scotland, and identified genetic discontinuities con-
sistent with the Cairngorn Mountains presenting

significant barriers to dispersal. This work has

important implications for mink eradication pro-

grammes. Barriers to dispersal can also take the form
of more subtle landscape or environmental features,
such as habitat type or temperature and/or humidity

gradients. For example, in line with known ecology
and habitat preferences, water and urban areas appear
to act as substantial barriers to gene flow for frag-
mented populations of solitary bees, Colletes floralis
(Eversmann) (Hymenoptera: Colletidae), whereas

beaches, sand dunes and agricultural land facilitate
gene flow (Davis et al. 2010). In another example,

urban and rural developed land provided high

landscape resistance for amphibians (Goldberg and
Waits 2010). Information on which geo-climatic

features increase population connectivity is being used
to conserve fragmented populations, and to predict
how species will respond to climate change, but is also
useful for modelling the spread of IAS (e.g. Knowles
and Alvarado-Serrano 2010; Sork et al. 2010).

Evolution of dispersal

Dispersal is not a fixed trait. Instead, it is an excellent
example of a trait that can evolve in response to
natural selection, and this is particularly evident

during periods of range expansion (Kokko and Lopez-
Sepulcre 2006; Ronce 2007), as exemplified by the
evolution of longer legs in cane toads, B. marinus,
which has facilitated rapid dispersal at the invasion
front (Phillips et al. 2006). Strong selection is

expected to favour increased dispersal at the expan-
sion front since there are major fitness benefits to
being among the earliest colonists of a new patch
(Travis et al. 2009). This can create a positive

feedback loop that can potentially accelerate the wave
of expansion (Kokko and Lopez-Sepulcre 2006;

Excoffier and Ray 2008). Travis et al. (2009) showed
theoretically that accelerating invasion rates result
from the evolution of density-dependent dispersal,
even when costs associated with dispersal are mod-

erate. Moreover, selection pressures for high dis-
persal must be very strong in order to overcome

genetic drift and Allee effects in the small popula-
tions at the expansion front (Travis and Dytham 2002;
Excoffier and Ray 2008). Understanding the evolution
of dispersal (and density-dependent dis-persal in

particular, Travis et al. 2009) is essential for making

accurate predictions about species range expansions
(or contractions), particularly under cur-rent

anthropogenic environmental changes (Kokko and
Lopez-Sepulcre 2006). Studying dispersal evo-lution
during biological invasions is not only neces-sary for
predicting spread, but can also provide more general
insights into the ultimate and proximate causes of
dispersal.

Theoretical studies have generated clear, testable
predictions about the evolution of dispersal during
range expansions. For example, Travis and Dytham
(2002) showed that range expansion is characterized
by two distinct phases. First, populations at the

invasion front should be characterized by an excess of
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migratory individuals (relative to established popu-
lations) due to a selection advantage for founding new
populations. Second, as more populations are

established and the selective advantage to dispersal
reduced, migration costs should select for lower

dispersal (Travis and Dytham 2002). In a direct test of
these predictions, Simmons and Thomas (2004)

observed increased frequencies of dispersive, long-
winged individuals in recently colonized populations
of different species of bush cricket (Orthoptera:

Tettigoniidae), relative to established core popula-
tions. However, within ten years after colonization,
wing-morph frequencies stabilised, to resemble the
core (Simmons and Thomas 2004). Such a trade-off
between dispersal and fecundity has been investi-
gated theoretically (Burton et al. 2010) and observed
in several insect species (e.g. speckled wood butter-
flies, Pararge aegeria (L.) (Lepidoptera: Nymphali-

dae), Hughes et al. 2003; sand crickets, Gryllus firmus
(Scudder) (Orthoptera: Gryllidae), Roff and Fairbairn
2007).

An obvious consideration is that for dispersal to
evolve in response to natural selection, there must be
underlying heritable variation in dispersal ability. This
is illustrated beautifully in insects, where there is
considerable evidence for additive genetic variance
and high heritability in dispersal traits such as wing
length and morphology, initiation and duration of
flight, and production of enzymes linked to locomo-

tion (e.g. several species of bush cricket (Orthoptera:
Tettigoniidae), Simmons and Thomas 2004; sand
crickets, G. firmus, Roff and Fairbairn 2007; and large
milkweed bugs, Oncopeltus fasciatus (Dallas)

(Heteroptera: Lygaeidae), see Roff and Fairbairn 2007
for review). Investigating the genetics behind these
particular phenotypes is essential for a more

mechanistic understanding of dispersal evolution, and
for increasing the likelihood of predicting its rate
(Travis et al. 2009). Studies of the Glanville fritillary,
Melitaea cinxia (L.) (Lepidoptera: Nymphalidae),

have been particularly enlightening in this regard.
Butterflies from newly formed populations in the
Åland archipelago have higher flight ability (accom-

panied by higher metabolic rate, Haag et al. 2005) and
fecundity than those in established patches (Hanski et
al. 2002). Moreover, dispersal ability is highly

heritable (Saastamoinen and Hanski 2008) and

associated with allelic variation at a single gene for
phosphoglucose isomerase (PGI), a temperature-

sensitive, glycolytic enzyme (Haag et al. 2005;

Niitepo˜ld et al. 2009). Individuals heterozygous at
Pgi move longer distances at lower temperatures than
homozygous individuals (Niitepo˜ld et al. 2009).

Although several studies have focused on PGI at the
functional level (e.g. Watt et al. 2003; Wheat et al.
2006), to our knowledge this locus has not yet been
investigated in the context of dispersal ability other
than for M. cinxia. Although dispersal is without doubt
a complex trait, under control of many genes, inves-
tigating whether allelic variation at Pgi, and selection
acting on this locus, generally underlies enhanced
dispersal ability during invasions, will be a

worthwhile starting point.

Community interactions

Understanding the interactions between invasive alien
species and other species within an invaded range is
challenging but essential, particularly for quantifying
effects on communities (Roy et al. 2009; Hesketh et
al. 2010), and developing practical approaches to the
management of IAS. Much of the current knowledge
on community interactions stems from conventional
laboratory and field studies, but there is a need to
integrate theory with a multidis-ciplinary empirical

approach. Species identification by molecular gut-
content analyses is currently labour intensive, but is
revealing unique insights into predator–prey

relationships in the context of biolog-ical invasions
(see Aebi et al. 2011). Recent devel-opments in
second and next generation sequencing offer

considerable potential for investigating both predator–
prey and host-parasite interactions, without prior

development of species-specific markers (see

‘‘Appendix 3’’ section). This data can then be input
into ecological networks, which represent the biotic
interactions in an ecosystem, with species (nodes)
connected by pairwise interactions (links), such as the
quantitative food web illustrated in Fig. 2. Charac-
terizing the structure of ecological networks is

essential in the context of invasion biology to evaluate
the impact of IAS on their prey, and to determine

whether the invasive species themselves are

parasitized or predated on. By quantifying the

interactions within entire communities, it is possible to
describe network structure and complexity as well as
measure the responses of ecological systems to
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environmental change. Recent advances in network
ecology have been used to assess the impacts of (1)
biological control on the wider insect community

(Henneman and Memmott 2001), (2) habitat modifi-

cation on host-parasite interactions and ecosystem
services (Tylianakis et al. 2007), and (3) alien plants
on plant-pollinator networks (Lopezaraiza-Mikel et al.
2007).

Below, we discuss how an approach based on
molecular genetic data and ecological modelling could
be used to investigate predator–prey and host-parasite
interactions. It is important to note though that these
two interactions could be investigated simultaneously.

A combined molecular-ecological network approach
would be particularly illuminating in the case of
invasive generalist predators such as H. axyridis (see
Aebi et al. 2011), which predate not only on aphids
and other herbivorous pests, but also on beneficial
insects within the same guild (i.e. a community of
species that share the same host or prey). Laboratory
experiments indicate that intraguild predation (IGP)
by H. axyridis could be devastating to native

coccinellids and other beneficial insects (e.g. Ware et
al. 2008; Ware and Majerus 2008). Molecular gut-
content analyses of H. axyridis have confirmed IGP in
open field plots and in the wild (Chaco´n et al. 2008;
Aebi et al. 2011), however whether IGP happens at an
appreciable frequency in the wild is still subject to
debate. Moreover, assessing rates of parasitism on H.
axyridis (and other invasive insects) by native

hymenopteran parasitoids as a natural form of pest
control can be laborious using traditional laboratory
rearing methods, and is

potentially biased (Henneman and Memmott 2001).
Molecular genetic approaches (‘‘Appendix 3’’ sec-
tion) can overcome this problem and have the

potential to provide rapid, highly-resolved data on
predator–prey (e.g. gut-content analysis) and host-
parasitoid interactions (e.g. host screening). They also
have the advantage of being able to distinguish
between morphologically indistinguishable species.
However it should be noted that a molecular approach,
when used alone, also has its drawbacks. For example,

it may be difficult to detect encapsu-lated/

undeveloped parasitoids, which are quite easy to
detect with dissection, due to DNA degradation

(Hoogendoorn and Heimpel 2002). The most power-
ful approach is therefore to couple molecular meth-

ods with conventional experimental and field survey
methods, which together can assist in deciphering the
dynamic relationships between species within eco-
logical networks. From these networks it is then
possible to assess the impacts of invasive insect
infiltration on entire communities as well as explor-
ing differences in network structure across the species
range.

Predator–prey interactions

A number of studies have assessed the addition of
alien species into a community using food web

analysis (Henneman and Memmott 2001; Memmott

and Waser 2002; Sheppard et al. 2004, and see
Fig. 2). For example, Sheppard et al. (2004) exam-

ined the interactions between alien predators, intro-
duced to Hawaii to control pest insects, and endemic

Fig. 2 Hypothetical

quantitative food web

showing the interactions

between plants, herbivores

and their predators/

parasitoids. Each bar

represents a species and bar

width represents the

species’ abundance among

all individuals sampled.

The area of the triangles

connecting trophic levels

represents the relative

number of higher-trophic-

level species attacking the

lower-level species
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invertebrates (mainly Lepidoptera) within pristine

upland habitats. Approximately 11% of the predators
within the food web were alien to Hawaii (Sheppard et
al. 2004). The findings of Henneman and Memmott

(2001) were dramatic: 83% of Lepidoptera parasit-
oids, in a native forest on Kauai Island, were alien
species introduced as biological control agents, and a
further 14% were accidentally introduced adventive
wasps (only 3% of the parasitoids were native). With

the exception of these case studies, using networks to
assess the impacts of invasive insect infiltration on
communities is yet to be widely applied, partly due to
problems of identifying cryptic interactions in the
field. This could be overcome by employing molec-

ular techniques more widely in network analyses, and
recent advances in molecular gut-contents analysis
have allowed unique insights (King et al. 2008).

A combined molecular-network approach could be
particularly valuable for generating food webs to
investigate the complex concept of invasional melt-

down. Invasional meltdown describes the process by
which an alien species facilitates invasion by another
alien species by increasing the likelihood of its

survival and/or the magnitude of its impact

(Simberloff and Von Holle 1999). So, essentially,
invasional meltdown is used to describe synergistic
interactions among invasive alien species, which lead
to accelerated and devastating impacts on native
ecosystems. Invasional meltdown is a contentious
theory (Simberloff 2006). It is a concept that is
difficult to explore because, although many studies
have examined individuals of one species providing a
benefit to the establishment and spread of another,
there is a scarcity of information on population
impacts. The introduction of the yellow crazy ant,
Anoplolepis gracilipes (Smith) (Hymenoptera: Form-

icidae), on Christmas Island and its interactions with
native and alien scale insects (Hemiptera: Coccoidea)
is considered to have led to major disruption of the
community structure (O’Dowd et al. 2003). The

complex set of interactions leading to invasional
meltdown on Christmas Island requires understand-
ing of the intricacies of the yellow crazy ant food web.
The devastating alteration of the Christmas Island
ecosystem is thought to be the only convincing
example of invasional meltdown in action, however,
more subtle effects through the infiltration of alien
species into communities are widely reported.

Interestingly, it has recently been hypothesized

that extensive invasional meltdown is occurring in
North America involving eleven Eurasian IAS,

including H. axyridis, with the presence of invasive
soybean aphids, Aphis glycines (Matsumara) (Hemip-

tera: Aphididae) increasing regional abundances of
other IAS (Heimpel et al. 2010). Exploration of this
system with a molecular-network approach would be
a particularly exciting avenue for further research.

Host-parasite interactions

Molecular genetic techniques are particularly useful
for examining host-parasite interactions within a

community context. Molecular markers can be used to
identify species of parasite when morphological

characters are limited, when there are problems

identifying juvenile stages of the life cycle, or when
the parasite is either cryptic or covert (Bonsall et al.
2005). By using current methods, which focus on
species or genus-specific primers and target a partic-
ular species, it is likely that we are underestimating

parasite diversity (Hesketh et al. 2010). It has been
estimated that more than 1600 parasitic fungi attack
beetles (Coleoptera), but studies generally focus on a
few genera (Riddick et al. 2009). 454 sequencing or
similar ‘‘metagenomics’’ approaches (‘‘Appendix 3’’
section) offer powerful opportunities to detect and
quantify all parasites present in a host community.

This approach was recently used to identify Israeli
acute paralysis virus as a potential agent of colony
collapse disorder in honeybees, Apis mellifera (L.)
(Hymenoptera: Apidae) (Cox-Foster et al. 2007), and
to characterise microbes associated with the primary

pest of bees, the ectoparasitic mite Varroa destructor
(Anderson and Trueman) (Mesostigmata: Varroidae)
(Cornman et al. 2010). In principle, the same approach
could be used to characterize the community of
parasitic organisms living within or on an IAS, and
therefore to test the prediction of the enemy release
hypothesis (Roy et al. 2011b) that there should be
lower infection levels in alien populations compared

to native populations of the same host species.
Enemy release is considered to be one of the

mechanisms by which invasive alien species gain
advantage in the invaded range. However, it is also
probable that an alien species is host to pathogens
that have not been experienced by species occupying
the invaded range. ‘‘Pathogen spillover’’ refers to the
transmission of disease from alien to native hosts
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when a parasite hitchhikes with the invading species.
So far, pathogen spillover has been given little

consideration in the context of biological invasions,
and studies have focused on disease outbreaks in wild
populations, as a consequence of spread from infected
domestic animals (e.g. pathogen spillover has been
implicated in the decline of wild fish populations,
Morton et al. 2004; and in pathogen transmission from
commercial to wild bumble-bees, Bombus terrestris
(L.) (Hymenoptera: Apidae), Colla et al. 2006).

Investigation of pathogen spillover during invasions is
warranted since this key process could exacerbate the
effects of invasive alien species within a community,

perhaps even contributing to invasional meltdown

(Prenter et al. 2004; Colla et al. 2006). Such studies
would benefit from the inclusion of molecular

techniques, which provide the potential to rapidly
screen invasive alien species for pathogens and to
model the risk posed to native species.

Investigating the transmission dynamics of para-
sites using molecular methods is of vital importance

for identifying potential biological control agents and
for understanding the role of parasites in invasions.
Parasites that are strictly vertically transmitted (i.e.
from mother to offspring) are well suited as biolog-
ical control agents, since there is low risk of host-
switching to non-target species. Maternally-inherited

endosymbiont bacteria, such as Wolbachia (Rickett-
siales), are very common in insects (Hilgenboecker et
al. 2008) and impose a range of consequences on their
hosts’ reproduction, including cytoplasmic

incompatibility (CI), male-killing, and induced

parthenogenesis (reviewed in Werren et al. 2008).
Endosymbionts can also negatively influence other
aspects of their host’s biology, including life-span
(McMeniman et al. 2009) and dispersal (Goodacre et
al. 2009). CI-induction should facilitate Wolbachia

invasion into wild host populations and may be a
viable strategy to reduce pest populations (Zabalou et
al. 2004) and pathogen transmission (McMeniman et
al. 2009). For example, CI-Wolbachia has been

proposed as a control agent against medfly, Ceratitis
capitata (Wiedemann) (Diptera: Tephritidae), (Zaba-
lou et al. 2004), which is a major agricultural pest. In
addition, life-shortening CI-Wolbachia was

successfully introduced into Aedes aegypti (L.)

(Diptera: Culicidae), the mosquito vector of dengue
virus, and was maternally transmitted at high fre-
quency (McMeniman et al. 2009). This offers hope

for reducing the impact of dengue fever, which has
grown dramatically in recent decades (World Health
Organisation). However, it is important to bear in
mind that by increasing the proportion of females, and
in some cases conferring substantial indirect fitness
benefits to their female hosts (e.g. female neonate
coccinellid larvae gain an indirect fitness benefit by
consuming undeveloped eggs of their brothers, Hurst
and Majerus 1993) these reproductive manipulators

might actually facilitate host invasion (Hatcher et al.
1999; Galbreath et al. 2004). For example it was
recently demonstrated, by an elegant series of

experiments, that increased fitness and female-biased

sex ratio linked to Rickettsia spp. nr belli likely
facilitated invasion of the notorious sweet potato
whitefly, Bemisia tabaci (Gennadius) (Hemp-itera:

Aleyrodidae), in the USA (Himler et al. 2011). In
addition, there is mounting evidence of extensive
horizontal transmission of endosymbionts between
different host species (reviewed in Werren et al.
2008). Investigations of parasite transmission dynam-

ics are therefore essential in the context of biological
invasions, and caution is needed before recommend-

ing reproductive parasites in biological control.
Finally, much can be learned about host-parasite

interactions by comparing genetic structure in the
interacting species. Host-parasite complexes can shed
light on the interaction between gene-flow and the
ability of natural selection to promote local adapta-
tion (Criscione et al. 2005). It is also possible that the
genetic structure of the parasite, or even just its
distribution, could be used to help identify geograph-
ical origin of the host (Aebi and Zindel 2010). This
approach might be particularly useful when there is
low genetic structure of the host in its native range
(and therefore reduced power to identify source

populations). Again, for such an approach to be
successful, parasite transmission must be strictly

vertical.

Conclusions and perspectives

If EB Ford was alive to publish a new edition of

‘‘Ecological Genetics’’, biological invasions would

surely constitute a significant component of his book.

Studying ecological genetics of invasions is already

allowing insights into the fundamental processes

described in this review. We highlight two particular
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areas of importance for future study. First, there is
currently considerable focus in the ecological genetics
community on studying adaptation in wild populations
(see Stapley et al. 2010 for a recent review), and
invasions are excellent model systems for understand-
ing the role of natural selection in shaping phenotypes.
Although technical challenges are still associated with
next generation sequencing, rapid progress is being
made. In particular, the RAD-tag method (Baird et al.
2008) allows an unprecedented number of genetic
markers to be characterised and typed, offering a
powerful means to identify loci contributing to adap-
tation during invasions (see Hohenlohe et al. 2010 for
a recent application and Stapley et al. 2010 for a
review). Second, the combination of molecular

genetic techniques, particularly Roche/454-

pyrosequencing or similar (‘‘Appendix 3’’ section),
and ecological network modelling offer great potential
for quantifying predator–prey and host-parasite

interactions between species in a community (Hesketh
et al. 2010). This approach has particularly important

implications for biological control—for example

identifying previously uncharacterised natural

enemies that could be potential biocontrol agents—
and ultimately for addressing two of the most

fundamental questions in invasion biology: (1) what is
the impact of biological invasions on native, recipient
species? and (2) does release from natural enemies

increase invasion suc-cess? With the increasing

potential to address these and other fundamental

questions, the field of ecological genetics of invasive
alien species has an exciting future ahead of it.
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Appendix 1: Introduction to molecular genetic

methods for inferring source populations

and invasion routes

Two types of method have been used to make

inferences concerning source populations and inva-

sion routes: direct methods based on current and

historical observations of IAS and indirect methods

based on patterns in molecular data.

Direct methods are based on records of the

presence and absence of invasive taxa. Routine

controls carried out in airports and harbours by

quarantine services and monitoring by environmental

or agricultural agencies are particularly informative

in this respect (Work et al. 2005). However, it is
rarely possible to infer the routes of invasion with a
high degree of precision by these direct methods.

Indeed, given the low rates of establishment and
expansion recorded for introduced individuals

(Williamson 2006), there is no guarantee that the
individuals intercepted would have spearheaded a
successful invasion.

Indirect methods are based on the genetic patterns
observed within and between populations at molecu-

lar markers. Traditional statistical treatments include
the construction of trees from matrices of genetic
distances between populations (e.g. Lozier et al. 2009;
Thibault et al. 2009), parsimony networks (e.g. Voisin
et al. 2005; Hoos et al. 2010) and the calculations of
assignment likelihood (e.g. Genton et al. 2005; Ciosi
et al. 2008). More recently, a number of studies have
used clustering methods like those implemented in
STRUCTURE (Pritchard et al. 2000). If the invasive
population clusters clearly with one of the potential
source populations, this is considered to provide fairly
conclusive information about the origin of the inva-
sive population (e.g. Marrs et al. 2008; Rollins et al.
2009). A shared ancestry of the individuals of

invading populations with various populations from
the native area is sometimes interpreted as evidence
for an admixture origin of the invasive population
considered, although it may also reflect the presence
of unsampled sources, drift, or insufficient numbers of
markers (Darling et al. 2008; Rosenthal et al. 2008). It
is worth stressing that, although the abovementioned

indirect methods have proved useful in many cases,
they are all subject to two major limitations: (1) they
poorly take into account the stochasticity of the
demographic and genetic history considered and (2)
they do not allow probabilistic estimations of com-

peting introduction scenarios (e.g. Knowles and

Maddison 2002).
Recently, a new indirect method called approxi-

mate Bayesian computation (ABC, Beaumont et al.
2002, implemented in DIYABC, Cornuet et al. 2008)
has been proposed and used to draw inferences from
molecular and historical data, about the complex

evolutionary scenarios typically encountered in the
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introduction histories of IAS (Fig. 1). General statis-
tical features of ABC have been reviewed in two
recent papers (Bertorelle et al. 2010; Csillery et al.
2010) and some practical aspects that are important

when using this method to make inferences about
invasion routes can be found in Estoup and Guille-
maud (2010). Briefly, ABC is a model-based Bayes-
ian approach in which the posterior probabilities of
different models and/or the posterior distributions of
the demographic parameters under a given model are
determined by measuring the similarity between the
observed data set (i.e. the target) and a large number

of simulated data sets. ABC has four main advantages
over the more traditional indirect methods described
above: (1) it uses all the data simultaneously in
inference, (2) it can be used to estimate probabilities,
with confidence intervals for each of the scenarios
compared (e.g. Cornuet et al. 2008, Fig. 1), (3) it
allows the evaluation of the power of a given analysis
on the basis of controlled simulated datasets (Cornuet
et al. 2008; Guillemaud et al. 2010), and (4) it avoids
the introduction of misleading biases, such as those
due to unsampled populations (Guillemaud et al.
2010) or genetic admixture between multiple sources
(Lombaert et al. 2010). ABC thus constitutes a real
advance for inferring source populations and invasion
routes.

Appendix 2: Introduction to molecular genetic

methods for investigating dispersal

The rapidly developing field of landscape genetics
aims to understand how population genetic processes
are affected by spatial and temporal environmental

heterogeneity, by integrating population genetics with
landscape ecology and spatial statistics. Land-scape
genetics approaches enable two major insights into
dispersal: first, individuals with multilocus genotypes
that are representative of a population other than the
one they were sampled in can be identified. This is a
powerful way of identifying immigrants and therefore
quantifying dispersal (e.g. Guillot et al. 2005a, b).
Second, the pattern of spatial genetic structuring can
be tested for correlations with landscape or

environmental features, allowing iden-tification of
genetic continuity (or connectivity) between patches,
or discontinuities resulting from

barriers to dispersal (see e.g. Balkenhol et al. 2009;
Guillot et al. 2009; Storfer et al. 2010, for recent
reviews).

Under a landscape genetics approach, the individ-
ual is the unit of study, and their exact geographic
location must be recorded. Populations do not have to
be identified a priori. Bayesian statistics are used to
assign individuals to populations according to their
multilocus genotypes, using software that employ

clustering algorithms based on pre-defined population
genetic models (e.g. STRUCTURE, Pritchard et al.
2000, see also ‘‘Appendix 1’’ section). In recent years,
new technologies have greatly assisted marker

development, vastly increasing the amount of data that
can be collected, and decreasing the computation time

required for data analysis. For example, new statistical
approaches such as Discriminant Analysis of Principal
Components (DAPC, Jombart et al. 2010), offer great
potential for assigning individuals into clusters with
minimal computing time when datasets are large, and
when there is low population structure.

Isolation by distance tests (e.g. Mantel test) have
long been used to identify correlations between

genetic distance and environmental variables, but new
statistical approaches are also being developed to
model the relationship between genetic structuring
and the environment, which allow inferences on the
microevolutionary processes generating spatial

genetic structure (see e.g. Guillot et al. 2009).

Geographical information systems-based landscape
analysis overlays landscape variables onto population
genetic data to visualise patterns of genetic structur-
ing (for example using ArcGIS or PATHMATRIX,

Ray 2005), allowing environmental parameters likely
to influence dispersal in heterogenous environments to
be investigated. The spatial domain occupied by
inferred clusters can be examined to identify dis-
persal barriers, using programmes such as GENE-
LAND (Guillot et al. 2005b), and genetic diversity can
be simulated, accounting for environmental and

spatial heterogeneity, using software such as SPLAT-
CHE (Currat et al. 2004). This latter approach has
been modified to reconstruct invasion scenarios,

investigating parameters such as dispersal distance
and speed (Estoup et al. 2010). These types of
simulations show how demographic processes inter-
act with landscape features to determine spatial

genetic structure (Epperson et al. 2010) and to
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investigate how dispersal is affected not only by
obvious geographical features (e.g. mountain ranges),
but also by more subtle habitat characteristics

(e.g. Davis et al. 2010). They therefore offer great
potential for understanding dispersal ability, and

ultimately, generating information that can be used
to predict the spread of IAS.

Appendix 3: Introduction to molecular genetic

methods for investigating community interactions

So far, molecular studies that have attempted to
investigate the strength and structure of predator–prey
and parasite-host interactions, within a commu-nity

context, have primarily used standard PCR (e.g.

Symondson 2002; Harper et al. 2005; Sheppard and
Harwood 2005). The advantage of such markers is to
be able to qualitatively evaluate specific interactions
between a predator and its prey or a parasitoid and its
host. On the other hand, developing species–specific
molecular probes can be long and costly (see Aebi et
al. 2011), and the development of species-specific
markers to describe whole community’s food web
structure is impractical. Advances in second and next
generation sequencing offer great promise as they do
not rely on design of species-specific primers, are
extremely sensitive, and could be used to create
quantitative interaction networks. For example,

Roche/454 massively parallel pyrosequencing offers
considerable scope for investigating community

interactions. By generating tags from 16S or 18S
rDNA, data is generated for almost every organism in
a sample to reveal previously uncharacterised aspects
of the biological diversity (e.g. Dethlefsen et al. 2008).
Datasets can then be compared to see how they differ
in terms of composition. A particular advantage to this
method is that many individual samples can be tagged,
pooled, and sequenced in parallel (e.g. Meyer et al.
2008), and several popu-lations can be investigated
simultaneously (by ‘‘gask-etting’’, i.e. splitting a 454
picotiter plate into several sections). This technique
has already proven success-ful in assessing biological
diversity in the ocean (e.g. Sogin et al. 2006; Huber et
al. 2007), soil (e.g. Leininger et al. 2006), and in the
human body (e.g. Dethlefsen et al. 2008). Of

particular relevance, a metagenomic survey of 454
sequence data from 16S and 18S rDNA in honeybee,
A. mellifera hives

uncovered presence of bacteria, fungi, parasites,

metazoa, and viruses and found strong correlation
between a particular virus and colony collapse

disorder (Cox-Foster et al. 2007). A major challenge is
to block amplification of the host DNA, but this can be
achieved with the use of ‘‘blocking

primers’’ (Vestheim and Jarman 2008).

Another challenge with this type of analysis is
dealing with the volume of data generated. However,
since metagenomics is an established method, several
bioinformatics pipeline options already exist. For
example, MG-RAST is a fully-automated service for
annotating metagenome samples including phyloge-
netic classification (Meyer et al. 2008). MEGAN

(http://ab.inf.uni-tuebingen.de/software/megan/

welcome.html) and CARMA (http://www.cebitec.uni-
bielefeld.de/brf/carma/carma.html) are also specific for
metagenomics analysis to analyse large data sets and
group opera-tional taxonomic units (OTUs).

Homology detection can be performed by comparing

16S and 18S sequen-ces to reference databases such as
SILVA (http://www. arb-silva.de/) using (for

example) BLAT (BLAST-like alignment tool, Kent
2002) and OTUs defined based on multiple sequence
alignment (Dethlefsen et al. 2008).
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