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Abstract
Background Bacterivores, mostly represented by pro-
tists and nematodes, are a key component of soil biodi-
versity involved in soil fertility and plant productivity. In
the current context of global change and soil biodiver-
sity erosion, it becomes urgent to suitably recognize and
quantify their ecological importance in ecosystem
functioning.
Scope Usingmeta-analysis tools, we aimed at providing
a quantitative synthesis of the ecological importance of
soil bacterivores on ecosystem functions. We also
intended to produce an overview of the ecological fac-
tors that are expected to drive the magnitude of
bacterivore effects on ecosystem functions.
Conclusions Bacterivores in soil contributed signifi-
cantly to numerous key ecosystem functions. We

propose a new theoretical framework based on ecolog-
ical stoichiometry stressing the role of C:N:P ratios in
soil, microbial and plant biomass as important parame-
ters driving bacterivore-effects on soil N and P avail-
ability for plants, immobilization of N and P in the
bacterial biomass, and plant responses in nutrition and
growth.
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Introduction

Soils are some of the most biologically diverse environ-
ments, encompassing about 25 % of global biodiversity
in terms of species (Coleman and Wall 2015; Decaëns
2010). One gram of soil can host 6000 different bacterial
genomes, several meters of fungal hyphae and a wide
range of protists, nematodes, enchytraeids or mites
(Jones et al. 2009; Lavelle and Spain 2001; Wall et al.
2010). Through their activities, soil organisms ensure
key soil functions (Barrios 2007; Brussaard et al. 2007;
Wagg et al. 2014) and contribute to many ecosystem
services (de Vries et al. 2013; Kibblewhite et al. 2008).

Unfortunately, soils are also among the most threat-
ened environments in terms of biodiversity loss
(Kibblewhite 2012). Many threats (soil erosion, land
use change, overexploitation, pollution, biological inva-
sion, etc.) have been identified as directly disturbing soil
organism abundance, distribution and activity (Bossio
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et al. 2005; Dupouey et al. 2002; Foley et al. 2005;
Gardi et al. 2013; Pimentel 2006; Schlaghamersky
et al. 2014). A thorough understanding of the many
roles of soil biodiversity is required in order to predict
how these threats could damage ecosystem services
accomplished by soil organisms.

A key component of soil biodiversity involved in soil
fertility and plant productivity are bacterivores (Bardgett
et al. 1999; Bonkowski 2004; Bonkowski et al. 2009;
Brussaard 1997). These bacterivores are mostly repre-
sented by protists and nematodes (Rønn et al. 2012).
Bacterivorous soil protists are generally unicellular het-
erotrophic eukaryotes, that were traditionally grouped
into ciliates, flagellates, naked amoebae and testate
amoebae (Darbyshire 1994). However, recent molecular
studies reveal an enormous taxonomic diversity in soils
(Geisen et al. 2014; Geisen et al. 2015), and only the
ciliated protists are monophyletic, while flagellated, and
naked, and testate amoeboid morphotypes repeatedly
originated during protist evolution (Adl et al. 2005;
Adl et al. 2012).

Despite their small size (average size 2–50 μm),
protists can largely contribute to total soil faunal bio-
mass (Bonkowski 2004). Nematodes are small multicel-
lular eukaryotes (0.03-1 mm size range) and form a
highly diverse monophyletic group including about
one million species (Lambshead 1993), making this
phylum one of the most diverse animal taxa on Earth
(Lambshead et al. 2004). Both bacterial-feeding protists
and nematodes are widely distributed in terrestrial eco-
systems and successful colonizers of different soil
niches (Cowling 1994; Geisen et al. 2014). It has been
estimated than tens of millions of protists and hundreds
of thousands of nematode individuals co-exist in only
one forest square meter (Cowling 1994; Foissner 1999;
Yeates 2007; Yeates 2003). Still, they remain poorly
studied in comparison to other soil taxa (Coleman and
Wall 2015; Couteaux and Darbyshire 1998). Only a
fraction of protist and nematode species have been
described yet, and their biology and ecology remain
poorly known (Brussaard et al. 2007). It thus becomes
urgent to suitably recognize the species and to quantify
their ecological importance for the functioning of
ecosystems.

Here, as a complement to detailed reviews published
in the past (Bonkowski 2004; Bonkowski and Clarholm
2012; Bonkowski et al. 2009; Chen et al. 2007), we
aimed at providing a quantitative synthesis of the eco-
logical importance of bacterivores in soil on ecosystem

functions using meta-analysis tools. We intended to
produce an overview of the ecological factors that are
expected to drive the magnitude of their effects on
ecosystem functions. Lastly, we propose a new theoret-
ical framework based on ecological stoichiometry
stressing the role of C:N:P ratios in soil, microbial and
plant biomass as important parameters driving
bacterivore-effects on soil N and P availability for
plants, immobilization of N and P in the bacterial bio-
mass, and plant responses in nutrition and growth.

Meta-analysis - data sources, extraction and analysis

We investigated the literature published in peer-
reviewed journals before December 2014 through com-
puter searches in Google Scholar and ISI Web of
Knowledge with no restriction on the year of publica-
tion. We used the following key-words (alone or in
combination): soil, biodiversity, bacteria, bacterivore,
bacterial-feeders/grazers, protozoa, protists, nematodes,
predators, mycorrhiza, earthworms, nodules, nutrient,
nitrogen, phosphorus, microbial loop. We also searched
studies in the reference lists of relevant articles and
reviews. We selected studies that (i) tested the effects
of bacterivores (protists or nematodes) on ecosystem
functions by successfully manipulating soil bacterivores
under controlled experimental conditions, (ii) measured
at least one function of interest, and (iii) reported means
of treatment and control. In other words, we selected
studies that carefully manipulated soil bacterivores to
detect causal relationships between these organisms and
ecosystem functions.We thus excluded field studies that
monitored soil bacterivore population changes after per-
turbation or during seasonal cycles, and estimated the
role of bacterivores using correlative analyses. These
studies could not be included for calculating an effect
size. For the same reasons, we also excluded studies that
eliminated soil bacterivores by adding biocides in the
soil, freezing or sieving the soil without measuring the
success of the elimination, studies comparing low ver-
sus high soil bacterivore densities without significant
difference and modelling studies.

We analyzed the effects of bacterivores on 18 micro-
bial and plant functions: soil microbial biomass (mea-
sured by fumigation or substrate-induced respiration),
soil bacterial number (measured by plate counting), soil
microbial basal respiration, microbial metabolic quo-
tient (microbial respiration divided by microbial
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biomass carbon), soil phosphatase activity, soil net N
mineralization, soil net P mineralization, plant growth
(shoot and root biomass, shoot:root ratio) and plant
nutrition (total N and P amounts expressed in mg-N or
mg-P plant−1 and concentrations in shoot and root
expressed in mg-N or mg-P g−1). For each study, we
recorded the mean values of these functions in presence/
absence of bacterivores as well as experimental infor-
mation (soil parameters, species, protocols, etc.). These
data were extracted directly from tables, the text or
figures using PlotDigitizer 2.6.4 software.

For each observation, we calculated the individual
effect size (ESi) from the natural log of the response
ratio using Eq. 1 (Hedges et al. 1999).

ESi ¼ Ln Ti=Cið Þ; ð1Þ

where BT^ was the treatment mean (presence of
bacterivores) and BC^ the control mean (absence of
bacterivores) for the observation i.

This metric reflects a relative change in a function
due to the presence of bacterivores. Positive and nega-
tive ESi indicated respectively a positive and a negative
effect of bacterivores on the function of interest.We then
calculated the mean effect size (ESm) using the Eq. 2 and
estimated the 95 % confidence interval around the ESm
using bootstrapping (999 iterations).

ESm ¼ Σ ESið Þ=n; ð2Þ

with Bn^ the total number of observations
ESm was considered significant (P<0.05) if its 95 %

confidence intervals did not overlap with zero. For a
more intuitive understanding of the effects of
bacterivores on functions, we also calculated the per-
centage of change from control (%CC) from the ESm.
We also tested the effect of the medium used by the
experimenters in their studies. To do so, we split the
database into 4 groups according to the medium: Bagar^
(or agarose), Bhumus^, Bsand^ (mixed with organic
matter or with nutrient solution) and Bsoil^ (alone or
amended with sand, organic matter and/or nutrient so-
lution). We then calculated ESm for each group and
tested for significance among groups using the
Kruskal-Wallis test at the P<0.05 level.

We also determined whether the presence of mycor-
rhizal fungi altered bacterivore-effects on plant nutrition
and growth. We collected data from studies comparing
the effects of bacterivores in the rhizosphere of plants
infected or not by mycorrhizal fungi (7 studies, 14

observations). We did not include studies where the
control (non mycorrhizal plant) was lacking. For each
observation, we calculated the ESi for mycorrhizal and
non-mycorrhizal plants and we tested for significant
difference in ESm using the Kruskal-Wallis test at the
P<0.05 level.

Linear meta-regressions were performed to test the
relationships between the bacterivore-induced effect
size on total N (or P) amount in shoot (or root) (re-
sponses variables) and the bacterivore-induced effect
sizes on shoot (or root) N (or P) concentration and shoot
(root) biomass (explanatory variables). 95 % confidence
intervals were calculated for each regression. The nor-
mal distribution of residuals was tested using Shapiro
test. Finally, we searched for publication bias using
funnel plots. We tested the significance (P-value<
0.05) of regression between the bacterivore-induced
ES versus the inverse sample size of the study for each
function (Peters et al. 2006). A significant regression
indicated that the funnel plot was asymmetric, corre-
sponding to possible publication bias, which was the
case only for respiration (P-value: 0.02). We also tested
the relationships between experiment duration, which
ranged from 3 to 561 days, and ESm values using
regression. Except for the concentration of N in roots,
we did not find any effect of experiment duration on
ESm.

Quantitative synthesis of soil bacterial-bacterivore
literature

We collected 41 experimental studies published since
1977 investigating the effects of soil bacterivores on
ecosystem functions (Appendix). Among them, 38 and
17 studies investigated effects of bacterivores on N and
P concentrations (either in soil or plant tissues), corre-
sponding to ~93 and ~41 % of reported studies, respec-
tively (Fig. 1). Around 66 % of experimental studies co-
inoculated bacteria and bacterivores in the rhizosphere
of plants, using either herbaceous (73 %) or woody
(27 %) species. According to our literature survey, in a
period of 37 years, only 1.1 papers per year on average
focused on the ecological functions accomplished by
these organisms (without taking into account reviews
and books).

This apparent lack of interest in soil bacterivores can
be explained by the difficulties involved in observing,
characterizing (extraction, enumeration and description)
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and manipulating these small-sized organisms in com-
parison to larger soil fauna (e.g. arthropods or earth-
worms) (Cowling 1994; Ekelund and Rønn 1994;
Griffiths and Ritz 1988). This is particularly true for
protists because the majority of taxa cannot be extracted
from soils, and our taxonomic knowledge is mostly
restricted to few cultivable species (Ekelund and Rønn
1994; Foissner 1999). Furthermore, this practical diffi-
culty is enhanced by the heterogeneous and opaque
nature of soils at the micro-spatial scale in contrast to
aquatic environments. Soil protozoology and nematolo-
gy thus require specific taxonomic skills and time-
consuming microscopy in addition to expensive equip-
ment (high-quality light-, or electron-microscopy).
These methodological drawbacks together with the dif-
ficulties working under strictly sterile conditions have
certainly constituted the main obstacles in the establish-
ment of soil micro-food web experiments.

We also noted that contrasting experimental proto-
cols have been used in these studies. Experimenters
used various types of medium (agar, sand, humus or
soil) or experimental devices (Petri dishes, glass tubes,
rhizoboxes or pots) for the growth of organisms
(Table 1). The amount and composition of organic
amendments and nutrient solutions were also highly
different among studies as well as the choice of model
species and the duration of the experiment (from 2 to
561 days). This high diversity in protocols made the
identification of factors that are likely to drive
bacterivore-effects more difficult. On the other hand, it

also allowed us to estimate an overall bacterivore-effect
representative of a wide range of environmental
conditions.

Bacterivore-effects on the soil microbial community
and nutrient availability

Microbial biomass

The presence of bacterivores usually induced a reduc-
tion in soil microbial biomass or bacterial abundance
(Anderson et al. 1978; Coleman et al. 1977; Darbyshire
et al. 1994; Elliott et al. 1979; Zwart and Darbyshire
1992). However, a number of studies showed that the
presence of bacterivores could lead to higher bacterial
abundance (and biomass) due to a strong reduction of
senescent cells (Elliott et al. 1980; Ingham et al. 1985;
Sundin et al. 1990). The global effect of grazing on the
soil microbial biomass and bacterial abundance estimat-
ed by the meta-analysis was −16 and −17 % of control,
respectively (Fig. 2).

The effect of bacterivores on bacterial abundance has
been shown to vary according to bacterivore species
(Ingham et al. 1985; Postma-Blaauw et al. 2005), soil
texture (Elliott et al. 1980), incubation time (Elliott et al.
1980), supply and availability of labile carbon
(Anderson et al. 1978; Elliott et al. 1980) or nitrogen
(Baath et al. 1981) and identity of bacterial taxa
(Glücksman et al. 2010; Griffiths et al. 1999; Rønn

Criteria

Number of studies

0 5 10 15 20 25 30 35 40 45

Total

Nitrogen

Phosphorus

Protists

Nematodes

Protists + Nematodes

Rhizospheric soil

Annual plant

Woody plant

Mycorrhizal fungi

Fig. 1 Number of studies
included in the meta-analysis
(total and per criteria)
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et al. 2002; Xiao et al. 2010), showing that differences in
bacterivore-effects are multifactorial. Certainly the long
co-evolution between bacteria and protists has a major
influence on the evolution of prey-capture mechanisms
(Parry 2004) and bacterial defense strategies (Jousset
2011; Matz and Kjelleberg 2005).

Microbial composition

The whole composition of the soil microbial community
drastically changed in the presence of protists
(Bonkowski et al. 2011; Ekelund et al. 2009; Griffiths
et al. 1999; Koller et al. 2013c; Rønn et al. 2002;
Rosenberg et al. 2009) and bacterial-feeding nematodes
(Blanc et al. 2006; Djigal et al. 2010; Djigal et al. 2004;
Postma-Blaauw et al. 2005). Most published studies have
a coarse taxonomic resolution limiting our ability to

assess accurately grazing effects on microbial composi-
tion. Usually, the presence of bacterivores changed the
relative abundance of dominant bacterial populations
(Djigal et al. 2004), often increasing the proportions of
bacteria that are grazing-protected, either by physical
means, such as gram-positive bacteria (Griffiths et al.
1999; Rønn et al. 2002; Weekers et al. 1993) and those
that make filaments such as actinomycetes (Rosenberg
et al. 2009), or by chemical means (Jousset et al. 2009;
Jousset et al. 2010; Jousset et al. 2008; Mazzola et al.
2009). The ability of bacterivores to alter the composition
of the microbial biomass can feed back on microbial
function, such as nitrification (Djigal et al. 2010; Jousset
et al. 2006) or phosphatase activity (Djigal et al. 2004;
Gould et al. 1979). For instance, using aDGGE technique
based on PCR amplification of the amoA gene, Xiao et al.
(2010) found a significant shift in the community

Table 1 Effects of bacterivores on plant root parameters (% of control)

References Years Plant species Bacterivores Modalities within studies Root architecture (min–max)a

Length
(m)

SRL
(m g−1)

Area
(m2)

Tips
(number)

Jentschke et al. 1995 Picea abies Protist − Lactarius rufus 135–180 38–70 130–220

+ Lactarius rufus 22–45 2–36 30–45

Bonkowski et al. 2001 Picea abies Protist − Paxillus involutus 62 56 50

+ Paxillus involutus 32 −32 32

Bonkowski & Brandt 2002 Lepidium sativum Protist Main roots 15

Lateral roots 421 286b

Kreuzer et al. 2006 Oryza sativa Protist Total roots 17 −37b

Root diameter >4 mm −43 −56b

Root diameter <4 mm 195 1140b

Herdler et al. 2008 Oryza sativa Protist − Glomus intraradices −27
+ Glomus intraradices −15

Krome et al. 2009 Lepidum sativum Protist Agar medium 100

Soil medium 28–62 88–91

Irshad et al. 2011 Pinus pinaster Nematode – −18 3

Cheng et al. 2011 Oryza sativa Nematode Day 14 14–22 26–43

Day 20 2–15 −3–12
Irshad et al. 2012 Pinus pinaster Nematode − Hebeloma cylindrosporum 37–41 20–35 31–46

+ Hebeloma cylindrosporum 20–32 16–20 18–36

Koller et al. 2013b Plantago lanceolata Protist 31

Ranoarisoa et al. 2015 Pinus pinaster Nematode − Hebeloma cylindrosporum 7–32 9–22 1–15

+ Hebeloma cylindrosporum 6–31 2–23 4–23

Mean 56 16 16 96

a Specific root length (SRL)
bNumber of tips estimated from number of roots
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composition of ammonia-oxidizing bacteria (AOB) from
Nitrosospira sp. to Nitrosomonas sp. in presence of
bacterivorous nematodes.

Selective grazing of cells has been proposed as the
main mechanism causing a shift in microbial composition
in the presence of protists (Bonkowski et al. 2009).
Bacteria evolved different means to become grazing-resis-
tant, which can be grouped in physical protections such as
bacterial shape and size (Bjornlund et al. 2012), cell wall
resistance, and the ability of cells to form micro-colonies,
filaments or biofilms (Bonkowski et al. 2009; Jousset
2011); and chemical protections, such as the production
of pigments (Weekers et al. 1993) or of specific toxins
(Jousset et al. 2006; Jousset et al. 2009; Mazzola et al.
2009). In particular, the latter have been identified as main
drivers of changes in bacterial community composition,
since bacterivores have been shown to consume preferen-
tially the competitors of the grazing-resistant taxa (Jousset
et al. 2008). Protists have different sensitivities towards
secondary metabolites produced by bacteria (Jousset et al.
2006). For instance, Jousset et al. (2006) found that the
growth of Vahlkampfia sp. (amoeba), Neobodo designis

(flagellate) and Colpoda steinii (Ciliate) on Pseudomonas
fluorescens CHA0 and different exoproduct-deficient mu-
tants was not similar among protists. The differences in
growth rates of bacterivorous protist (Ekelund 1996;
Weekers et al. 1993) and nematode populations
(Anderson and Coleman 1981; Blanc et al. 2006;
Venette and Ferris 1998) according to bacterial species
suggest also that the digestibility and nutritional values of
preys constitute an important trait involved in bacteria-
bacterivore interactions (Pussard et al. 1994).

On the other hand, bacterivores have developed dif-
ferent forms of feeding (direct interception, grasping,
filter-, diffusion- or raptorial feeding); this appears as an
important trait involved in selective grazing aptitude
(Parry 2004; Rønn et al. 2012; Weisse 2002). While
ciliates move out of toxic biofilms, amoebae graze di-
rectly within biofilms and grasping and raptorial feeders
rather rely on bacteria they can dislocate from biofilm
surfaces, while diffusion and filter feeders rely on the
free-swimming bacteria (Rønn et al. 2012). In addition,
certain bacterivore nematode taxa evolved a grinder in
the terminal bulb which serves for crushing trapped

Nmin

Mmic
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Phosphatase
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ESm

(meaneffectsize ± 95% CI) 

-16

(220)

(71)

(142)

(71)
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+29

+7
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+22
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Shoot

Root
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Root (mg)
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Shoot (%)

Root (%)

Shoot (mg)
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Root (%)
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(93)

(51)
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Fig. 2 Mean effect sizes (ESm) of
bacterivores on ecosystem
functions. White and black circles
indicate significant (different
from zero) and non-significant
ESm, respectively. Horizontal bars
correspond to 95 % confidence
intervals. Bold numbers above
circles specify the ESm expressed
as % of control (%CC). Italic
numbers between brackets
specify the total number of
observations for each function.
Mmic : microbial biomass; Bnum :
bacterial number; Qmic : microbial
metabolic quotient; Nmin : net N
mineralization; Pmin : net P
mineralization; S:R : shoot:root
ratio
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bacteria (Fürst von Lieven 2003), thus providing a
physical means to consume bacteria with thick cell walls
that are largely undigestible for other bacterivores, like
gram-positive bacteria.

Because bacterial-feeding nematodes can ingest
around 20 cells at each suction (Ferris et al. 1997), it
appears unlikely that they actively select for specific
prey taxa as protists do. Jousset et al. (2009), using
mixed populations of mildly toxic wild-type and non-
toxic gacS-deficient mutants of Pseudomonas
fluorescens CHA0 in batch and rhizosphere systems,
showed that the diet composition of the nematode
Caenorhabditis elegans did not vary with changes in
the frequency of the two bacterial strains, confirming its
lack of selective ability compared to Acanthamoeba
castellanii that clearly preferred the non-toxic bacterial
mutants. Accordingly, bacterial-feeding nematodes are
more likely to alter bacterial community composition
through passive mechanisms. The high variations in the
head shape of Cephalobidae species recorded by De Ley
(1992) supports this hypothesis. He investigated in de-
tail how the shape of the labial probolae and the devel-
opment of cephalic probolae at the nematode head allow
passive food specialization, thereby optimizing niche
partitioning among co-occurring bacterivore nematode
species. According to the shape of their probolae, nem-
atodes species may thus change the size of different
bacterial populations, and may alter biological interac-
tions among bacteria, leading to bacterial community
composition shifts. Lastly, bacterivorous nematodes
have been suggested to modify the amount and compo-
sition of rhizodeposits, especially carbohydrates which
increased 2.6 times in presence of nematodes, and to
increase the allocation of net carbon production in
rhizodeposition (Sundin et al. 1990). This can in turn
feed back on the composition of the bacterial commu-
nity (Benizri et al. 2002; Puglisi et al. 2013).

Microbial activity and nutrient availability

The presence of bacterivores generally enhances the
overall microbial activity and turnover (Alphei et al.
1996; Coleman et al. 1978; Djigal et al. 2004;
Kuikman et al. 1990). The meta-analysis revealed that
the presence of bacterivores significantly increased soil
microbial basal respiration and microbial turnover, mea-
sured as microbial metabolic quotient (respired-carbon
relative to microbial biomass carbon) by +29 and 35 %
of control, respectively (Fig. 2). It is thus possible that

the microbial carbon-use efficiency decreases in pres-
ence of bacterivores (Manzoni et al. 2012; Sinsabaugh
et al. 2013). The main mechanisms are that (i)
bacterivores can ingest senescent bacteria and contribute
to maintain younger bacteria cells with higher metabolic
activity (see discussion in Bonkowski (2004)) and (ii)
they release undigested food particles, labile carbon and
nutrients making the medium more favorable for bacte-
rial re-growth (Griffiths 1994; Pussard et al. 1994).

The effects of bacterivores onmicrobial communities
have strong consequences for soil nutrient availability
(Clarholm 1985a; Koller et al. 2013b; Kuikman and Van
Veen 1989; Xiao et al. 2010). We found that the pres-
ence of bacterivores almost doubled soil N (Nmin) min-
eralization (×1.8 in absence of plants) (Fig. 2). Two
main pathways of bacterivore-effects on soil nutrient
availability do exist simultaneously: excretion of nutri-
ents (direct way) according to the consumer-driven nu-
trient recycling theory (Elser and Urabe 1999) and stim-
ulation of the microbial activity and turnover as quoted
earlier (indirect way).

Using stable isotopes, Crotty et al. (2013) found that
soil protists only have a production efficiency of 37 %.
Ferris et al. (1997) found higher production efficiencies
(ranging from 58 % to 86 %) for eight bacterivore nem-
atodes species. Because bacterivores have to maintain
stoichiometric homeostasis relative to their food, and
loose carbon due to respiration, a great part of the
ingested N will be ultimately released by bacterivores
(Anderson et al. 1983; Darbyshire et al. 1994; Ferris
et al. 1997; Ferris et al. 1998). Borkott (1989) foundmass
C:N ratios of 3.5:1, 4.7:1 and 5.6:1 for Naegleria gruberi
(amoeba), Colpoda steinii (ciliate) and Rhabditis sp.
(bacterivore nematode), respectively. Using recent values
of global soil microbial stoichiometry (mass C:N ratios
ranging from 5.5:1 to 7.4:1) (Cleveland and Liptzin 2007;
Xu et al. 2013) and production efficiencies from Crotty
et al. (2013) and Ferris et al. (1997), we calculated, using
the same procedure as Griffiths (1994) and Ferris et al.
(1997), that theoretical ranges of N excretion would be
23–32 %, 43–49 % and 9–20 % of assimilated-N for
amoebae, ciliates and nematodes, respectively. The C:N
ratios of both bacteria and bacterivores will thus directly
influence the amount of assimilated-N excreted by the
bacterivores (Elser and Urabe 1999).

Furthermore, the presence of bacterivores will increase
microbial respiration and turnover (Coleman et al. 1978;
Levrat et al. 1992), leading to lower microbial C:N ratio.
In addition, the C:N ratio of bacteria determines the
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respiration rates in presence of bacterivores, with C-
losses increasing at decreasing C:N ratios (De Telegdy‐
Kovats 1932) leading to higher N release by bacterivores
at narrow C:N ratios of the prey. However, the soil
microbial biomass C:N:P has been shown to be relatively
stable compared to its resource (Cleveland and Liptzin
2007; Xu et al. 2013); and microbes keep strict homeo-
stasis in respect to nutrient availability in soils (Griffiths
et al. 2012). To maintain their stoichiometry, microbes
can regulate their nitrogen-use efficiencies by releasing
elements in excess depending on their carbon-use effi-
ciency (Mooshammer et al. 2014a). The excess N may
then become available for roots in presence of
bacterivores (Kuzyakov and Xu 2013).

However, small changes in microbial biomass stoichi-
ometry can occur after shifts in the microbial community
structure (Fanin et al. 2013) and over-saturation of mi-
croorganisms with P has been observed in soils with high
P levels (Griffiths et al. 2012). Fast-growing bacteria
(copiotrophs) have been suggested to exhibit lower bio-
mass C:N:P ratios (higher nutrient requirements) than
slow-growing ones (oligotrophs) (Elser et al. 2003;
Hodge et al. 2000). In line of the growth rate hypothesis
(Elser et al. 2003), N:P ratios in organism decrease with
increasing growth rates due to elevated demands for P for
the synthesis of P-rich ribosomes. Therefore, shifts in the
dominance of fast- or slow-growing bacteria induced in
presence of bacterivores can transfer to shifts in microbial
biomass stoichiometry, with important consequences on
the content of N and P available for plant growth. It is
important to note that the strict homeostatic behavior of
the microbial biomass C:P ratio has been observed with
the concentration of available P in soil rather than with
total soil P (Griffiths et al. 2012). The experimenter’s
ability to quantify, using different chemical extractors,
the size of C, N and P pools available for bacteria is thus
crucial for the evaluation of soil bacterial biomass stoi-
chiometric behavior.

Ferris et al. (1998) calculated that bacterial-feeding
nematodes excreted NH4-N with rates ranging between
0.0012 and 0.0058 μg-N ind.−1 day−1 according to
species, but in addition, considerable amounts of organ-
ic N can be released by nematodes (Anderson et al.
1983). Wright (1975) found that that 3–14 %, 15–
34 % and 35–45 % of the total N (mean 13.7 μmoles
N g−1 nematode fresh wt h−1) liberated in Ringer solu-
tion by the nematode Panagrelus redivivus were com-
posed of urea, amino acids and proteins, respectively,
while ammonium contributed 23-35 % of total N-

release. Large releases of organic N (in total and in
proportion of total N) by nematodes may occur when
nematodes exhibit high nitrogen-use efficiency in order
to balance their stoichiometry to bacterial biomass
C:N:P ratios, explaining why Anderson et al. (1983)
observed declines in excretion of organic N with de-
creasing resource availability (i.e. when nematode pop-
ulations became older). Knowing that dissolved organic
N (especially low molecular weight N compounds) can
be re-used by soil bacteria or taken up by plants (Gallet-
Budynek et al. 2009; Nasholm et al. 2009; Neff et al.
2003), bacterivore-effects on soil N availability likely
have been under-estimated because experimenters gen-
erally focused only on NH4.

Interestingly, we found a great variability in ESi for
Nmin as shown by the 95 % confidence interval. In
parallel, we found that when the substrate used in ex-
periments was soil, the ESm was very high in compari-
son to humus, while in sand it exhibited intermediate
values (Fig. 3a). Humus had the highest mass C:N ratios
(mean ~39:1) while soils had the lowest ones (mean
~15:1) and sand exhibited intermediate values (mean
~20:1). We therefore suggest that bacterial growth in
substrates with high C:N ratios (humus), and in absence
of living roots, will be mostly limited by N, leading to
rapid immobilization of N released by bacterivores. In
contrast, in substrate with low C:N ratios (soil), bacterial
growth will be limited by C and bacterial N immobili-
zation should decrease (Ferris et al. 1998).

We also found that protists exhibited significant
higher effects than nematodes on Nmin but the highest
values were found when both bacterivore groups were
present in the microcosms (Fig. 4a). Accordingly, the
choice in bacterivore species appears as an important
experimental parameter explaining the magnitude of
bacterivore-effects on Nmin. The broad classification of
bacterivores is by far not accurate enough to predict how
bacterivores impact soil N cycling. For instance, Ferris
et al. (1998) found high variation of different nematodes
species to net N mineralization. Predicting bacterivore-
effects on nutrient availability therefore remains diffi-
cult, especially when a mixture of bacterivore species is
used.

Applying the same stoichiometric reasoning as for N
(Borkott 1989; Cleveland and Liptzin 2007; Crotty et al.
2013; Ferris et al. 1997; Xu et al. 2013), theoretical
ranges of excess-P excretion would be 27–48 %, 73–
81 % and 66–76 % of assimilated-P for amoebae, cili-
ates and nematodes, respectively. These estimates are
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higher than for N (except for nematodes) while, in the
meta-analysis, we found lower bacterivore-effects on P
mineralization (Pmin) (22 % of control) in comparison to
N (Fig. 2).

The theoretical liberations of N and P by bacterivores
did not take into account biotic (microbial immobiliza-
tion, microbial carbon-use efficiency, resource stoichi-
ometry, etc.) and abiotic processes (adsorption of P,
leaching of N, etc.) occurring after nutrient excretion
by bacterivores, thus differentiating gross from net ef-
fects of bacterivores on nutrient availability. In humus
(where the C:P ratio is high), the bacterivore-effect on
Pmin was negative, while in soil (where the C:P ratio is
low) we found a positive effect of bacterivores on Pmin

(Fig. 3b). Hence, in a high C:P ratio environment,
bacterial growth may be mostly limited by P and rapid

immobilization of excreted P from bacterivores may
have occurred. However, in contrast to N, P is poorly
mobile in the soil solution and can be rapidly adsorbed
by soil colloids (Hinsinger et al. 2011), reinforcing rapid
immobilization of P in the microbial biomass and ham-
pering the overall positive net effect of bacterivores on
Pmin.

Bacterivore-effects on plant performance

Plant growth and root architecture

Positive effect of bacterivores on plant growth have
been observed for both herbaceous (Alphei et al. 1996;
Djigal et al. 2004; Krome et al. 2009a) and woody
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(Bonkowski et al. 2001b; Irshad et al. 2011; Jentschke
et al. 1995) plant species (Table 1). Our meta-analysis
revealed a significant effect of bacterivores on shoot (+
27 % of control) and root biomass (+21 % of control)
without affecting the shoot:root ratio (Fig. 2).
Interestingly, the 95 % confidence interval did not ex-
hibit huge variation though many ecological factors
have been suggested in the literature to affect
bacterivore-effects on plant growth. Both, protists and
nematodes induced root growth of similar magnitude,
but when both were present, their effects were signifi-
cantly larger (Fig. 4c). We did not find such an additive
effect for shoot biomass (Fig. 4b; P-value=0.109).

Besides biomass, the presence of protists in the rhi-
zosphere of plants has been shown to alter profoundly
root architecture by promoting lateral root production
(Jentschke et al. 1995; Kreuzer et al. 2006) (Table 1).
Based on 11 studies, we found that bacterivores in-
creased the number of root tips by 96 % of control.
However, this positive effect was greatly variable
among studies (Table 1). Shifts in root architecture were
also observed for bacterial-feeding nematodes but to a
lesser extent than for protists (Cheng et al. 2011; Irshad
et al. 2012; Irshad et al. 2011). For instance, while
protists increased the number of root tips on average
by a factor of 2.5, nematodes only increased the number
of tips by a factor of 1.2 (Table 1). The presence of
mycorrhizal fungi usually reduced the bacterivore effect
on root length, specific root length, root area and num-
ber of root tips.

Plant nutrition

We found substantial bacterivore-effects on the total
amount of N in shoots and roots, i.e. +5 and +28 %
of control (Fig. 2). Although the increase of plant N
concentration in shoots by bacterivores was large (+
25 % of control) it was highly variable and not
different from 0 (non-significant effect on this vari-
able). By conducting linear meta-regressions, we
found that ~34 % (P<0.001) and ~65 % (P<0.001)
of the total variance of ESm on total N amount in
shoot (response variable) was explained by
bacterivore-effect on shoot biomass and shoot N con-
centration (explanatory variables), respectively, with-
out significant interaction between the two explanato-
ry variables (Fig. 5a). These results imply that in
some experimental conditions, bacterivores enhanced
the total shoot N amount by increasing the shoot N

concentration while in others, bacterivores increased
the shoot N amount by increasing shoot biomass,
explaining why we found high variance in ESm for
shoot N concentration. Exceptions are the studies by
Kuikman et al. (1991) and Alphei et al. (1996) where
increased plant biomass production in presence of
protists or nematodes was neither paralleled by an
increased total uptake of plant N, nor by increased
concentrations of N.

Interestingly, we found higher shoot N concentra-
tions in experiments with bacterial-feeding nematodes
than with protists (Fig. 4c). These results suggested
that the increase in total shoot N amount was mostly
caused by higher N concentrations in plant tissue
when nematodes were inoculated. Together with the
lower effects of nematodes on root architecture, the
data suggest different mechanisms of plant responses
to bacterivore nematodes or protists, and might ex-
plain why the combined effects of both bacterivore
groups were generally larger than the effects of either
group alone.

In respect to P, we found that bacterivores increased
the total amount of P in shoots and roots by 38 and 55%
of control, respectively (Fig. 2). The data suggest dif-
ferences in the internal plant cycling of newly-acquired
N and P: the bacterivore-induced gain of N in plant
tissues was mostly allocated to shoots (probably for
the maintenance of high carbon fixation rates via pho-
tosynthesis) while the gain of P was more allocated to
roots. Krome et al. (2009a) and Koller et al. (2013c)
showed that the effects of protozoa on plant perfor-
mance were more related to enhanced plant carbon
fixation rather than nitrogen uptake. Compared to N,
the effects of bacterivores on shoot P concentration (+
30 % of control) were less variable and different from 0,
suggesting that surplus P made available by bacterivores
was commonly concentrated in plant tissues. Although
the presence of bacterivores led to an important increase
in root P concentration (+23 % of control), this effect
was highly variable. The meta-regression showed that
~16 % (P<0.001) and ~75 % (P<0.001) of the total
variance of ESm on total P amount in roots (response
variable) was explained by bacterivore-effects on root
biomass and root P concentration (explanatory vari-
ables), respectively without significant interaction be-
tween these two explanatory variables (Fig. 5b). Some
experimental conditions, which remain to be known,
may thus favor bacterivore-effects on nutrient concen-
tration in plant tissues (without affecting plant biomass)
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and others may promote bacterivore-effects on plant
biomass (and increase total N and P amount in plants).

Plant reproduction & defense

It is not surprising that positive effects of bacterivores
on nutrient uptake and biomass of plants will lead to
increased plant reproduction. For instance, the pres-
ence of protozoa increased the number of ears (+
60 %), seeds (24 %) and the individual seed weight
(+32 %) of barley plants, and the crop was even more
tolerant to aphid herbivores (Bonkowski et al. 2001a).
More recently, Krome et al. (2009a) showed that
A. castellanii enhanced the seed production of
Arabidopsis thaliana (Brassicaceae) more than 3-
and 7-fold compared to treatments with bacteria and
sterile grown plants, respectively. Unfortunately, only
these two papers investigated bacterivores effects on
plant reproduction.

Relationships between bacterivores
and root-infecting symbionts

Bacterivores & mycorrhizal fungi

The effects of bacterivores on plant functions have been
mostly investigated in the rhizosphere of non-
mycorrhizal plants (84 % of reported studies) (Fig. 1).
This is a severe shortcoming as more than 80 % of
herbaceous and woody plants are infected by soil fungi,
mostly forming arbuscular mycorrhizal (Smith and
Read 2008) and ectomycorrhizal symbioses
(Marmeisse et al. 2004).

The formation of mycorrhizal roots is considered as
the most widespread response of plants to low soil
nutrient availability (Plassard et al. 2011). By
prospecting a large volume of soil away from plant
roots, and by releasing carboxylates (Finlay 2008) and
enzymes (Courty et al. 2006; Louche et al. 2010), my-
corrhizal fungi have been often shown to significantly
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enhance plant N and P acquisition (Plassard and Dell
2010; Tibbett and Sanders 2002; Wallenda and Read
1999).

The presence of mycorrhizal fungi can alter the pos-
itive effects of bacterivores on plant performance
through two main pathways. First, the growth of bacte-
ria and bacterivores clearly depends on plant carbon
allocation to roots. It has been estimated that ca. 7-
30 % of net carbon fixation will be directly allocated
to the root-infecting fungal symbionts by the host plant
(Jones et al. 2009; Leake et al. 2004). It is likely that the
amount of carbon released by root exudation will de-
crease in the presence of a mycorrhizal partner (Meier
et al. 2013; Olsson et al. 1996) with indirect detrimental
effects on bacterivore populations. Secondly, mycorrhi-
zal fungi are known to profoundly change root biomass
and architecture (Brown et al. 2013). Usually, the pres-
ence of the mycorrhizal symbiont reduced the stimulat-
ing effect of bacterivores on lateral root production
(Table 1). Bacterivore effects on plant nutrition through
more complex root architecture can thus be altered by
mycorrhizal fungi.

However, this a priori hypothesis could not be con-
firmed by the meta-analysis. We did not find any nega-
tive effect of mycorrhizal fungi on bacterivore effects on
N and P concentrations or total amount in plant tissues.
In contrast, the ESm of bacterivores on shoot and root
biomass were significantly reduced when the plants
were in association with mycorrhizal fungi (Fig. 6).
This negative effect of mycorrhizal fungi on ESm was
very low for shoot biomass (−5 %) but substantial for
root biomass (−104 %), showing that even when my-
corrhizal fungi reduced the positive effect of

bacterivores on root growth, the positive effects of
bacterivores on plant nutrition were still maintained.
The few existing studies support this hypothesis for both
plants infected by arbuscular (Koller et al. 2013b; Koller
et al. 2013c) and ectomycorrhizal fungi (Bonkowski
et al. 2001b; Irshad et al. 2012). These results also
support the hypothesis formulated by Bonkowski et al.
(2001b) assuming that the mycorrhizal and the bacteria-
bacterivore mutualisms complement each other and
plant resources are allocated to optimize simultaneous
exploitation of both mutualistic relationships. Because
studies are lacking, it was not possible to distinguish the
effect of each mycorrhizal fungi type (arbuscular-, or
ecto- mycorrhiza) on bacterivore-effect sizes. Knowing
that both fungal symbionts are phylogenetically and
physiologically distinct, this constitutes a serious short-
coming. More studies are required, especially those
focusing on different types of mycorrhizal fungi in
interaction with bacterivores.

It is well known that the ability of plants to take up
organic N as source of N is greater in presence of
mycorrhizal fungi (Cappellazzo et al. 2008; Nasholm
et al. 2009; Neff et al. 2003; Plassard et al. 2000;
Wallenda and Read 1999). Because significant amounts
of dissolved organic N (amino acids) are released by
bacterial-feeding nematodes (Anderson et al. 1983;
Sundin et al. 1990; Wright 1975), we expect that the
presence of mycorrhizal fungi will favor the acquisition
of some organic N- (and maybe P-) forms released by
bacterivores, before nutrients can be re-used by rhizo-
sphere bacteria according to their biomass C:N:P ratios.
We did not find experimental study testing this hypoth-
esis, but we believe that this organic N circuit should not
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be overlooked, and may constitute an important mech-
anism by which bacterivores improve mycorrhizal plant
N nutrition.

Bacterivores & N2-fixing plants

Because N usually limits plant productivity, biological
N fixation is one of the most important functions of
terrestrial ecosystems. Yet, little attention has been given
to the potential role of bacterivores on symbiotic N
fixation and legume growth (Appendix). Ramirez and
Alexander (1980) showed that protists decreased the
abundance of root-nodule bacteria in the rhizosphere
of Phaseolus vulgaris. Lennox and Alexander (1981)
found higher numbers of root nodules and growth of
P. vulgaris when they used a biocide to suppress pro-
tists, but we can not judge the side-effects of the biocide,
since no protist-specific biocides exist. More recently,
Horiuchi et al. (2005) showed that the legumeMedicago
truncatula, by producing volatile dimethylsulfide,
attracted bacterivorous nematodes (Caenorhabditis
elegans) which significantly increased the transfer of
Sinorhizobium meliloti to the roots, and subsequently,
the initiation of the N-fixing symbiosis in legumes. Soil
bacterivores, especially nematodes, can thus act as vec-
tors of rhizosphere bacteria and increasing root coloni-
zation by rhizobia. Also, high symbiotic N fixation
efficiency usually requires high levels of available P
because high rates of energy transfer take place in the
symbiotic nodule (Drevon and Hartwig 1997; Vitousek
et al. 2002). The meta-analysis showed that bacterial
bacterivores increased soil P availability on average by
22 % of control. We can hypothesize that protists and
nematodes, by increasing soil P availability and subse-
quent plant P acquisition, might promote higher N fix-
ation efficiency once the nodules are formed. The N:P
ratio of nodules would then be an important proxy to
predict how bacterivores in the vicinity of nodules may
affect plant N uptake.

A ‘stoichiometric’ perspective
on bacteria-bacterivore-plant interactions

Stoichiometric controls on bacterivore-effects on soil
nutrient availability

Comparing the data of bacterivore effects on N- and P-
availability points to an important role of stoichiometry

if we want to predict how bacterivores impact ecosys-
tem functions.

(1) Bacterivores have to maintain stoichiometric ho-
meostasis, but especially protists have been shown to
exhibit low production efficiency (Crotty et al. 2013).
Accordingly bacterivores release a great part of ingested
N and P in mineral form (Elser and Urabe 1999). The
amounts of N- and P-release are expected to vary ac-
cording to bacteria and bacterivores C:N:P ratios. For
example, Cole et al. (1978) showed that amoebae were
highly efficient at recycling microbially immobilized P
to soil in comparison to bacterivorous nematodes.

(2) Bacterivores often increase microbial turnover.
Microbes are homeostatic in terms of their biomass
C:N:P at the community scale (Cleveland and Liptzin
2007) and can regulate their nutrient-use efficiency by
releasing elements in excess depending on their carbon-
use efficiency (Mooshammer et al. 2014a) leading to a
strict homeostasis with the available N- and P-levels in
soil (Griffiths et al. 2012).

(3) Bacterivores can alter the soil microbial commu-
nity structure. According to the growth rate hypothesis
(Elser et al. 2003), C:N:P ratios in organism vary with
growth rates. Therefore, small changes in microbial
stoichiometry can occur after shifts in the microbial
community structure (Fanin et al. 2013) caused by
bacterivores.

(4) Soils with high C:N or C:P ratios may be nutrient
deficient for bacterial growth, favoring rapid immobili-
zation of newly-mineralized N or P from bacterivores
(Ferris et al. 1998). Soils with lowC:N or C:P ratiosmay
induce energetic starvation for bacterial growth, reduc-
ing bacterial N and P immobilization. The net effects of
bacterivores on soil N and P mineralization therefore
depend on energy available in terms of labile plant C,
either provided by plant roots, or derived during initial
phases of litter decomposition (Bonkowski and
Clarholm 2012).

Stoichiometric controls on bacterivore-effects on plant
nutrition and growth

Clarholm (1985b) and Bonkowski (2004) proposed the-
oretical frameworks describing how bacterivores impact
plant functions. The ‘soil microbial loop’ hypothesis
(Clarholm 1985a) described nutritional mechanisms,
quoted earlier, by which bacterivores may increase plant
nutrition and growth. Because bacterivores can enhance
root growth without increasing plant nutrient
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concentrations (Alphei et al. 1996; Jentschke et al. 1995;
Kuikman et al. 1991), Bonkowski (2004) proposed a
‘hormonal’ hypothesis based on non-nutritional mecha-
nisms where protists increase lateral root branching by
altering microbe-root communication, with strong con-
sequences on plant internal auxin metabolism (Krome
et al. 2009b). Both nutritional and non-nutritional mech-
anisms will occur concurrently in the rhizosphere of
plants and are not exclusive of each other. However, it
is unlikely that they contribute to the same magnitude to
bacterivore-effects under different experimental condi-
tions. For instance, we showed that the increase in total
N amount in shoots induced by bacterivores was either
explained by higher shoot N concentration or higher
shoot biomass. We found similar partitioning in explan-
atory variables for bacterivore-effects on total P amount
in roots. We believe that ecological stoichiometry can
help to understand these patterns.

Ecological stoichiometry describes the importance of
the relative proportions between elements for the growth
of organisms (Elser et al. 2000; Gusewell 2004; Sardans
et al. 2012; Zechmeister-Boltenstern et al. 2015). Plant
C:nutrient ratios are assumed to decrease with increas-
ing plant relative growth rate (Ågren 2004; Elser et al.
2000). This was conceptually presented by Ågren
(2008) as a linear relationship between these two plant
traits (Fig. 7a). From this graph, we defined the Bcritical
ratio^ (Rcri) which designates the C:nutrient ratio above
which plant growth is null (nutrient limitation).

For a certain plant species, the major cause of
natural high C:nutrient ratios in plant tissues is
assumed to be nutrient availability in soil (Ågren
2008). Nutritional mechanisms by bacterivore ac-
tivity rely on a relatively high release of nutrients
from consumed microbial biomass. Such condi-
tions are experimentally met when detritus of nar-
row C:nutrient ratio is added to soil, supporting
high levels of microbial growth and a subsequent
substantial release of nutrients by bacterivores
(Bonkowski et al. 2000). When the readily avail-
able organic C from the amendments is depleted,
microbial biomass turnover will release nutrients
for plant uptake, and nutrient release will be fur-
ther enhanced in presence of bacterivores.

Under more natural soil conditions the nutritional
mechanisms should prevail when nutrients are poorly

available for plants, i.e. when competition for N and P
between microbes and plants is strong. For example,
Koller et al. (2013a) added litter of high C:N ratio (i.e.
low quality, LQ) or low C:N ratio (high quality, HQ) to
soil inoculated with bacteria or with bacteria and the
amoeba A. castellanii, and planted with Plantago
lanceolata. By 13C-labeling of the plants, they showed
that plants in presence of high C:N ratio substrates
allocated 12 % more recently fixed photosynthates to
roots in presence of protists compared to controls.
Subsequently, 13CO2 respiration losses from the soil
more than doubled, because the excess release of root
C could not be fixed in microbial biomass due to nutri-
ent deficiency. Here the presence of bacterivores caused
a 17 % decrease in plant C:N ratio which was likely due
to two parallel processes, an increased nitrogen uptake
and an excess energy expenditure towards rhizosphere
C-allocation.

The non-nutritional mechanisms suggest that
bacterivores stimulate higher root production and
relatively more C-fixation before or without an
increase in plant nutrient concentration. The forma-
tion of lateral roots and the resulting root branching
requires substantial plant investment of photosyn-
thates and nutrients: N for proteins, P for ribosomes
and energy synthesis. Manipulating nutrient
availability to plants through the addition of HQ
litter to soil, Koller et al. (2013a) found a substan-
tially higher increase of root biomass (x1.8) (and
increased root surface area) compared to shoot bio-
mass (x1.3) in treatments with bacterivores com-
pared to control. In contrast to the LQ treatment,
the plant C:N ratio increased by 14 %, i.e. plant
biomass increased while the nutrient concentration
decreased. This relatively wider plant C:N ratio
might have been a result of a more efficient pho-
tosynthesis. At the same time, due to greater nutri-
ent availability in low C:N substrates, microbial
biomass in the plant rhizosphere incorporated sub-
stantially more 13C from recent photosynthates.
This may be observed when nutrients are highly
available for plants, i.e. when competition for N
and P between microbes and plants is low.

The relative dominance of nutritional and non-
nutritional mechanisms induced by presence of
bacterivores can be plotted along a soil C:N and C:P
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co-gradient likely to drive (i) plant-microbe competition
towards N and P and (ii) plant stoichiometry status at the
beginning or during co-inoculation experiments
(Fig. 7b). The term dominance refers to the relative
importance of mechanisms to initiate and drive
bacterivore-effects on plants. Total soil carbon and nu-
trient concentrations are poor predictors for energy and
nutrient availability to bacteria (e.g. carbon compounds
can be either easily or hardly decomposable). In this
model, we thus reasoned on C, N and P pools potentially
available for bacteria.

We distinguished four contrasting cases. In case
1, plants exhibit C:N and C:P ratios above their
respective critical ratios, and are strongly limited
by N and P (the relative growth rate is therefore
null). This case may happen when plants grow in
soils with high C:N and C:P ratios. Under such
soil conditions, microbes are strongly limited by N
and P and expected to exhibit high nitrogen- and

phosphorus-use efficiencies (Mooshammer et al.
2014b), and consequently the competition for N
and P will be shifted in favor of microbes
(Kuzyakov and Xu 2013). The experiment of
Koller et al. (2013a) cited above, demonstrates that
plants under nutrient limitation will allocate rela-
tively more photosynthates belowground, thus pro-
viding energy for potential root symbionts or prim-
ing effects on soil organic matter. Under these
circumstances the consumption of microbes by
bacterivores will lead to increased microbial turn-
over and may decreased microbial carbon-use effi-
ciency. Plants will primarily benefit from the re-
leased N and P by bacterivores. In cases 2a and
2b, plants have C:N or C:P ratios just below their
respective critical ratios; they are thus strongly
limited by N or P according to soil C:N:P ratios.
Similar mechanisms as described above may occur
for other plant limiting nutrient concentrations, but
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Fig. 7 Theoretical framework describing the relative dominance*
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bacterivore-effects on plant performance. a Relationship between
plant relative growth rate and plant C:nutrient ratios (modified from
Ågren (2008)). The solid line describes the C:limiting-nutrient (N
or P) ratio while the broken lines indicate three different variations
in the C:nutrient ratio of a second element (N or P) as a function of
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illustrating four different cases of plant behavior in the presence of
bacterivores along a soil C:N and C:P gradients. Solid lines de-
scribe the C:Ncri and C:Pcri according to soil C:N:P ratio, while the
broken line indicates a hypothetical zone where the dominant
mechanism changes. Grey arrows describe the hypothetical trends
in microbial nitrogen- and phosphorus-use efficiency (NUE, PUE)
along the soil C:N:P gradient. *the term Bdominance^ describes the
relative importance of mechanisms to initiate and drive the effects
of bacterivores on plants at a given moment in the experiment
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according to plant species stoichiometric behavior,
an excess uptake of the non-limiting nutrient may
also occur (Ågren 2008). In cases 3a and 3b,
plants grow in soils with intermediate C:N or
C:P ratios, respectively. Microbes become limited
by carbon and their nitrogen- and phosphorus-use
efficiencies may decrease, while plants are limited
by N or P but their C:nutrient ratios are below the
critical ratios. The presence of bacterivores, and
the subsequent changes in nutrient availability
and root architecture, may result in both nutrient
storage and biomass production, according to spe-
cies stoichiometric behavior (co-dominance of
mechanisms). In case 4, microbes are strongly
limited by carbon (nutrient-use efficiency is
expected to be low) and plants exhibit low C:N
and C:P ratios. This may happen in substrates with
low C:N and C:P ratios (or soils with low avail-
ability of labile C). Plant nutrient concentrations
are high enough to cause an increase of plant
biomass (dilution of plant nutrient concentration
can occur), but also lateral root production (i.e.
root surface area) for more efficient nutrient up-
take in response to bacterivores (dominance of
non-nutritional mechanisms). This case is expected
to happen when plants grow in a relatively
nutrient-rich environment (Jentschke et al. 1995),
or when plants experience nutrient imbalances
which is critical, especially at early life stages
(Fenner and Lee 1989; Hanley and Fenner 1997).

Conclusion & Perspectives

In this meta-analysis, we showed that bacterivores
in soil contributed significantly to numerous key
soil and plant functions. We suggest a theoretical
framework based on ecological stoichiometry
stressing the role of C:N:P ratios in soil, microbial
and plant biomass as important parameters driving
bacterivore-effects on soil N and P availability for
plants, immobilization of N and P in the bacterial
biomass, and plant responses in nutrition and
growth. Unfortunately, it has not yet been possible
to test this ‘stoichiometric’ hypothesis using meta-

analysis tools because of insufficient data on soil
and plant C:N:P ratios. More co-inoculation exper-
iments focusing on bacterivore-effects on plant nu-
trient acquisition in various environmental condi-
tions are therefore needed. In addition, we propose
three outlooks to contribute to our understanding of
bacterivore functions in terrestrial ecosystems.

Varying species models to deeper understand ecological
roles of bacterivores – Studies investigating the effects
of bacterivores on ecosystem functions usually used one
model species. In this meta-analysis, we found that 57%
of studies focusing on protists effects selected the
A. castellanii species as a model, corresponding to
28 % of all studies reported in the meta-analysis. This
species was frequently used because Acanthamoeba are
opportunist protists with worldwide distribution (Geisen
et al. 2014) that appear frequently in serial dilutions and
are easy to obtain in cultures. Concerning bacterial-
feeding nematodes, the genera Mesodiplogaster,
Rhabdi t is , Acrobeloides (and several other
Cephalobidae genera), were frequently used.
However, the responses of soil and plant functions to
protist and nematode occurrence are likely to diverge
according to species used by the experimenters. Indeed,
it is recognized that the effects of bacterivores on mi-
crobial community composition (Djigal et al. 2004;
Rønn et al. 2002), soil N mineralization (Ferris et al.
1998) or plant performance (Bonkowski and Clarholm
2012; Cheng et al. 2011; Irshad et al. 2011) are species-
specific. It is thus urgent to conduct further studies using
other model species such as Cercomonads,
Kinetoplastids or Chrysophytes.

From population to community-level experiments We
also found that on average 38 % of studies used a
mixture of different protists or nematodes species.
Only 6 studies (15 %) investigated soil protists and
nematodes together and only 2 of them did it in the
rhizosphere of a plant (Fig. 1), biological interactions
among bacterivores are diverse and often antagonistic
(Rønn et al. 2012). Recent studies indicate that
intraguild-predation between ‘bacterivores’, especially
antagonistic interactions between protists and nema-
todes are quite common and not unidirectional (Geisen
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et al. 2014; Geisen et al. 2015). Bacterivore nematodes
are known to prey on protists (Anderson et al. 1978;
Bonkowski et al. 2000; Neidig et al. 2010; Rønn et al.
2012) and vice-versa (Bjornlund and Rønn 2008;
Neidig et al. 2010). The population density of one
bacterivore taxon can thus increase on the cost of other
another bacterivore (Anderson and Coleman 1981).
Unfortunately, the effect of within-trophic group diver-
sity of the soil bacterivore community on ecosystem
function has rarely been investigated (Postma-Blaauw
et al. 2005; Saleem et al. 2012). As a consequence, we
are still far from predicting which bacterivore commu-
nity attribute(s) drive(s) the overall effect of the
bacterivore community on ecosystem functions. A num-
ber of community attributes might potentially drive the
bacterivore community effects, such as (i) species rich-
ness, (ii) keystone groups with specific ecology (e.g.
amoebae), (iii) keystone species (e.g. Acanthamoeba
castellanii), (iv) particular trait dissimilarity (head mor-
phology, feeding types, body size, demographic param-
eters; etc.) or (v) multi-trait dissimilarity (Rao’s dissim-
ilarity coefficient). Identifying the most relevant attri-
butes of soil bacterivore communities driving ecosystem
functions should help us to get closer to predicting the
actual effects of bacterial bacterivores in the fields.

Kinetic experiments to monitor bacterivore-induced ef-
fects on plant performance Most studies investigated
the effect of bacterivores on plant performance after
a specific period of growth. Kinetic experiments are
scarce because monitoring bacterivore-effects on
plant growth or nutrition requires a high number
of replicates, which is difficult from a technical
point of view. However, this type of studies might
provide crucial information on the sequence of
plant and microbial responses in the presence of
bacterivores, and the dynamics and persistence of
bacterivore-effects on ecosystem functions (Krome
et al. 2009a). For instance, Ingham et al. (1985)
observed a temporary effect of nematodes
(Pelodera sp. and Acrobeloides sp.) on plant
(Bouteloua gracilis) growth. Kinetic experiments
conducted under contrasting soil N and P availabil-
ity would be optimal to test the stoichiometric
hypothesis.

Emphasize on P and ecological factors P is essential for
plant growth and may be limiting in many envi-
ronments. In contrast to N, P is characterized by
its relative immobility in soil and the very low
concentration of its available form in the soil
solution (Hinsinger 2001; Hinsinger et al. 2011).
Here, we found that N was 2.3-times more studied
than P in both soil and plant tissues. This is a
serious deficiency given that plant P acquisition
efficiency is often based on biological interactions
between plant roots and rhizosphere organisms.
Using P radio-isotopes is probably the best way
to better understand how bacterivores affect P cy-
cling at the soil-plant interface. Also, the literature
indicates that a large number of other ecological
factors are likely to impact bacterivore-effects on
ecosystem functions: bacterivore species (Cheng
et al. 2011; Ferris et al. 1997), soil properties
(Ekelund and Rønn 1994), plant species, or culti-
vars (Somasundaram et al. 2008), the presence of
symbiotic mutualists (Herdler et al. 2008; Irshad
et al. 2012) or other free fauna (Bonkowski and
Schaefer 1997; Tao et al. 2009), time after inocu-
lation (Krome et al. 2009a), etc. Unfortunately, the
number of observations for each factor was too
low or difficult to aggregate to perform a meta-
analysis. For instance, it was impossible to test the
effect of initial bacterivore biomass (or density),
soil properties (pH, texture, carbon content, water
content; etc.), plant species or cultivar, or the
presence of rhizosphere organisms (e.g. mycorrhi-
zal fungi or rhizobia) on bacterivore-induced ef-
fects on ecosystem functions. Conducting more
detailed studies on bacteria/root/bacterivore interac-
tions should deeply improve our understanding of
soil food web roles in ecosystems functions, and
ultimately help us to predict how the erosion of
soil biodiversity will affect ecosystem services in
the future.
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