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Abstract

Several marine ecosystems under anthropogenic pressure have experienced shifts from one ecological state to another. In
the central Baltic Sea, the regime shift of the 1980s has been associated with food-web reorganization and redirection of
energy flow pathways. These long-term dynamics from 1974 to 2006 have been simulated here using a food-web model
forced by climate and fishing. Ecological network analysis was performed to calculate indices of ecosystem change. The
model replicated the regime shift. The analyses of indicators suggested that the system’s resilience was higher prior to 1988
and lower thereafter. The ecosystem topology also changed from a web-like structure to a linearized food-web.
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Introduction

Many marine ecosystems are under pressure due to multiple

drivers, such as fishing, climate change and eutrophication,

causing large-scale food-web reorganizations, often called regime

shifts [1]. The definitions of regime shifts vary, see for example

Lees et al. [1]. In this study, we use the definition of McKinnell

et al. [2] who state that: ‘‘regime shifts are low-frequency, high-

amplitude and sometimes abrupt changes in species abundance,

community composition and trophic organization that occur

concurrently with physical changes in the climate system’’.

McKinnell et al. [2] and Cury and Shannon [3,4] highlight

changes of the internal structure, organization and size of an

ecosystem as characteristic of regime shifts. Regime shifts have

been described in several marine ecosystems such as the Southern

and Northern Benguela [3,5,6], Southeast Alaska and Aleutian

Islands [7] and the Black Sea [8]. All of these regime shifts have

the re-organisation of food-webs in common. In general, food-web

re-organizations are best described by Ecological Network

Analysis (ENA) sensu Ulanowicz [9]. The network approach to

ecological research provides a powerful representation of the

pattern of interactions among species; highlights their interdepen-

dence and equips ecologists to find generalities among seemingly

different systems [10]. Knowledge of the network topology (e.g.

connectance, number of species, interaction rates) provides

insights to ecosystem functioning and stability, highlights the

advantages of integrating network research with empirical

indicators of resilience, and uncovers generic features of these

complex systems [10–16].

In the Baltic Sea (Fig. 1), an ecosystem regime shift has been

described for the Central Basin (Baltic Proper) in the late 1980s

[17,18]. This regime shift included pronounced changes and

reorganizations within and across the trophic levels of zooplankton

and fish [17,18]. Network analyses have already been applied to

the Baltic Sea. For example, Wulff et al. [19] used the ENA

method to compare the Baltic Sea to Chesapeake Bay and

Tomczak et al. [20] used ENA to compare coastal ecosystem

maturation and stress in five coastal ecosystems. However, none of

these Baltic related ENA studies took temporal changes in the

ENA indices and regime shifts into account. Similarly, a number

of studies have analysed food-web changes in other marine systems

using ENA indices [4,5,21–23], but very few have used a time

dynamic approach [7].

Thus, we focused on changes in the resilience of the Baltic

ecosystem to describe and understand the processes underlying the

regime shift. We investigated food-web reorganisation at the

ecosystem level as revealed by the theory of ecological succession

and maturity [9,24,25], which is linked to the theory of resilience

[26] and regime shifts [27,28]. Therefore, the aim of this study was

to calculate temporally integrated ENA and ecological indices to

test for dynamic changes in the food-web in relation to the

suggested regime shift, and to explain these changes in relation to

the resilience and trophodynamic properties of the Baltic Sea

ecosystem.
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Materials and Methods

Study Site
The Baltic Sea hydrographical conditions are characterized by:

(i) a horizontal sea surface salinity gradient from 10 PSU in the

South-West to 6 PSU in the North-Eastern part of the Baltic

Proper [29], (ii) high riverine inflows [30], and (iii) major,

irregular, inflows of saline, oxygenated water from the North

Sea leading to a permanent pycnocline that partly contributes to

deep-water hypoxia [31,32]. During the last century, high land-

based nutrient loads have led to the eutrophication of the Baltic

Sea with typical eutrophication-related symptoms, such as massive

cyanobacteria blooms in summer and widespread deep-water

anoxia [31,33].

Fisheries have heavily exploited the Baltic Sea resources [34].

Landings of the main commercial fish stock, Eastern Baltic cod

(Gadus morhua calarias), increased dramatically at the beginning of

the 1980s and collapsed in the early 1990s [35]. During that time

cod biomass has declined severely [36]. Instead, small pelagic fish,

such as sprat (Sprattus sprattus) and herring (Clupea harengus), have

dominated the catches during the last 20 years [35]. Möllmann

et al. [18] suggested that high fishing pressure on cod contributed

to its decline, and the resulting trophic effects cascaded down to

the copepods (Pseudocalanus acuspes). Increasing temperature

positively affected zooplankton (Acartia spp.) abundance, sprat

reproduction, and consequently established the current regime of

Acartia spp. and sprat dominance [37].

Modelling Approach and Model Description
Ecopath with Ecosim [38] was created for building food-web

models (www.ecopath.org). The dynamic extension of Ecopath

that allows temporal analysis and fitting the model to time series is

undertaken by Ecosim, using the master equation (1)

dBi=dt~gi
X

j

Qji{

X
QjizIi{ M0izFzeið Þ.Bi ð1Þ

where dBi/dt represents the growth rate during the time interval

dt of group (i) in terms of its biomass (Bi), gi is the net growth

efficiency (production/consumption ratio), Qji is the consumption

rates, M0i the non-predation (‘other’) natural mortality rate, Fi is

fishing mortality rate, ei is emigration rate, Ii is immigration rate

(and ei*Bi-Ii is the net migration rate).

The current Baltic Ecopath with Ecosim model, based on

Tomczak et al. [39], covers the area of the Central Baltic Sea

(ICES subdivisions 25–29, excluding Gulf of Riga) and contains 21

functional groups (Fig. 2), including three fishing fleets on the main

commercial fish species: cod, sprat and herring. For details see

Tab. S1–S3 and Fig. S1–S3 in File S1.

Data and Analysis
Three analyses were performed to: i) test for abrupt changes in

the observed data that were used to force the ecosystem model, ii)

test for abrupt changes in the modelled biomass, and iii) analyse

ecosystem properties (ENA indices) in reference to observed

changes [18], and the ecological theories of Scheffer and

Carpenter [28], Folke et al. [40] and Odum [24] (see section

Linking theory).

Forcing Data and Simulated Biomass
The forcing data represent both environmental and human

impacts on the Baltic Sea food-web (Fig. S2 in File S1). Temporal

anomalies of sea surface temperature in August and the spring

temperature from 0–50 m depth (SST_aug; TempWC_spring),

primary production (PP_BALTSEM), hypoxic area, Cod Repro-

ductive Volume (CodRV [41]), herring recruitment (HER_rec), as

well as fishing on small and adult cod (FSmallCod, FAdCod), sprat

(FJuvSprat, FAdSprat) and herring (FJuvHerr, FAdHerr) were

analysed to test for non-linear shifts. For the time series data used

see references and application details in Tomczak et al. [39]. The

modelled biomasses of 19 of the 21 functional groups were

included in the statistical analysis (see section Statistical analysis

and Fig. S3 in File S1). Seals and detritus were excluded from the

dataset to ensure that the data were comparable and consistent

with the number of trophic levels used in Möllmann et al. [18]. A

further motivation for exclusion of the seal and detritus data was

that seal biomass was used as one of the forcings in the model,

while detritus showed very high cross-correlation with PP.

Ecosystem Indicators and Ecological Network Analysis
Indices
We calculated 15 network analysis indices, ecosystem metrics

and biomass diversity indices (Fig. 3; for definitions and

descriptions see Tab. S5 in File S1), commonly used to describe

changes in ecosystem properties and food-web dynamics

[7,9,19,21,22,24,25,42–54]. Indices were assigned to a number

of groups, describing ecosystem properties in terms of ecosystem/

food-web resilience and structure, and fisheries. Structure indices

included: Total System Throughput (TST), Relative Ascendancy

(A/C), Redundancy (R), Average Mutual Information (AMI),

Entropy (H), Mean Path Length (MPL), Kempton-Q index (Q),

recycling within the ecosystem: Finn Cycle Index (FCI), Predatory

Cycle Index (PCI), Proportional Flow to Detritus (PFD), System

turnover rate (ToTP/ToTB), and Total Primary Production per

Total Respiration (TPP/TR). Fisheries impact indices included:

Primary Production Required to sustain catch per Primary

Production (PPR/PP), mean Trophic Level of catch (mTLc), and

Total Catch (Tot C).

Figure 1. The Baltic Sea with the study area, the Baltic Proper
(dark).
doi:10.1371/journal.pone.0075439.g001

Ecological Indicators of Baltic Sea Ecosystem
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Linking Theory
Mageau et al. [25] used ENA indices to define system health

[55] and maturation [43] and concluded that an unstressed

(healthy) ecosystem is able to maintain its structure (organization)

and function (vigor) over time in the face of external stress

(resilience). Vigor is a measure of system activity, metabolism or

production [55]. Organization is a measure of the number and

diversity of interactions between the components of a system, and

resilience refers to the ability of a system to maintain its structure

and function in the presence of stress [25]. Odum [56] and

Ulanowicz [9] suggested that stressed ecosystems are characterized

by an inhibition or even reversal of the trends associated with

ecosystem development. In this paper we specifically refer to

proxies of resilience - namely redundancy (Tab. S5 in File S1),

linked by Christensen [43] with system stability and proposed by

Heymans et al. [7] as an index of food-web resilience. According to

Bondavalli et al. [57] high redundancy signifies that either the

system is maintaining a higher number of parallel trophic channels

in order to compensate for the effects of environmental stress, or

that it is well along its way to maturity. At the same time, Scheffer

et al. [27] and Scheffer and Carpenter [28] defined resilience as

the ‘‘depth of the basin of attraction’’. We link resilience to

changes in redundancy, by assuming that R is a proxy of resilience

as given by Christensen [43] and Heymans et al. [7].

Statistical Analysis
A series of statistical methods (see sections below) as described in

Diekmann and Möllmann [58] were applied to the time series of

model forcing (force) and modelled biomass (mb): 1) Sequential t-

test analyses of regime shifts (STARS) [59]; 2) Principal

Component Analysis (PCA); 3) STARS on PCA scores and 4)

Chronological Clustering Analysis (CC) [60]. Due to high cross-

correlations (see Tab. S6 in File S1), we did not perform a PCA on

the ENA indices. Instead, ENA indices were analysed using

STARS and integrated using CC. For ENA indices, coefficient of

variation (CV) was estimated to examine the variability in the

given time periods. A traffic light plot was used to visualise the

dynamics of subsequent data sets (forcing and biomass).

Sequential t-test Analyses of Regime Shifts (STARS)
To recognize significant shifts in mean values of a given time

series, a sequential t-test on the mean (STARS) was applied for

each time series separately. The two parameters that control the

scale and magnitude of potential regime shifts were set a priori. The

significance level (a) was set to 0.05. The cut-off length (l) was set to

five for forcing variables and indices, to test for changes in ‘‘fast’’

environmental variables and examine specific periods of changes

between regimes. For modelled biomasses, the cut-off length was

set to 10 years for comparison to Möllmann et al. [18]. The

calculation of shifts was also affected by the handling of outliers.

Thus, the Huber’s weight parameter (which controls the

identification and weights assigned to outliers [59]) was set to 3.

Figure 2. The structure of the food-web model, also indicating the fishing pressure (F) for the respective fisheries on the three fish
species, pp – primary producers, juv – juvenile stanza of given fish species. Detritus pool is divided into two groups: detritus on the
sediment (detritus (s)) and water column detritus (detritus (w)).
doi:10.1371/journal.pone.0075439.g002
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Therefore, if the deviation of a measurement from the expected

average (normalized by its standard deviation) was .3, its weight

was inversely proportional to the distance from the expected mean

value. Shifts detected in the very last years were not taken into

account during the analysis due to the known limitation of this

method [61].

Principal Component Analysis (PCA)
Standardized PCA, based on the correlation matrix, was carried

out on the transformed values (ln+1) of the given data set. First, a

PCA was applied for forcing (force) and modelled biomass (mb)

time series. The PC1 scores on the forcing variables (PC1force)

were used as an index of pressure and the scores of the modelled

Figure 3. Ecological indicators and ENA indices anomalies (note different scale) from 1974–2006.
doi:10.1371/journal.pone.0075439.g003
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biomass were used as an index of biological change (PC1mb).

Annual scores of the two principal components, PC1mb and

PC2mb, were plotted against time to visualise temporal relation-

ships and the occurrence of abrupt modelled system changes.

Variable loadings and scores were displayed on the 1st factorial

plane, and the years were chronologically connected to show the

pressure/state trajectory [18].

STARS on PCA Index Time Series
STARS were used to detect sudden changes in the PC scores to

identify whether abrupt changes had occurred [18]. Parameters

Figure 4. Results of the Principal Component Analyses, with the first and second principal component (PC1 and PC2). The first
column shows the dependencies between variable – (A and C) (for detailed values see Tab. S4 in File S1) the second column shows temporal trend
PC1 and PC2 axis scores (B and D). Rows show the results of analyses of data sets including: model forcing (A and B), and modeled biomass (C and D),
respectively. Vertical lines on PC components time trajectory represents shifts tested by the regime shift analysis. Please note that the scale differs
between axes.
doi:10.1371/journal.pone.0075439.g004

Table 1. Timing of shifts detected using STARS, given time
series of model forcing variables.

Forcing Shift 1980s Shift 1990s Shift 2000s-

PP 1989 2005

SST_August 2006

Temp 0_50m_spring 1989 2006

CodRV 1981

Hypoxic_Area 1983 1998

HER_rec 1986

F_JuvSprat 2000 2006

F_AdSprat 1983 1994

F_JuvHerr 1998 2003

F_AdHer 1994 2002

F_SmallCod 1987 1992

F_AdCod 1989 1993;1999 2006

doi:10.1371/journal.pone.0075439.t001

Table 2. Shifts in PC1 index detected by STARS.

Shifts at PC1 Shift 1980s Shift 1990s Shift 2000s-

Model Forcing 1988 1997 2006

Modeled Biomass 1988 2005

doi:10.1371/journal.pone.0075439.t002
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for the analyses were set as described in sections above.

Chronological Clustering (CC)
Independently of the STARS and PCA analyses, a second

discontinuity analysis, CC, was carried out to identify the years in

which the largest shifts in the mean value of the time series

occurred. This method groups sequential years based on a time-

variable matrix [61]. To demonstrate the most important break-

points in the dataset, the significance level (a), which can be

considered as a clustering-intensity parameter, was set to 0.01. The

connectedness level was set to 50%. In accordance with the use of

the correlation coefficient in the PCA, the data were first

normalized, and then the Euclidean distance was calculated to

determine similarity between years.

Traffic Light Plots (TLP)
To visualise overall systematic patterns based on single time

series, TLPs were generated [62]. The modelled biomass values of

each functional group were categorized into quintiles and each

quantile was assigned a specific colour: green for the lowest (0–

20%), red for the highest (80–100%) and a gradation of colours in

between. The variables were then sorted in descending order

according to their PC1 loadings, and plotted against years to

visualise temporal patterns.

Results

Changes in External Forcing
Many of the observed changes in model forcing time series

(Tab. 1) occur in the mid-late 1980s and mid-late 1990s, with some

shifts appearing after 2000 (Fishing mortality of Juv. Sprat, Juv.

Herring and Adult Herring). PCA on the forcing time series (Fig. 4)

indicates a strong change in the overall pressure on the ecosystem

(Fig. 4A) with changes in PC1force and PC2force indices (Fig. 4B)

explaining 33% and 18% of the total variation, respectively.

Forcing variables that contributed most to PC1force were: PP, Cod

RV, herring recruitment and the fishing mortality on cod and

sprat (Fig. 4A, Tab. S4 in File S1). The shifts in the forcing index

(i.e., PC1force) occurred in 1988 and 1997 (Fig. 4B, Tab. 2) while

CC detected data discontinuity at 1983, 1998 and 2003 (Tab. 3).

The traffic light plot (Fig. 5) illustrates the temporal changes in

forcing factors as well as modelled biomass: Fig. 5A shows

differences before (low PP, high Cod RV and low fishing) and after

the mid-1980s regime shift (with high PP suggesting eutrophica-

tion, high fishing, increased temperature and unfavourable cod

reproduction conditions).

Biomass State Change
The majority of significant shifts in modelled biomass occurred

in the late 1980s (Tab. 4), with three time series showing additional

shifts in the 1990s (Pseudocalanus sp., Juvenile Herring and Adult

Herring). The first two axes of the PCA on the modelled biomasses

(PC1mb and PC2mb; Fig. 4C and D, Tab. S4 in File S1) explained

72% and respectively 10% of the total variance. The shift in

biomass index (PC1mb, Fig. 4D) occurred in 1988, and is

confirmed by the CC (Tab. 3). The PCmb shifts (Tab. 2) and

traffic light plot of modelled biomass (Fig. 5B) shows a clear

dichotomy in the food-web, between cod vs. sprat and zooplank-

ton vs. plankton (Fig. 5B).

Emergent Food-web Changes
Similar to findings from the forcing and biomass time series,

STARS detected shifts in most ecosystem descriptors and ENA

indices at the end of the 1980s (1987/89) and the mid-1990s

(1993/96) (Tab. 5). The ENA clearly shows two regimes, with a

discrete step function between the end of the 1980s and the mid-

1990s, described by Möllmann et al. [18] as a transitional period.

No significant shifts were detected in AMI, turnover rate (ToTP/

ToTB) or total primary production to respiration (TPP/TR), but

the anomalies for almost all indicators fluctuated significantly

(Fig. 3), showing extreme values between 1988 and 1995, and

increased variability (higher CV) after the late 1980s (Tab. 6).

Fisheries Affect Indicator Changes
Indicators directly related to exploitation reflect the shift in

fisheries both in total yield and catch composition (Fig. 3 and

Tab. 5). The first regime was characterized by high mTLc. The

second regime had high total catch dominated by sprat, decreasing

mTLc and increasing PPR/PP after the mid-1990s.

Resilience and Regime Shift
The changes in redundancy (R) show a shift in 1989 and 1994

(Fig. 6). After 1994 a slight increase in R occurred, although not to

the high values of the pre-1988 phase. The decrease in the R after

the 1989 regime shift and the increase in 1994 indicate a transition

period with lowest resilience between the two regimes (regime I,

1974–1989 and regime II 1994–2006). Using our resilience index

– R as an index for ecosystem state and relating it to pressure

indices using PC1force shows the shift between the two regimes and

the transition period (Fig. 7). Between 1974 and 1988 the R

suggests a higher resilience, but with the change in the species

interaction and the multiple pressures, changing via a transition

period into another regime. The years 1992 and 1993 were

characterised by a low R, even though pressure was decreasing.

After 1993, R increased again, but not to the initial level, staying

constant even with a change in the pressure until about 2000 after

which it started to decline again.

Discussion

This study demonstrated that i) the regime shift in the Baltic Sea

in the late 1980s is well reflected by the ENA indices, and ii) two

different ecosystem regimes can be distinguished. The first regime

between 1974 and 1988 reflected a more mature and balanced

ecosystem, with more diverse flow structure, higher resilience,

characterised also by high primary production, and high fishing

pressure at relatively high trophic levels. The second regime,

between 1994 and 2006, was characterised as a more stressed, less

resilient regime with high primary production and high fishing

pressure on lower TL species, indicating a more productive and

linearized food-web. We hypothesise that the regime shift was

caused by the interplay of multiple drivers: climate, eutrophication

and fishing.

The macro descriptors (A/C, H, MPL) and food-web indices

(PCI, FCI, PFD) indicate that after the regime shift (mid-1990) the

ecosystem was more disturbed, more stressed, had an inverted

Table 3. Shifts in given data sets detected by Chronological
Clustering.

CC alfa = 0.01 Shift 1980s Shift 1990s Shift 2000s-

Model Forcing 1983 1998 2003

Modeled Biomass 1988

Modeled Indices 1989

doi:10.1371/journal.pone.0075439.t003
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maturation process, and experienced greater system flows (TST).

Structure related indices (A/C, H, AMI, MPL, H) show that the

internal structure of the food-web changed from a web-like to a

more chain-like structure (see Fig. 3), where fewer groups were

involved in the transfer of energy, and flows were constrained -

channelling energy through specific pathways. Recycling related

indices (FCI, PFD) show that after the second regime shift the

ecosystem conserved less nutrients, needed more time to recover

and channelled more matter directly into detritus due to less

macrozoobenthos involvement in flows and increased phytoplank-

ton biomass. Moreover, the increase in system recycling without

detritus (PCI) shows short and fast cycles. This was also visible in

Figure 5. Traffic light plots representing the applied forcing and development of the simulated biomass from the different groups.
The time series were transformed into quintiles and sorted according to the PC1 axis scores: (A) model forcing; (B) modeled biomass.
doi:10.1371/journal.pone.0075439.g005

Ecological Indicators of Baltic Sea Ecosystem
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the ecosystem turnover rate and Q index, which is due to the

higher proportion of biomass of small, fast growing organisms in

the food-web (i.e. sprat and small copepods) after the mid-1990s.

The changes in fisheries indicators during the first regime could

be explained by a higher percentage of cod in the catches, and low

PPR/PP, due to higher support of cod biomass from the detrital

food-chain [39]. The second regime was characterised by

increased sprat catches and the redirection of flows from benthic

to pelagic pathways [39]. According to Tudela et al. [65], PPR/PP

in combination with mTLc could be treated as an ecosystem index

to capture the effect of fisheries and define ‘‘Ecosystem Overfish-

ing’’. After the regime shift there was an increase in PPR/PP and a

drastic shift to lower mTLc. Therefore, this together with the

trends/shift described above suggest ecosystem overfishing in the

Baltic Sea.

A transition period, defined as the time when the ecosystem

changed from one regime to another, was suggested by the low R

between 1989 and 1993. It was characterized by high fluctuations

of ecosystem structure (AMI, Fig. 3) and flows (PCI, FCI, ToTP/

TotB or TPP/TR, Fig. 3), with the lowest system resilience (R, Fig. 7)

during the studied time period. The transition occurred where the

ecosystem was under high, constant pressure from eutrophication

and cod and herring fisheries (Fig. 7). However, at the same time

there was a stochastic overlap of hydrodynamic drivers, i.e.,

temperature, low cod reproductive volume (CodRV), probably

affecting the change (Fig. S2 in File S1, see also Lindegren et al.

[63]). After the transition period our analysis suggests that the

system did not return to the initial regime when the external

forcing was reduced.

Our ENA analysis suggests further that the resilience of the

second regime is lower than the first, and therefore another

significant disturbance of the ecosystem may cause the system to

move to another alternative regime [27] similar to what happened

in the Black Sea [64]. At this stage we are not able to say if the

current regime is reversible or how stable it is. However, since

2006 higher cod biomass seems to suggest a possible change

towards the first state [65].

Our results of forcing (abiotic factors) are in line with Möllmann

et al. [18,37] and the ICES Working Group on Integrated

Assessment of the Baltic Sea (WGIAB) [60]. It also agrees with

that of Kenny et al. [66] who showed a drivers shift in the 1980s

for the North Sea. The second shift, during the mid-1990s (Tab. 2),

has also been described by Möllmann et al. [18], although a similar

shift was not detected by Kenny et al. [66] for the North Sea. In

the mid-1980s, the North Atlantic Oscillation (NAO) and Baltic

Sea Index (BSI) shifted sharply from a negative to a positive phase,

Table 4. Timing of shifts detected using STARS, given time
series of modeled biomass.

Modeled group Shift 1980s Shift 1990s Shift 2000s-

Cyanobacteria 1988 2006

Phytoplankton 1988

Microzooplankton 1988

Temora sp. 1988 2005

Acartia sp. 1988

Pseudocalanus sp. 1991

Mesozooplankton 1988 2005

Mysids 1988 2005

Meiozoobenthos 1988 2005

Macrozoobenthos 1988 2005

Juvenile Sprat 1988

Adult Sprat 1989 2006

Juvenile Herring 1994

Adult Herring 1982 1997

Cod larvae 1986

Juvenile Cod 1982

Small Cod 1984

Adult Cod 1985

doi:10.1371/journal.pone.0075439.t004

Table 5. Timing of shifts detected using STARS, given time
series of indices.

Indices Shift 1980s Shift 1990s Shift 2000s-

TST 1989 1994 2005

A/C 1993

R 1989 1994 2005

AMI

H 1988 2005

FCI 1988 2005

PCI 1993 2006

MPL 1988 2005

PFD 1989 2006

ToTP/TotB

TPP/TR 2005

Tot C 1983; 1988 1995 2005

PPR/PP 1996

mTLc 1982; 1987 1992

Kempton Q index 1979;1984;1989 1994 2002

doi:10.1371/journal.pone.0075439.t005

Table 6. Coefficient of variation of used indices for given
time period (regime).

CV 1974–89 1990–2006 1974–2006

TST 0.108 0.148 0.215

A/C 0.007 0.014 0.014

R 0.013 0.017 0.031

AMI 0.012 0.022 0.018

H 0.006 0.011 0.015

PCI 0.160 0.310 0.318

FCI 0.097 0.144 0.188

MPL 0.035 0.033 0.061

PFD 0.014 0.017 0.030

ToTP/TotB 0.040 0.076 0.065

TPP/TR 0.022 0.045 0.039

Tot C 0.159 0.177 0.290

PPR/PP 0.183 0.244 0.285

mTLc 0.011 0.007 0.017

Kempton Q index 0.185 0.135 0.308

doi:10.1371/journal.pone.0075439.t006
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affecting the hydrodynamic conditions, i.e. temperature, salinity

and oxygen conditions throughout the whole area [64]. These

climate anomalies most probably induced the simultaneous regime

shift observed in the North Sea and Baltic Sea between 1987 and

1988 [17,63].

Despite the fact that the model reproduces shifts in given

functional groups relatively well (see Fig. S1 in File S1), and that

the integrated analyses (Tab. 2–3 and Fig. 4–5) compare well to

the results in Möllmann et al. [18], we are aware of the limitations

of our analyses, such as high cross-correlation, the lack of

seasonality and natural noise, as well as the aggregated and

simplified food-web structure.

Method Discussion
Recent advances in network science have encouraged ecologists

to study food-webs through network indices [14,67,68]. The

estimations of species interactions often benefit the understanding

of ecosystem response to perturbations [10,69], but it must be kept

in mind that the impact of network structure on community may

differ between different interaction types [70]. Consequently, the

ENA analysis depends strongly on model quality and structure. As

explained by Abarca-Arenas and Ulanowicz [71] and Pinnegar

et al. [72] the number of functional groups and model structure

have an impact on the number of flows and system properties.

This has to be taken into account when comparing our results to

other system outputs and other Baltic Sea models. Ecopath with

Ecosim [73] is a commonly used approach that has been broadly

discussed. Plagányi and Butterworth [74], Aydin [75], Coll et al.

[76] and Walters et al. [77] described the pros and cons of the

methodology, which has been taken into account during model

building, fitting and evaluation [39,78]. Niiranen et al. [78] found

that data uncertainties may translate to uncertainties in modelled

trophic control and hence results. However in this study the model

was well fitted for several trophic levels and we have confidence in

the model and data [39], which represent changes in biomasses

and ecosystem dynamics well (see Fig. S1 in File S1).

Management Outlook
Our results have significant implications for the understanding

of the dynamics of the ecosystem [40,79] and adaptive manage-

ment [80].

With regard to overall performance and robustness, ecosystem

level indicators based on ENA and food-web analysis are

informative on intermediate and long time-scales [4,81,82]. But

they are also difficult to use in annual updates of integrated

assessments and advice, and may be more difficult for stakeholders

to understand [82]. Nevertheless, examples of operational use do

exist, e.g. the Puget Sound Integrated Ecosystem Assessment [83].

In addition, using food-web models and the ENA approach to

explore different management scenarios, through changing fishing

mortality of different species, nutrient loads, and/or hydrodynam-

ic condition, could enable optimal management to ensure

restoration, increasing ecosystem resilience and guard against

future surprises.

Conclusions

Our study revealed that the cumulative nature of anthropogenic

stressors, such as fishing and eutrophication, needs to be analysed

in combination with large scale environmental drivers (climate),

ecosystem characteristics and emergent properties. This encapsu-

lates the holistic approach needed for ecosystem based manage-

ment. This is the first study where an abrupt regime shift was

demonstrated by using an index of resilience calculated from the

ecological network analysis using an Ecopath with Ecosim model

that described the system as a whole.

Supporting Information

File S1 Figure S1, Model fit to observed data (dots are

observations, solid line are model estimates). The input data

(annual biomass - B and cathes - C) and model estimates are

expressed as t/km2 of wet weight. Figure S2, Model forcing

anomalies relative to the initial value in 1974, 1974–2006 (note

different scale). Where SST_aug is sea surface temperature in

August; TempWC_spring is 0–50 m temperature in spring,

PP_BALTSEM represents primary production, hypoxic is the

area that is hypoxic, CodRV - Cod Reproductive Volume,

HER_rec is herring recruitments anomalies, FSmallCod and

FAdCod are anomalies of fishing morality of small and adult cod,

FJuvSprat and FAdSprat, FJuvHerr, FAdHerr represent fishing

mortality changes for adult and juvenile clupeid species. Figure S3,

Modelled biomass anomalies (note different scale) 1974–2006.

Figure 6. Time dynamics of redundancy (R) as percentage of
capacity (C) in black and the red line represents the regime
tested by the regime shift analysis for the period 1974–2006.
doi:10.1371/journal.pone.0075439.g006

Figure 7. The redundancy (R) versus the overall pressure index,
which is the principal component 1 from the model forcing
variables.
doi:10.1371/journal.pone.0075439.g007
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Table S1, Basic input to current EwE model (biomass is in t/km2,

P/B and Q/B are annual ratios of production and consumption to

biomass, EE is ecotrophic efficiency (proportion), P/Q is the ratio

of production to consumption, TL is trophic level and the catch is

in t/km2/yr. Table S2, Diet (proportion) composition matrix of

used EwE model. Table S3, Vulnerabilities parameters obtained

after model fitting. Table S4, PCA (PC1 and PC2) loadings - for

graphic representation see Figure 4A and 4C. Table S5, Indices

and definitions used. Table S6, Cross-correlations between indices.
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65. Eero M, Köster FW, Vinther M (2012) Why is the Eastern Baltic cod
recovering? Mar Policy 36: 235–240.

66. Kenny AJ, Skjoldal HR, Engelhard GH, Kershaw PJ, Reid JB (2009) An
integrated approach for assessing the relative significance of human pressures
and environmental forcing on the status of Large Marine Ecosystems. Prog
Oceanogr 81: 132–148.

67. Proulx SR, Promislow DEL, Phillips PC (2005) Network thinking in ecology and
evolution. Trends Ecol Evol 20: 345–353.

68. Sole RV, Montoya JM (2001) Proc R Soc Lond B Biol Sci 268: 2039–2045.
69. Novak M, Wootton JT, Doak DF, Emmerson M, Estes JA, et al. (2011)

Predicting community responses to perturbations in the face of imperfect
knowledge and network complexity. Ecology 92: 836–846.

70. Thebault E, Fontaine C (2010) Stability of Ecological Communities and the
Architecture of Mutualistic and Trophic Networks. Science 329: 853–856.

71. Abarca-Arenas LG, Ulanowicz RE (2002) The effects of taxonomic aggregation
on network analysis. Ecol Modell 149: 285–296.

72. Pinnegar JK, Blanchard JL, Mackinson S, Scott RD, Duplisea DE (2005)
Aggregation and removal of weak-links in food-web models: system stability and
recovery from disturbance. Ecol Modell 184: 229–248.

73. Christensen V, Walters CJ (2004) Ecopath with Ecosim: methods, capabilities
and limitations. Ecol Modell 172: 109–139.

74. Plaganyi EE, Butterworth DS (2004) A critical look at the potential of ecopath
with ECOSIM to assist in practical fisheries management. Afr J Mar Sci 26:
261–287.

75. Aydin KY (2004) Age structure or functional response? Reconciling the
energetics of surplus production between single-species models and ECOSIM.
Afr J Mar Sci 26: 289–301.

76. Coll M, Bundy A, Shannon L (2009) Ecosystem Modelling Using the Ecopath
with Ecosim Approach. In: Megrey BA, Moksness E, editors. Computers in
Fisheries Research. Netherlands: Springer. 225–291.

77. Walters C, Christensen V, Pauly D (1997) Structuring dynamic models of
exploited ecosystems from trophic mass-balance assessments. Rev Fish Biol Fish
7: 139–172.

78. Niiranen S, Blenckner T, Hjerne O, Tomczak MT (2012) Uncertainties in a
Baltic Sea Food-Web Model Reveal Challenges for Future Projections. Ambio
41: 613–625.

79. Coll M, Libralato S (2012) Contributions of food web modelling to the ecosystem
approach to marine resource management in the Mediterranean Sea. Fish Fish
13: 60–88.

80. Armitage DR, Plummer R, Berkes F, Arthur RI, Charles AT, et al. (2009)
Adaptive co-management for social-ecological complexity. Front Ecol Environ
7: 95–102.

81. Moloney C, Jarre A, Arancibia H, Bozec Y-M, Neira S, et al. (2005) Comparing
the Benguela and Humbold marine upwelling ecosystem with indicators derived
from inter-calibrated models. ICES J Mar Sci 62: 493–502.

82. IEEP (2005) A review of the indicators for ecosystem structure and functioning.
INDECO Development of Indicators of Environmental Performance of
Common Fisheries Policy resport. Project no. 513754. Institute for European
Environmental Policy (IEEP). 74p.

83. Tallis H, Levin PS, Ruckelshaus M, Lester SE, McLeod KL, et al. (2010) The
many faces of ecosystem-based management: Making the process work today in
real places. Mar Policy 34: 340–348.

Ecological Indicators of Baltic Sea Ecosystem

PLOS ONE | www.plosone.org 11 October 2013 | Volume 8 | Issue 10 | e75439


