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SUMMARY

Attempts to gauge the biological impacts of climate change have typically

focussed on the lower levels of organization (individuals to populations), rather

than considering more complex multi-species systems, such as entire ecological

networks (food webs, mutualistic and host–parasitoid networks). We evaluate

the possibility that a few principal drivers underpin network-level responses to

climate change, and that these drivers can be studied to develop a more

coherent theoretical framework than is currently provided by phenomenologi-

cal approaches. For instance, warming will elevate individual ectotherm meta-

bolic rates, and direct and indirect effects of changes in atmospheric conditions

are expected to alter the stoichiometry of interactions between primary con-

sumers and basal resources; these effects are general and pervasive, and will

permeate through the entire networks that they affect. In addition, changes in

the density and viscosity of aqueous media could alter interactions among very

small organisms and disrupt the pycnoclines that currently compartmentalize

many aquatic networks in time and space. We identify a range of approaches

and potential model systems that are particularly well suited to network-level

studies within the context of climate change. We also highlight potentially

fruitful areas of research with a view to improving our predictive power

regarding climate change impacts on networks.We focus throughout onmech-

anistic approaches rooted in first principles that demonstrate potential for

application across a wide range of taxa and systems.

I. INTRODUCTION

The Earth’s average surface temperature is predicted to rise by 3–5 �C over

the next century, far faster than previously experienced by human civilization

(Parmesan and Yohe, 2003; Pounds et al., 1999; Thomas et al., 2004). Even

larger increases (up to 7.5 �C) are projected for some Arctic regions over the

same timeframe based on Global Climate Model simulations (IPCC, 2007).

Although there are major uncertainties in these estimates, climate change is

nevertheless likely to place considerable environmental stress on many natu-

ral systems in the near future (Walther, 2010). Indeed, dramatic changes have

already been reported from many ecosystems in recent decades, especially in

the Arctic, in the West Antarctic peninsula region and at high altitudes (e.g.

Brooks and Birks, 2004; Douglas et al., 1994; Konig et al., 2002; Schofield

et al., 2010; Smol et al., 2005) as greenhouse gas emissions and global

temperatures have increased. Rising temperatures are just one component
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of climate change, albeit the one most intensively studied by biologists

(Walther, 2010; Walther et al., 2002), and changes in atmospheric composi-

tion, the physical properties of aqueous media and weather conditions will

also alter the physical environment within which ecosystems operate. The

effects of climate change on organisms can therefore be direct (e.g. warming

increases ectotherm metabolic rates, or stress on physiological systems),

indirect (e.g. shrinking and fragmentation of fresh waters during drought,

species effects that are mediated by another species) or a combination of both

(Woodward et al., 2010b).

Although the effects of climate change will permeate all levels of biological

organization, most research has focused on responses at the lower levels of

organization (e.g. range shifts in species populations), and only a few studies

have considered community- or ecosystem-level impacts (Hickling et al.,

2006; Montoya and Raffaelli, 2010; Parmesan, 2006; Sala et al., 2000;

Spooner and Vaughn, 2008; van der Putten et al., 2010). Interspecific inter-

actions within food webs or other types of multi-species ecological networks

have been largely ignored within the context of climate change research (but

see Emmerson et al., 2005a; Harmon et al., 2009; Ims and Fuglei, 2005;

Meerhoff et al., 2007; Woodward et al., 2010a). This represents a critical

bottleneck in our predictive ability because network-level responses to stres-

sors cannot simply be extrapolated from studying single species in isolation

(Kishi et al., 2005; Raffaelli, 2004; Tylianakis et al., 2008; Woodward, 2009).

Part of the reason for this current knowledge gap undoubtedly stems from the

perception that ecological networks, which may contain thousands of species

and tens of thousands of links, are seemingly too complex to be easily predict-

able (Montoya et al., 2006; Riede et al., 2010). However, there is increasing

evidence that structure and dynamics of even very complex networks might be

underpinned by a few relatively simple and predictable rules based on foraging

and metabolic constraints, and the distribution of interaction strengths

(Beckerman et al., 2006; Berlow et al., 2009; Cohen et al., 2003; McCann

et al., 1998; Montoya et al., 2006; Petchey et al., 2008; Reuman and Cohen,

2005; Williams and Martinez, 2000). A new perspective that considers the

network level of organization, and its links to other levels, is needed to comple-

ment the current phenomenological approaches to develop a more general,

mechanistic approach to predicting the impacts of climate change (Ings et al.,

2009;Montoya andRaffaelli, 2010; Tylianakis, 2009;Woodward et al., 2010b).

Traditionally, the study of ecological networks has focused on consumer–

resource relations in (mostly aquatic) food webs and terrestrial host–

parasitoid systems, but recently this has been broadened by the dramatic

surge in research on mutualistic networks (e.g. coral-zooxanthellae sym-

bioses; plant–pollinator systems; plant–seed disperser systems) (Ings et al.,

2009; Montoya et al., 2006; Olesen and Jordano, 2002; Olesen et al., 2010).

In reality, of course, many ecosystems contain all three network types,
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in addition to competitive interactions, and species may be operating simul-

taneously within more than one network (e.g. crab spiders that prey upon

insect pollinators of flowering plants, which are themselves eaten by herbi-

vores; Ings et al., 2009). The scientific study of these multilayered ‘super

networks’ is still too embryonic to make any firm generalizations at present

(Olesen et al., 2010), so the distinctions among the three network types

delineated earlier have been retained here for tractability.

Several recent studies and reviews have considered how climate change

might affect the higher levels of biological organization (Bascompte and

Stouffer, 2009; Wrona et al., 2006), but these have tended to be restricted

to considering one type of network (e.g. food webs: Woodward et al., 2010b;

plant–pollinator networks: Memmott et al., 2007), one type of system (e.g.

terrestrial ecosystems: Tylianakis et al., 2008; running waters: Perkins et al.,

2010; marine ecosystems: Hays et al., 2005; Moran et al., 2010; soils:

Davidson and Janssens, 2006), one aspect of climate change (e.g. warming:

McKee et al., 2003; Yvon-Durocher et al., 2010a,b), or they have emphasized

the contingency rather than the potential generality of impacts and responses

(e.g. Tylianakis et al., 2008). Here, we aim to improve our currently limited

ability to anticipate the effects of climate change on different network types,

by attempting to identify emerging components of a research approach that

spans multiple levels of organization and is based on general first principles.

Consequently, much of the paper concerns how physical and chemical laws

(e.g. fluid viscosity, thermodynamics and elemental stoichiometry) that un-

derpin different aspects of climate change act upon individuals and how these

effects might be scaled up to predict network-level responses. We also high-

light research areas that currently lack general predictive ability at the

network level (e.g. species-specific climate envelopes) and discuss to what

extent these might be extended and ultimately incorporated into a more

predictive, first-principles framework. We identify those systems that are

most likely to provide fruitful avenues of further study, and highlight those

that seem less promising, in an attempt to help focus future research efforts

more efficiently. Finally, we investigate how the different components of

climate change (e.g. temperature, atmospheric chemistry), when combined,

might act in additive or synergistic ways. Our ultimate objective is to stimu-

late the development of a novel general theoretical framework to facilitate

testable predictions about the likely responses of ecological networks to our

changing climate.

Some foundations common to the research approaches we explore are

presented in Section II, where we also address the diverse range of methods

that will need to be employed. In Sections III–VI, we consider how best to

assess the impacts of the different components of climate change we have

identified. For each of these components, we identify generalities and remain-

ing contingencies, whilst exploring how effects at lower levels of organization
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can be understood from general principles and aggregated to produce net-

work-level understanding. Section VII considers how the different compo-

nents of climate change addressed in Sections III–VI might combine and

potentially interact to influence network-level responses in additive or non-

additive ways.

II. THE FOUNDATIONS OF A FIRST-PRINCIPLES

APPROACH

The general approaches we identify, within which researchers are beginning

to understand network-level impacts of climate change as the aggregation of

better understood, lower level processes, all rely heavily on quantifying

individual variation within species. In particular, many are underpinned by

the primacy of body size as an easily measured and unifying property of

organisms that is strongly linked to metabolism, behaviour and resource

acquisition, all of which are key drivers at the network level of organization.

These foundational aspects of the several approaches we identify are elabo-

rated in Section II.A, and some of the key relationships of ecological rele-

vance that will be addressed throughout the paper are highlighted in Table 1.

In contrast to the cross-cutting importance of body size and an individual-

based perspective, a general understanding of the effects of climate on net-

works will require the use of a wide range of methodological approaches at

different spatial and temporal scales, which are considered in Section II.B.

A. Individuals, Species and Body Size

Ecological networks comprise entities (‘nodes’) connected to one another by

links that represent some form of biological interaction (e.g. herbivory,

detritivory, predation, parasitism, pollination) (Ings et al., 2009; Lafferty

et al., 2008). Nodes are aggregations of individuals, which are usually lumped

together on the basis of taxonomic or functional similarity (Ings et al., 2009;

Reiss et al., 2009). The first step towards developing a general framework is

to define the relevant entities of interest associated with the nodes and links

within a network.

A logical place to start is to use individual organisms, since that is the level

of organization at which interactions actually occur, and then to aggregate

these entities hierarchically, based on their taxonomic identity or functional

roles, to form the network (e.g. Ings et al., 2009; Woodward and Warren,

2007). In contrast to the traditional dichotomy of viewing networks from

either a species or size-based perspective, more integrated approaches have
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Table 1 Examples of relationships between key biological and environmental parameters that are size- and/or temperature dependent

Ecological phenomenon Relationship Network consequence Examples

Sinking rate versus
size (volume, V) in
plankton

aV2/3 Altered consumer ingestion rates and
removal of plankton from euphotic
zone to sediment

Mass-specific
metabolic rate
(time�1) versus size
(body mass, M)

aM�1/4 Mass-specific metabolic demands
increase with size (�trophic status).
Larger species, higher in the food web
have higher metabolic demands than
smaller species at the lower trophic
levels

Peters (1983)
Lopez-Urrutia et al. (2006)

Nutrient diffusion
(mol N (cell time) �1)
versus size; (D,
molecular diffusivity;
R, cell
radius; DC, cell
surface nutrient
concentration—bulk
medium nutrient
concentration.

/4pRDDC If CO2 uptake is diffusion-limited, large
phytoplankton should be at a
competitive advantage as CO2 levels
rise: this could shorten pelagic food
chains, if phytoplankton–zooplankton
predator–prey mass ratios remain
constant

Finkel et al. (2010) and
references therein.

Population
abundance versus size
(body mass, M)

(a) �aM�0.75

(b) �MV�1
(a) within trophic levels
(b) across trophic levels
Energy flows from abundant, small
species to large rare species within a
trophic network

Brown et al. (2004), but see
Reuman et al. (2008).



Size-class abundance
versus size; (body
mass, M)

�aM�0.75 Assuming the use of a common energy
source, smaller organisms should be
favoured as temperatures rise: slopes
may be conserved but intercepts and
size ranges may shift (e.g. increased
prevalence of small phytoplankton in
marine systems Moran et al., 2010)

Jennings and Brander (2010);
Moran et al. (2010), but see
Brown et al. (2004), Reuman
et al. (2008)

Metabolic rate (time�1)
versus temperature

�e�0.64/(k*T) Energetic demands increase with
temperature—this could lead to
elevated activity and potential
increases in predator–prey encounter
rates and interaction strengths

Woodward et al. (2002a), Brey
(2010)

Independent variables are underlined (see also Finkel et al., 2010; Woodward et al., 2005b for additional relationships based on first principles).



been advocated recently, in which individuals are not only identified to a high

level of taxonomic resolution (i.e. species populations) but also described in

terms of their functional role, often based on their body size (Barnes et al.,

2008; Ings et al., 2009; Woodward and Warren, 2007; Yvon-Durocher et al.,

2010b). Body size (�body mass) is a useful proxy for many functional

attributes (especially in aquatic networks), because it captures a large amount

of trophic information in a single dimension and, along with temperature, it

largely determines an individual’s basal metabolic rate and thus its energy

requirements (Ings et al., 2009). A key advantage of employing such individu-

al-based networks is that they can be viewed from alternative perspectives

simultaneously, allowing, for instance, the relative importance of taxonomic

identity versus body size to be assessed (Petchey and Belgrano, 2010;

Woodward et al., 2010c). The role of body size in terrestrial networks is perhaps

less clear than in aquatic systems, as seemingly idiosyncratic species traits (e.g.

ovipositor or proboscis structure) appear to be relatively more important (Ings

et al., 2009; Tylianakis et al., 2008). Nonetheless, it can still be an important

descriptor of network structure in host–parasitoid networks (Cohen et al.,

2005), terrestrial food webs (Petchey et al., 2002), soil food webs (Reuman

et al., 2009b) and even plant–pollinator networks (Stang et al., 2006, 2009).

The fundamental links between body size and metabolism underpin a wide

range of allometric scaling relationships that operate from the level of the

cell, to individuals, to entire ecosystems (Allen et al., 2005; Atkinson, 1994;

Brown et al., 2004; Emmerson et al., 2005b; Peters, 1983; Reuman et al.,

2008, 2009a; Woodward et al., 2005a,b). The ubiquity of the size-metabolism

relationship offers a useful starting point for developing a general theoretical

framework, especially because it is also linked directly to two key compo-

nents of climate change: altered environmental temperature (Brown et al.,

2004; Clarke and Fraser, 2004) and consumer–resource CNP ratios (Allen

and Gillooly, 2009), both of which are predicted to change significantly as

concentrations of carbon-based gases in the atmosphere continue to rise.

B. Experiments and Surveys at Different Scales and Examples

Since it is impossible to carry out a replicated study of climate change on a

truly global scale, we need to approach the problem in a layered fashion,

using a range of techniques and model systems to build towards a general

overview (Figure 1). This is a challenging task, not least because research

groups typically act in relative isolation from one another and often use their

own bespoke approaches to understanding a particular aspect of climate

change. In addition, most ecological research is conducted over short time-

scales and at small spatial scales, due largely to logistical and financial

constraints, so there is often a mismatch between the scales at which the
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environmental drivers operate and the ecological responses are manifested

(Kratz et al., 2003; Lane, 1997; Olesen et al., 2010). Ideally, when gauging

network-level responses to climate change, studies should run for at least as

long as one generation of the longest lived species in the system to take

account of as many potential feedback loops as possible because such indi-

rect effects can be critical determinants of how the system responds to

perturbations (e.g. Montoya et al., 2009; Yodzis, 1988). The key point here

is that time is not absolute per se, but a relative measure based on generation

times. Unfortunately, it is unrealistic to run such studies in most natural

systems as the requisite time could amount to several decades. Shortcuts or

alternative approaches are therefore often necessary, such as reconstructing

networks by using space-for-time substitutions (Rawcliffe et al., 2010);

Altered network 

structure and 

dynamics

Climate change

(e.g. environmental 

warming)

Coupling between 

theory and 

empiricism

Observations and 

experiments

Predictive theory

Figure 1 Understanding and predicting the changes in network structure and
dynamics that result from climate change (with increasing environmental temperature
shown as the example here) require empiricism, theory and close linkage of the two.
This link has been made, for example by focusing on the effects of temperature on
individuals, their metabolism, their foraging behaviour and other individual level
processes. The use of mechanistic models of such effects allows predictions in novel
circumstances, which can be validated against observational and experimental stud-
ies. Differences between model predictions and empirical results can be used to
improve and refine the predictive theory, making the grey shaded region an iterative
an continuous process.
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hindcasting from preserved samples or palaeoecological cores (e.g. Layer et al.,

2010a); exploring the impacts of thermal pollution (e.g. Langford, 1990) or

geothermal warming in ‘natural experiments’ (e.g. Friberg et al., 2009;

Woodward et al., 2010a); carrying out manipulative field experiments in

mesocosms (e.g. Yvon-Durocher et al., 2010a); the use of experimental micro-

cosms and short-lived microbial and protist taxa as model systems (e.g.

Petchey et al., 1999); employing in silico simulations (Petchey et al., 2010) or

some combination of the above (e.g. Layer et al., 2010b;Montoya et al., 2009).

Space-for-time substitutions represent one of the most widely used

approaches in ecological climate change research, but two questions need

to be addressed when conducting such studies (e.g. Castella et al., 2001): can

spatial snapshots be extrapolated to describe temporal change, and are

equilibrial or non-equilibrial conditions being measured? Essentially, both

relate to the extent to which ecological responses can keep pace with chang-

ing environmental conditions: for instance, transient, non-equilibrial beha-

viour may be manifested if warming occurs faster than the rate at which the

biota can respond, whereas (new) equilibrial conditions may be achieved if

the rate of change is relatively slow. Bearing these points in mind, we can

identify some idealized criteria for helping to select suitable systems to work

with, including: (1) networks should be constructed by direct observation of

nodes and links, with body mass, CNP tissue content data and abundance

measured, where possible; (2) the system can be perturbed experimentally to

simulate some aspect of climate change and to measure its response; (3)

measurements of responses can be made at relevant spatial and temporal

(generational) scales, across meaningful environmental gradients, and with a

minimum of potential confounding effects. In reality, of course, it will often

not be possible to meet more than one of these within a given study system.

We have identified a sample of several ‘model systems’ that meet at least

some of these criteria and offer potentially promising avenues for future

network-based climate change research, which we highlight briefly here and

then return to address in more detail later. These systems occupy different

portions of the control/realism-replication spectrum, from laboratory-based

microcosm experiments to large-scale survey data from close-to-pristine

natural ecosystems, such as the Antarctic Weddell Sea food web. This list is

not exhaustive and arguably biased towards systems that we are most famil-

iar with, and each has its own advantages and disadvantages, as outlined in

Table 2.

At small spatiotemporal scales, laboratory-based experiments with micro-

bial communities provide a high level of control and replication and can be

run for many generations over a relatively short time span (weeks to months;

Petchey et al., 1999). They have been criticized due to a perceived lack

of realism, but nonetheless they represent valuable models for testing

cause-and-effect in ways that are not otherwise possible (Daehler and
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Table 2 The tool box of approaches used in the study of ecological networks in a changing climate

Approach [usefulness in
addressing network
responses to climate change] Strengths Weaknesses

Examples of commu-
nity/ecosystem/net-
work-level studies

Ancient fossil data
[Limited]

1. True temporal change over
deep time (millions of years)

2. Ability to identify recurrent
network patterns with
contemporary systems
despite complete species
turnover

1. Inferential and incomplete
networks

2. Diets of extinct species
unknown

3. Species abundances cannot
be quantified accurately

Dunne et al. (2008)

Palaeodata
[Limited]

1. True temporal change
(millennial scales)

2. Good preservation of many
key taxa (e.g. bones and
scales from vertebrates,
chitin from insects and
pollen or diatom valves from
primary producers) in soils/
sediment

1. Potential confounding
gradients and additional
stressors (e.g. post-1850
eutrophication and
acidification in UK)

2. Inferred feeding links;
problems with quantification
and selective preservation
(soft-bodied organisms are
often missing from the
record)

3. Rates of change faster now
than in palaeo record, and
reduced potential for
adaptation due to recent
biodiversity loss

Battarbee (2000),
Rawcliffe et al.
(2010)

(continued )



Table 2 (continued )

Approach [usefulness in
addressing network
responses to climate change] Strengths Weaknesses

Examples of commu-
nity/ecosystem/net-
work-level studies

Contemporary temporal
surveys
[Yes, but
correlational]

1. True temporal change
(decadal scales)

2. Nodes and links can be
observed directly for entire
network

1. Very few suitable long-term
(decadal) data sets.

2. Potential confounding
temporal gradients (e.g.
acidification, eutrophication)
and other stressors.

Woodward et al.
(2002), Durance
and Ormerod
(2007, 2009),
Milner et al. (2008),
Layer et al.
(2010a)

Space-for-time
[Yes, but
correlational]

1. ‘Proxy stressors’
2. Nodes and links can be
observed directly for entire
network

1. Biogeographical
confounding effects (but this
might not be a problem for
trait-based/size-based
approaches).

2. Not mechanistic.
3. Difficult to distinguish
transient and equilibrial
dynamics

Lavandier and
Décamps (1983),
Parker and Huryn
(2006), Milner et al.
(2000)

‘Natural experiments’
[Yes, but correlational]

1. ‘Proxy stressors’
2. No biogeographical
confounding effects.

3. Naturally assembled
communities

4. High realism
5. Nodes and links can be
observed directly for entire
network

1. Potentially confounding
physical–chemical gradients

2. Lack of control of
community composition

3. Limited/no replication
4. Difficult to distinguish
transient and equilibrial
dynamics

Friberg et al. (2009),
Woodward et al.
(2010a)



Field experiments
[Yes—partial-whole
networks]

1. ‘True stressors’
2. Greater degree of control
than in surveys—some
potential for isolating or
combining components of
climate change

3. Replication is possible
4. Nodes and links can be
observed directly

5. Mechanistic

1. Restricted to small
spatiotemporal scales
(typically intragenerational)

2. Require rigorous assessment
of suitability—for example
effect size versus spatial
scale� temperature

3. Partial realism

Hogg et al. (1995),
O’Gorman and
Emmerson (2009),
Woodward and
Hildrew (2002a)

Lab experiments
[Yes—partial-whole
networks]

1. ‘True stressors’
2. High level of control than in
surveys—ability to isolate or
combine components of
climate change

3. High replication is possible
4. Nodes and links can be
observed directly

5. Mechanistic

1. Restricted to small spatial
scales

2. Require rigorous assessment
of suitability—for example
effect size versus spatial
scale� temperature

3. Limited realism/complexity

Petchey et al. (1999)
Woodward and
Hildrew (2002b)

Models and simulations
[Yes]

1. Long-term dynamics and
intergenerational change

2. Isolation of key drivers
3. Mechanistic and predictive
4. Inexpensive

1. Limited realism
2. Constrained by gaps in

theoretical frameworks and
data for parameterization (e.
g. phenological matches-
mismatches)

Petchey et al. (2010)



Strong, 1996). At the opposite end of the control/realism-replication spectrum,

long-term surveys of natural systems provide insight into potential responses

to climate change in real food webs, but replication is often limited (or non-

existent) and there is the ever-present risk that confounding effects (e.g.

eutrophication, acidification) could mask potential responses to climate

change (e.g. Durance and Ormerod, 2007, 2009). Long-term biomonitoring

programmes of natural ecosystems at appropriate scales (decades to centuries)

for detecting climatic signals are extremely scarce. In addition, the time scales

over which natural networks have assembled may differ substantially from

those at which climate change is now operating and, as a result, space-for-time

substitutions can also be prone to potentially confounding spatial or bio-

geographical effects (e.g. latitude, altitude) (Johnson and Miyanishi, 2008).

If these can be minimized, however, such studies can provide important

insights with a degree of realism that cannot be captured in experimental

studies. Often a combination of approaches can greatly enhance the overall

picture: for instance, in empirical surveys of natural systems, Milner et al.

(2000, 2008) studied glacier retreat through real time over several decades, in

addition to using space-for-time substitutions for stream communities in

Alaska. Another example of a space-for-time substitution study comes from

a catchment of 15 geothermal Icelandic streams that provide a natural experi-

ment for studying the effects of environmental warming in a natural setting,

within which field manipulations have also been carried out to disentangle the

effects of temperature and nutrient limitation (Friberg et al., 2009; Woodward

et al., 2010a). This system is unusual in that all the streams are very close to one

another (<2 km apart) and embedded in the same stream network, yet each

has a characteristic temperature regime over its entire length (ranging from 5

to 25 �C, with one ‘outlier’ at 44 �C), and no additional confounding effects of

water chemistry. This allows the effects of temperature to be isolated within a

large-scale and long-term ‘natural experiment’.

A few intensively studied ecosystems have the dual advantages of possessing

extensive time series of data whilst also being amenable to the characterization

and experimental manipulation of their ecological networks. Three suchmodel

systems include the Ythan Estuary in Scotland (e.g. Emmerson and Raffaelli,

2004), Broadstone Stream in southern England (Hildrew, 2009; Layer et al.,

2010b) and Lough Hyne in Southern Ireland (O’Gorman et al., 2008, 2010;

O’Gorman and Emmerson, 2010), all of which have been studied for several

decades and now have exceptionally well-characterized food webs.

The food web of Broadstone Stream has been studied intensively since the

early 1970s: it is strongly size-structured and because encounter rates and

hence attack rates increase with temperature, so too do interaction strengths

(Hildrew, 2009; Woodward and Hildrew, 2002a; Woodward and Warren,

2007; Woodward et al., 2005a,b). There is some evidence that the food web

has altered over four decades in response to an interaction between climatic
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and pH change. This has been manifested by the invasion and establishment of

a new top predator (the dragonfly Cordulegaster boltonii), in the 1990s, fol-

lowed by the more recent establishment of the first vertebrate (brown trout)

(Layer et al., 2010b), which has now usurped the dragonfly as the apex

predator. These changes, and similar responses seen in long-term data from

other acid freshwaters, have been attributed to an interaction between climate

change and an amelioration of acidification (Ledger and Hildrew, 2005;

Woodward et al., 2002), as prolonged hot, dry summers reduce acid inputs,

opening a window of opportunity for new colonists to establish themselves

within the food web (Hildrew, 2009). An intriguing aspect of these data is that

these invasions occur at the top of the food web. This is mirrored in the

increased predominance of trout in geothermally warmed Icelandic streams

(Woodward et al., 2010a), which suggests that warming might reduce energetic

constraints on secondary production in these food webs.

Lough Hyne is a large, sheltered marine reserve (Figure 2), in which

intensive scientific studies have been ongoing since the late 1920s. A large

database of information has built up over this period (Wilson, 1984), with

extensive time series data available for some of the key species (e.g. Barnes

et al., 2002; Figure 2A). Recent attempts have also been made to quantify the

benthic compartment of the food web, combined with investigations of

ecosystem functioning and metabolic theory (O’Gorman et al., 2008; Yvon-

Durocher et al., 2008; Figure 2B). Experimental manipulations of experi-

mental food webs within the Lough have shown that larger species have

weaker interaction strengths per unit biomass (as opposed to numerical per

capita effects) than do smaller species, so the loss of the former taxa, which is

often predicted as a consequence of climate change, should result in increased

mean interaction strengths and has the potential to destabilize the trophic

network (O’Gorman and Emmerson, 2010).

In addition to these ‘traditional’ food webs that describe interactions

between predators and prey and between primary consumers and basal

resources, insect host–parasitoid networks also represent useful model sys-

tems, particularly because their links can be readily observed and quantified

(Ings et al., 2009; van Veen et al., 2006). The typically short generation times

of the species involved mean that responses to environmental change can

happen quickly, and these systems have already proven useful to measure

community-level impacts of land use (MacFadyen et al., 2009; Tylianakis

et al., 2007). The population dynamics of host–parasitoid interactions have

been studied extensively (Hassell, 2000) and models of pair-wise species

interactions have been extended to describe the dynamics of at least simple

experimental communities very successfully (Bonsall and Hassell, 1998; van

Veen et al., 2005). In principle then, host–parasitoid networks have the

potential to provide important insights into how climate change might affect

multi-species communities, and to test theoretical predictions in the real
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Figure 2 The greater Lough Hyne food web (U. Jacob, unpublished data), high-
lighting studies using survey-based data versus experimental field trials. (A) Long-
term population change in a keystone species within the food web. Population
fluctuation of Paracentrotus lividus abundance in the South Basin of Lough Hyne
(after Barnes et al., 2002). Insert is the position of Lough Hyne in Ireland. (B) A
quantitative portion of the food web from the sublittoral zone is depicted for a guild of
predatory fishes and their prey, with the width of arrows representing the strength of
the interaction (Yvon-Durocher et al., 2008 for full details) and the size of the nodes
representing total population biomass. (C) A subset of 10 consumer species were
manipulated in naturally assembling experimental communities as part of a long-
term field trial (O’Gorman and Emmerson, 2009). Food webs such as the one shown
represent replicable communities that mirror the complexity of the greater Lough
Hyne food web.
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world within a feasible timeframe. It must, however, also be borne in mind

that there are some important differences between host–parasitoid and

predator–prey networks, especially in the degree of diet specialization and

hence connectance, due to the nature of the interactions involved, at least in

terms of the per capita interaction strengths between consumers and

resources (Ings et al., 2009; van Veen et al., 2005), so some caution should

be exercised when making wider generalizations based on these systems.

III. NETWORK RESPONSES TO CLIMATE CHANGE

COMPONENTS: IMPACTS OF WARMING ON

ORGANISMS

Environmental warming is probably the most familiar manifestation of

global climate change (e.g. Burgmer et al., 2007; Deutsch et al., 2008;

Tylianakis, 2009) and its effects have been documented at all levels of

biological organization, at least in controlled systems, although most of the

research to date has focused on the lower levels. Because of the strong and

consistent temperature dependence of many physiological rates (Bystrom

et al., 2006; Charnov, 2003; Gillooly et al., 2001; Ings et al., 2009), studying

the effects of warming offers promise for developing a systematic approach

within which individual-level effects can be scaled up to the network level.

For instance, within a network, temperature can have both direct effects (e.g.

on the sum of metabolic activity of all individuals in the population) and

indirect effects, mediated by their influences on the attributes of organisms

and their interactions. Here, we review the current evidence for the effects of

warming on individual-level physiological rates, interactions among indivi-

duals and populations, and the mostly phenomenological information on its

influence at the higher levels of organization. In parallel, we also assess the

potential for integration into a general approach and identify some impor-

tant remaining contingencies that merit further study. These relate mostly to

indirect effects of warming through other physical processes, the implications

of which, though likely far reaching, are still too poorly understood to be

incorporated into any general framework at present.

A. Individual-Level Effects

Body temperature affects a plethora of individual-level physiological rates,

including metabolic rate (Brey, 2010; Clarke and Johnston, 1999; Gillooly

et al., 2001), life history milestones (Charnov, 2003; Charnov and Gillooly,

2004), growth (Gillooly et al., 2001), and even rates of nucleotide substitution
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in molecular evolution (Gillooly et al., 2005; but see Lanfear et al., 2007). The

effects of warming have now been documented at all levels of biological

organization, in laboratory-based microcosms (e.g. Figure 3) as well as in

metastudies, and at the individual-level environmental temperature is a

strong determinant of reproductive rates (Muller and Geller, 1993), cell size

(Atkinson et al., 2003; Richardson and Schoeman, 2004), and movement

rates (Petchey et al., unpublished data; Woodward and Hildrew, 2002a).

These individual-level responses appear broadly consistent with the effects

of temperature on biochemical reactions, as typically described by the Arrhe-

nius relationship (e.g. Brey, 2010; Clarke and Johnston, 1999; Gillooly et al.,

2001). The literature on the effects of temperature on individual-level and

species-level physiological rates and life-history parameters is large (e.g.

Beverton and Holt, 1959; Clarke and Johnston, 1999; Dunham et al.,

1989), and we provide only a cursory overview here. In addition, many of

the well-known allometric body-size scaling relationships (e.g. Peters, 1983;

Yodzis and Innes, 1992) merit augmentation by fitting temperature as an

additional component to predict ecological responses (Clarke, 2006). These
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Figure 3 Interspecific interactions fundamentally change the impact of temperature
on population dynamics. Grey circles are Colpidium cultured with only bacteria.
Black are Colpidium cultured also in the presence of their predator Didinium. Circles
are the mean population densities over 2 weeks, lines are statistically significant
models (at p<0.05). An artificial x-axis offset has been applied to aid clarity of
interpretation. Reproduced with permission from Beveridge et al. (2010) in which
full details of the work can be found.
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individual-based relationships have ramifications that filter upwards to the

higher levels of organization: for example elevated metabolic rates could

increase interaction strengths and hence reduce the dynamic stability of the

network as a whole (Kokkoris et al., 2002).

B. Interaction-Level Effects

Feeding and other interactions between individuals are the final manifesta-

tion of a series of discrete steps, each of which is related to physiological rates

that can depend on temperature. For feeding to occur, and hence for a

trophic link to be manifested within a network, the sequence of these steps

ranges from detection, to capture, to consumption of resources, to digestion,

each of which is often strongly temperature and size dependent (e.g.

Woodward and Hildrew, 2002a). This provides a useful starting point for

developing firmer predictions as to how networks as a whole might respond

to warming. For instance, because warming tends to increase mobility and

activity (especially among ectotherms), attack rates should rise with increas-

ing temperature and handling times should shorten, which will in turn affect

ingestion rates and per capita interaction strengths within the network (e.g.

Woodward and Hildrew, 2002a,c; Figure 4). Estimates of the activation

energies of parasitism rate, attack rate, feeding rate, grazing rate and inges-

tion rate range from 0.46 to 0.81 eV (Brown et al., 2004; Vasseur and

McCann, 2005), and the few data that are currently available suggest that

handling times may have activation energies that range from 0.13 to 0.71 eV

(Petchey et al., 2010). At present, there is still no firm consensus among the

still too-few studies that have estimated the temperature dependence of

ingestion (Kingsolver and Woods, 1998; Rall et al., 2010; Sarmento et al.,

2010; Thompson, 1978; Woodward and Hildrew, 2002a) and assimilation

rates (e.g. Giguere, 1981; Short and Ward, 1981a,b; Zhang and Li, 2004).

C. Population and Community-Level Effects

A key question that needs to be addressed at the level of organization of

interactions between populations (or size classes) is: does the efficiency of the

trophic transfer of biomass from prey to consumer assemblages change with

temperature? For instance, the size spectrum of a community allows infer-

ences to be made about trophic transfer efficiency within a food web without

the need for direct observations of feeding links, as long as information on

predator–prey mass ratios is available (Jennings and Brander, 2010). There is

a wealth of size-spectrum data from marine systems, within which size-based

(i.e. ‘individual size distributions’) rather than species-based (i.e. after Layer
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et al., 2010b; McLaughlin et al., 2010; O’Gorman and Emmerson, 2010)

Mass-abundance (MN) scaling relations have typically been used to infer

food web structure and energetics. An in-depth analysis of how mass-abun-

dance scaling relationships and transfer efficiencies might change across

temperature gradients (v across latitude or over long-term series) could

offer important insights here, with potentially far-reaching implications for

fisheries management (Jennings and Brander, 2010; Perry et al., 2010). There

is evidence from correlational studies thatMN slopes are surprisingly consis-

tent, even in networks that vary fundamentally in species composition and

are found at different temperatures. Boudreau and Dickie (1992), for in-

stance, compared size spectra in a range of aquatic ecosystems and demon-

strated that slopes were independent of temperature, whereas changes in

intercepts reflected differences in primary production. Marquet et al. (1990)
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Figure 4 Temperature-dependent changes in interaction strengths between the top
predator (the dragonfly C. boltonii) and a dominant prey species (the stonefly Nemur-
ella pictetii) within the Broadstone Stream food web. Replicated laboratory experi-
ments were carried out using aquaria maintained at three temperatures: prey survival
declined as temperatures increased, due to elevated encounter rates resulting from
increased activity levels (redrawn after Woodward et al., 2002a).
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and Jonsson et al. (2005) have also provided evidence thatMN slopes may be

conserved within a narrow range in natural communities, despite consider-

able turnover in species composition, and that this conservatism appears to

be maintained by density compensation coupled with body size shifts. Cur-

rent evidence seems to suggest that, for a given level of primary production,

the size structure, abundance, trophic level and consumer production might

be broadly predictable and not strongly temperature dependent (Jennings

and Brander, 2010). This implies that if climate-induced changes in primary

production can be predicted, and if climate change does not fundamentally alter

the rules of community assembly, responses in some properties of consumer

assemblages (e.g. changes in the intercept of size-basedMN relationships) can be

predicted. This size-based approach could provide useful general null models

with which to gauge the biological impacts of climate change in multi-species

networks, even in the absence of explicitly characterized species populations

(Jennings and Brander, 2010), because feeding links can be generalized from

predator–prey body mass ratios that do not vary systematically with tempera-

ture or primary production at oceanic scales (Barnes et al., 2010).

Moran et al. (2010) have recently combined allometric MN scaling rela-

tionships of such individual-based size distributions with the temperature-

size rule to predict an increased prevalence of very small picophytoplankton

within the overall marine phytoplankton assemblage as temperatures rise.

They found that temperature alone accounted for 73% of the variance in the

relative contribution of these small cells to total phytoplankton biomass,

irrespective of differences in inorganic nutrient loading (Moran et al., 2010),

suggesting that environmental warming might be the primary driver among

the different components of climate change.

D. Individual-to-Network Level Effects

At present, the available results at the network-based levels of organization,

where nodes and the links between them are described explicitly (rather than

implicitly, as in size-spectra approaches), are still largely phenomenological

and less unified by theory at present than those at the lower levels. As such,

they serve primarily as guides for developing theoretical frameworks that can

integrate across levels: ultimately, emerging theory needs to be able to

explain observed network-level properties as the outcome of the better-

understood phenomena manifested at the lower levels of organization.

Vermaat et al. (2009) identified connectance, richness and productivity as

the three principal components of networks, each of which may be influenced

(directly or indirectly) by temperature change. Higher level properties of

networks, including the topological or dynamic stability of the system and

the role of indirect effects, whereby nodes influence one another ‘at a
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distance’ (Montoya et al., 2009) are thus likely to be strongly temperature

dependent, as are the lower levels of organization that underpin them.

If, for instance, the separate components of the predation sequence do

indeed have different activation energies, as suggested earlier, this has impli-

cations for the network as a whole. If temperature dependencies vary between

the different steps, warming could alter both food web structure (e.g. Petchey

et al., 2010) and interaction strengths (e.g. Woodward and Hildrew, 2002a),

which are two key determinants of network stability (May, 1972, 1973;

McCann, 2000). Recent theory predicts, for example that differential scaling

in the temperature dependence of attack rates and handling times will alter the

frequency of feeding interactions and, potentially, connectance within a net-

work (Petchey et al., 2010). Such changes have the potential to alter network

dynamics, but the current dearth of detailed, standardized empirical data on

these temperature dependencies and their effects on network structure makes

testing these theoretical predictions impossible at present. This rather

surprising gap in our understanding of two fundamental processes (handling

times and attack rates) that underpin ecological networks clearly needs to be

addressed systematically across a range of systems.

In an experimental study of protist food webs that included informa-

tion on body size, species identity and feeding links, population extinction

caused by gradual warming was much more frequent for larger species

than for smaller ones (Petchey et al., 1999), as has also often been

predicted for larger metazoans (Raffaelli, 2004; Woodward et al.,

2005b). The rate of response and capacity to do so is related to the

body size (and thus is also often linked to the trophic level) of the species

involved, because larger species have slower turnover times (Woodward

et al., 2005b). Experimental manipulations of temperature and food chain

length have revealed that the effect of warming on population size

depends strongly on the number of trophic levels (Beveridge et al., 2010)

and interspecific competition (Jiang and Morin, 2004). Fox and Morin

(2001), in contrast, found little evidence of temperature effects on popu-

lation sizes, let alone interaction-dependent temperature effects. At the

network and ecosystem level data are still scant, and few experiments bar

that of Petchey et al. (1999) have characterized the responses of even

moderately complex communities exposed to temperature manipulations.

The increased vulnerability to warming among larger organisms at the

higher trophic levels, as predicted by theory and reported by Petchey et al.

(1999), appears to contrast with observations from Icelandic geothermal

streams, where there was a lengthening of food chains and increased mean

individual size and abundance of the largest predators (brown trout) as

temperatures increased (Woodward et al., 2010a; Figure 5). This is sug-

gestive that the top predators in cold high latitude and/or altitude systems

might be under physiological cold stress (cf. Hari et al., 2006), and as a

result they might benefit from bottom-up effects of warming via increased
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primary production at the base of the food web (Friberg et al., 2009). The

seemingly different network-level responses seen in laboratory microcosms

versus those observed in the field clearly merit further exploration from

22 �C

5 �C

Figure 5 Icelandic stream foodwebs under ambient conditions (5 �C) and geothermal
warming (22 �C), inApril 2009, fromwithin a catchment of 15 streams spanning awide
natural thermal range without additional confounding chemical gradients or dispersal
constraints (Friberg et al., 2009; Woodward et al., 2010b). As temperatures increase
across streams, the abundance and mean body size of brown trout, the apex predator,
increase. The pair of streams exhibit this phenomenon: the cold stream (lower food
web) is fishless and omnivorous invertebrates occupy the highest trophic level, whereas
trout are the top predators in the adjacent warm stream (upper foodweb), less than 2m
away. Food web data: D. E. Pichler et al. (unpublished data).
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an individual-based perspective that can account for the true metabolic

costs of operating at different temperatures.

E. Evolutionary and Biogeographical Effects of Warming

Most ecosystem-level studies have used ‘static’ temperature differences as a

proxymeasure of environmentalwarming, inwhich systems aremaintainedat a

fixed level above ambient and compared with reference conditions (e.g.

Liboriussen et al., 2005; Yvon-Durocher et al., 2010a; Figure 6). Notable

exceptions include Petchey et al. (1999), who used a 2 �C warming per week

over 7 weeks in laboratory microcosms, where one week was equivalent to ca.

100 generations ofmanyof the protistswithin their assembled foodwebs.Long-

term ecological responses towarmingwill also be accompanied by evolutionary

processes (Harmon et al., 2009; Tylianakis, 2009), and there are suggestions

that the capacity for adaptation might be impaired at colder temperatures. The

suggested reason for this is the link between individual metabolism, generation

time andDNAevolution, which has been proposed as a possible explanation of

latitudinal gradients in species richness (Allen and Gillooly, 2009; Stegen et al.,

2009) and hence the size of local ecological networks. If generation times are too

long, thismay hinder the ability of populations to turn over and for adaptations

to spread fast enough to keep pace with a rapidly changing environment: once

again, this should make large species in higher latitude networks particularly

vulnerable to warming. It might also partially explain the rapid declines in

Arctic char in Lake Windermere in the UK, a cold, deep lake that has seen

increases in more eurythermic predatory fish in recent decades (Winfield et al.,

2010). If this is a particular example of a more general phenomenon related to

an interactionbetween environmental temperature and long generation times in

large, cold-stenothermic species, we might expect to see especially rapid turn-

over in these higher trophic levels at higher latitudes and altitudes.

IV. NETWORK RESPONSES TO THE COMPONENTS OF

CLIMATE CHANGE: IMPACTS OF WARMING ON

AQUEOUS MEDIA

All ecological networks operate within a physical landscape that is itself

influenced by temperature: consequently, warming can affect biota both

directly (i.e. via metabolic constraints) and indirectly (i.e. via environmental

constraints). For instance, climate change will not only influence the viscosity

of body fluids and water, but also the form in which the latter occurs in the

environment (i.e. vapour, rain, ice) and the amount and timing of its flux
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through ecosystems (e.g. droughts, floods, glacial meltwaters). Here, we

assess temperature-related changes in aqueous media, in terms of its impacts

on fluid viscosity and the form and distribution of the occurrence of water in

the environment, and the implications of these more indirect consequences of

warming for different levels of biological organization. We leave aside other
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important effects of climate change in aquatic systems, in particular ocean

acidification resulting from increasing dissolved CO2, whose effects even at

the population level are still poorly understood (Pelejero et al., 2010).

A. Fluid Viscosity: Impacts on Individuals,
Interactions and Networks

Fluid viscosity and solute solubility are temperature dependent and, since all

living organisms are composed primarily of aqueous fluids, warming will

affect the supply and removal rate of key nutrients and waste products to and

from body tissues (at least for ectotherms), unless biological mechanisms can

countermand these physical changes to an individual’s internal environment.

By extension, environmental warming also has important implications for

the physical properties of the external media within which ecological net-

works operate, especially in aquatic systems, where the viscosity of the

medium will affect buoyancy and sinking rates—and hence encounter rates

between consumers and resources. The sinking velocity of phytoplankton,

for instance, increases with cell volume according to Stoke’s law, described

as /aV2/3 (Finkel et al., 2010; Table 1). A change in water temperature

from 5 to 10 �C is associated with a change in viscosity (dynamic) from

1.52�10�3 N s m�2 to 1.31�10�3 N s m�2. The implications of this depend

on the organism’s size and speed, which can be summarized by the Reynolds

number,Re (a ratio between the inertia ofwater being displaced and the viscosity

of the environment) (Purcell, 1977). Large, fast-moving organisms (Re>450)

operate in the inertial regime and are relatively unaffected by changes in

viscosity, whereas small, slow-moving organisms (Re<1) operate in the viscous

regime and are highly susceptible to changes in viscosity (Sommer, 1996). The

diel vertical migration of plankton, and hence consumer–resource encounter

rates could be disrupted in pelagic food webs, especially for the smallest organ-

isms at the base of the food web with the lowest Reynolds numbers. Reduced

viscosity will reduce the costs of swimming even as it supports faster rates of

sinking, so the balance between the effects of viscosity on passive sinking versus

active swimming could be critical in determining the strength of interactions

among the planktonic organisms at the base of many aquatic food webs.

Because changes in viscosity and resultant changes in sinking rates and in the

energetic costs of swimming follow known formulas, these effects on aquatic

systems could and should be addressed via a systematic theory.

Aquatic networks often comprise basal resource species of phytoplankton or

microbial decomposers, and small actively swimming consumers, which have

an Re less than one (Sommer, 1996). Diel vertical migration of phytoplankton

and the motility of bacteria (Schneider and Doetsch, 1974), protists (Winet,

1976), copepods (Larsen et al., 2008), rotifers (Hagiwara et al., 1998),
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echinoderms (Podolsky and Emlet, 1993) and even fishes (Hunt Von Herbing

andKeating, 2003) all depend upon the viscosity ofwater.Many lower trophic-

level organisms use cilia or flagellae for locomotion or feeding, the beat fre-

quency and displacement of which are determined by density of the surround-

ing water (Machmer, 1972; Riisgård and Larsen, 2007; Sleigh, 1956), adding to

the potential impacts of temperature-dependent changes in viscosity on aquatic

communities. Additionally, the interference caused to Daphnia feeding on

cyanobacteria by the latter’s filaments declines with increasing viscosity

(Abrusàn, 2004). Hence, consumer–resource encounter rates and dynamics

may change in response to changes in viscosity, in addition to the direct effects

of temperature per se. Indeed, the feeding or ingestion rates of several aquatic

organisms are known to decrease with increasing viscosity (Abrusàn, 2004;

Bolton and Havenhand, 1998, 2005; Loiterton et al., 2004; Podolsky, 1994),

and these effects may even be sufficient to qualitatively alter population

dynamics (Harrison, 1995; Luckinbill, 1973; Seuront and Vincent, 2008).

Laboratory experiments havemanipulated the viscosity ofwater via the useof

thickening agents such as methyl cellulose, polyvinylpyrrolidone (PVP), Dex-

tran, and Ficoll, which has enabled the viscosity-based effects of warming to be

isolated from those associatedwith temperatureper se (e.g. changes inmetabolic

rate). For example Podolsky (1994) quantified the proportion of feeding rates of

echinoderm larvae (Dendraster excentricus) that were attributable to tempera-

ture-dependent changes in viscosity at 22 �C (viscosity¼1.02 cP), 12 �C (visco-

sity¼1.30 cP) and 22 �C with the addition of Dextran, resulting in a viscosity

1.30 cP. This study revealed that the 10 �C reduction in temperature was asso-

ciatedwith a 67% reduction in feeding rate, 61%ofwhichwas directly attributed

to changes in viscosity. In running waters, the ability to resist shear stress,

particularly among small organisms, will decline if the viscosity of water

increases (Statzner et al., 1988), and in terrestrial plant–pollinator networks

nectar might become too ‘sticky’ for some smaller insects to handle effectively.

In flowers with an open morphology, nectar concentration and hence viscosity

increase with temperature, and this may change the composition of the visitor

fauna, in addition to lowering harvesting rates (Borrell, 2006).

B. The Form and Distribution of Water in the Environment

The rates and extent of warming predicted under the IPCC (2007) climate

change scenarios will not be uniform over space and time, and ecological

responses will therefore depend to a large extent upon the physical environ-

ment within which they are played out. At the whole-ecosystem scale, the

nature and size of the medium within which the ecological network operates

will determine its response to rising atmospheric temperature. For instance,

large water bodies, such as the open oceans, have sufficiently high heat
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capacity and thermal inertia to smooth out short-term temperature fluctua-

tions, which are also predicted to increase with warming (i.e. both the mean

and variability of temperature are likely to rise in many areas, IPCC, 2007).

In contrast, small water bodies exposed to direct insolation can fluctuate by

tens of degrees Celsius over the course of a single day. For instance, water

temperatures in streams fed from small springs or surface run-off (Figure 7)

A

B

Figure 7 Mountain and spring-fed stream food webs for tributaries of the Ivishak
River in arctic Alaska (69�10N, 147�430W) (redrawn after Parker and Huryn, 2006).
Mean food chain length was 3.04 in the spring stream and 1.83 in the mountain
stream. A fish species, the Dolly Varden char (Salvelinus malma), was the top predator
in the mountain stream, whereas an invertivorous riverine bird species, the American
dipper (Cinclus mexicanus), was the top predator in the spring stream. Difference in
mean food chain length between streams was due largely to the presence of
C. mexicanus at the spring stream.
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are far more variable than those supplied by large reserves of groundwater.

The latter typically have very stable thermal regimes that reflect their subter-

ranean provenance (e.g. cf. Friberg et al., 2009; Parker and Huryn, 2006;

Woodward et al., 2010a). Non-geothermally influenced streams rarely exceed

29 �C because at elevated air temperatures the vapour pressure deficit above

the water surface increases drastically, causing strong evaporative cooling

(Mohseni and Stefan, 1999) that sets an upper limit to the ultimate tempera-

ture they can attain. In contrast, because maximum temperature is not limited

in terrestrial ecosystems in this way, wemight expect to see strongermetabolic

constraints operating on individuals within terrestrial networks, relative to

their aquatic counterparts, as atmospheric temperatures rise in the Tropics.

One profound effect of warming on the physical environment is the ‘habi-

tat fragmentation’ that can arise within waterbodies where pycnoclines de-

lineate sharp gradients of water density. A classic example of this is the

widespread phenomenon of thermoclines in aquatic systems, which separate

the warm surface waters in the euphotic zone from the cooler and less

productive deeper waters in lakes and oceans, with the latter also commonly

exhibiting haloclines of differing density and hence viscosity (Gnanadesikan,

1999). Many standing waters and oceanic regions are likely to become more

strongly stratified as temperatures rise, and the development and persistence

of strong thermoclines could impair the recycling of nutrients to the photic

zone from deeper, colder waters (Finkel et al., 2010) by preventing vertical

mixing in the water column. The thermal imbalances resulting from predicted

surface water warming in the coming decades might ultimately lead to large-

scale changes in the existing ocean circulation currents, such as the posited

change in the Pacific Ocean from today’s ENSO (El Niño Southern Oscilla-

tion) to a permanent El Nino or La Nina state (Timmermann et al., 1999; but

see Sarmiento et al., 2004). At present, on a global scale, pycnoclines tend to

disappear in the open ocean at around 50–60� latitude, due to reduced

salinity and/or temperature change, whereas further from the poles they

prevent extensive mixing and help to retain the relative biological distinctness

of the food webs in different waterbodies. The physical vertical segregation

of waters of different density and temperature created by pycnoclines has

implications for individual organisms and their interactions within networks.

As sinking rates of plankton are positively correlated with body size (which

also determines which consumer species exploit the plankton), and since

warming should favour smaller phytoplankton (e.g. Moran et al., 2010;

Strecker et al., 2004), changes in the vertical depth and horizontal distribu-

tion of pycnoclines due to warming could alter food chain lengths, network

structure and the flux of nutrients in many lakes and regions of the open

oceans. We return to consider these potential interactions between tempera-

ture, viscosity and nutrient fluxes within food webs in more detail in Sections

V and VI.
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At high latitudes and altitudes, ice sheets and glaciers are in rapid retreat

in many parts of the world, leading to the changes in total runoff volume,

the timing of spring/summer runoff peaks and the contributions from

different water sources (Milner et al., 2009). Changes in rainfall patterns

will alter many terrestrial and freshwater ecological networks, but these

effects will be far from uniform across the globe (Boulton, 2003). For

instance, the hotter, drier summers and wetter winters predicted for many

temperate areas in the near future will create more intense and frequent

floods and droughts (Milly et al., 2006), whereas at higher latitudes and

altitudes floods could increase in spring and early summer due to more

rapid snowmelt (Barnett et al., 2005; Hannah et al., 2007). New hydrologic

disturbance regimes have the potential to alter the rate and magnitude of

supply of basal resources to primary consumers to eliminate sensitive

species and, hence, to restructure entire networks. Some recent long-term

experiments have shown that drought episodes can have powerful effects on

the organization and functioning of stream food webs (e.g. Harris et al.,

2007; Ledger et al., 2009; Walters and Post, 2008). For example in a two-

year field manipulation, repeated droughts reduced the availability of basal

resources (Ledger et al., 2008), eliminated members of the consumer assem-

blages (especially large, rare species high in the food web: Figure 8) and

thereby suppressed total secondary production by more than 50% (Ledger

et al., unpublished data). The fragmentation of freshwaters during

droughts can break network linkages in both space and time (Zwick,

1992), with large species being affected disproportionately more strongly

than smaller, more r-selected species, which may benefit, at least temporar-

ily, from the release of top-down or competitive control as suggested by

population irruptions during recolonization when the water returns (e.g.

Ledger and Hildrew, 2001). Although it may be possible to make some

generalizations, because of these apparent system-specific contingencies in

their effects on different species and other network components, it is

difficult with our current understanding to incorporate hydrological

changes into any general or predictive theory at present.

V. NETWORK RESPONSES TO THE COMPONENTS OF

CLIMATE CHANGE: ATMOSPHERIC COMPOSITION

AND ECOLOGICAL STOICHIOMETRY

In addition to the direct and indirect effects of warming, elevated environ-

mental CO2 concentrations associated with climate change could also alter

the structure and dynamics of ecological networks fundamentally. One of the

key mechanisms of relevance here is the way in which increasing CO2 will
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influence the cellular composition of primary producers, which typically have

CNP ratios that reflect ambient environmental concentrations (Elser and

Hessen, 2005; Kominoski et al., 2007; Redfield, 1934). Changes in environ-

mental CO2 concentrations will alter the elemental composition of C:nutrient

ratios in autotrophs (Hessen et al., 2004, 2005; Urabe et al., 2003), which

possess considerable stoichiometric plasticity relative to their more

B

A

Figure 8 Control (right-hand channel, B, in the photograph) andmonthly dewatered
(left-hand channel, A) food webs for two experimental stream channels, constructed
at the end of a 22-month hydrological manipulation conducted by Ledger et al.
(2009). Taxa that became locally extinct tended to be rare and high in the food web,
and the network became simpler as species and links were lost in response to drought
stress (food web data: M. Ledger et al., unpublished data).
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homeostatic consumers (Sterner and Elser, 2002). RuBisCO (Ribulose-1,5-

bisphosphate carboxylase oxygenase), the enzyme that catalyses CO2 fixa-

tion, is typically less than half saturated at current global atmospheric CO2

concentrations for most phytoplankton (Badger et al., 1998; Giordano et al.,

2005). This is typically the rate-limiting step in the Calvin cycle, so increases

in this greenhouse gas have the potential to alter rates of CO2 assimilation

dramatically, particularly in the global ocean where the lion’s share of the

planet’s carbon fixation takes place (Cox et al., 2000). Experiments have

revealed that algae grown at a range of dissolved CO2 concentrations differ

markedly in their stoichiometry, with those grown at high CO2 and low P

exhibiting faster photosynthetic rates but high atomic C:P ratios, which

reduced the efficiency of energy and mass transfer to their consumers

(Urabe et al., 2003). These stoichiometric shifts among primary producers

can be explained by changes in sub-cellular metabolism, as under high CO2

photosynthesis, carbon fixation and assimilation are stimulated, resulting in

greater allocation to storage of C-rich sugars relative to P-rich ribosomes

required for rapid growth (Urabe et al., 2003).

Heterotrophs are typically far more homeostatic in their stoichiometry

than is the case for autotrophs (Sterner and Elser, 2002). As a result,

changes in the food quality of basal resources (as defined by their C:

nutrient ratios) can exert strong influences on consumer production and

abundance within the food web (Norby et al., 2001). For example Urabe

et al. (2002, 2003) and Hessen et al. (2002) have shown that growth rates

of herbivorous Daphnia decline markedly when fed on high C:P versus

low C:P algae. These studies highlight how stoichiometric consumer–

resource imbalances resulting from increased CO2 could ramify to the

network level of organization, as a consequence of changes in autotrophic

stoichiometry at the base of the food web. Similarly, elevated CO2 in a

9-year field experiment in a terrestrial system revealed suppressed herbi-

vore abundance, but increased ingestion rates, reflecting the need of

consumers to eat more plant material to extract a similar level of nutri-

ment when C:nutrient levels increase (Stiling and Cornelissen, 2007).

Large shifts in the stoichiometry of basal resources with climate change

are thus likely to alter the distribution and fluxes of biomass within many

food webs, in both terrestrial and aquatic systems. Because the effects

of stoichiometry on individuals and interactions have been much studied

(e.g. Sterner and Elser, 2002) and the field continues to expand rapidly,

there is considerable potential for integrating these effects more deeply

into an overall theory to explain network effects of climate change based

on lower level principles.

Body size is once again revealed as a potentially important determinant

of responses to climate change, as it also influences uptake rates and the
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stoichiometric effects of increased CO2. For instance, phytoplankton cell

size, elemental requirements and composition constrain resource uptake

and processing rates (see Finkel et al., 2010 and references therein). In

many marine systems, phytoplankton body size tends to increase with

nutrient availability, so elevated CO2 should favour larger organisms (the

opposite of the case for warmer temperatures; Daufresne et al., 2009;

Strecker et al., 2007). In turn, increased phytoplankton cell size under

elevated CO2 will increase sinking rates and hence could reduce the ability

for consumers to recycle carbon before it is lost to the sediment: because

large phytoplankton tend to be grazed by large zooplankton (e.g. Cyr and

Curtis, 1999) the resultant food webs should be shorter, as fewer trophic

steps are required to reach consumers of a given body size, but a higher

proportion of primary production could be lost before it is consumed, due

to faster sinking rates. Since most of the organic carbon exported to the

deep sea is derived from larger, denser cells that sink more rapidly (Laws

et al., 2000), the size structure of planktonic assemblages has important

consequences for how climate change influences consumer–resource stoi-

chiometry, the flux of energy through the food web and, ultimately, the

ability of the global ocean to absorb and store atmospheric CO2 (Kohfeld

et al., 2005; Sarmiento and Wofsy, 1999; Watson and Orr, 2003). Scaling

relationships between phytoplankton cell size and key ecological and

physiological processes have recently been used to model primary produc-

tion, carbon pools and rates of export to the deep ocean (Finkel et al.,

2010), highlighting the importance of understanding these fundamental

links between body size, metabolism and elemental fluxes within ecologi-

cal networks.

In addition to the trophic links between primary producers and herbi-

vores, many ecosystems rely heavily on inputs of energy and nutrients via

detrital pathways (e.g. soil food webs), often via external subsidies (Moore

et al., 2004). Consequently, the C:nutrient content of detrital resources,

which are largely derived from dead primary producers, should also in-

crease as atmospheric CO2 levels rise. These ratios are key drivers of many

ecosystem processes associated with decomposition (e.g. Hladyz et al.,

2009; Norby et al., 2001; Tuchman et al., 2002) and, ultimately, the fluxes

of energy and nutrients to the higher trophic levels within food webs.

Carbon-rich detrital resources can also serve to modulate the potentially

destabilizing effects on network structure of ‘fast’ autochthonous food

chains based on primary production (Rooney et al., 2006). It remains to

be seen how the interplay between these two types of trophic pathway will

respond to climate change, but some initial studies suggest that elevated

CO2 can shift the balance from the relative importance of algae versus

detritus to the higher trophic levels (e.g. Kominoski et al., 2007).
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VI. NETWORK ASSEMBLY AND DISASSEMBLY:

SPATIAL AND TEMPORAL MATCHES AND

MISMATCHES

A. Climate Envelope Models, Invasions and Extinctions:
Spatial Rewiring of Ecological Networks

To date, the effects of environmental change on species distributions have been

predicted primarily using ‘habitatmodelling’ and ‘climate envelope’ approaches.

In both cases, a species’ future distribution is predicted fromknowledge about its

current distribution, the environmental conditions within that distribution and

predictions about future environmental conditions (Pearson andDawson, 2003).

Themajority of thesemodelling approaches do not, however, consider species as

interacting components of a wider ecological network (Kissling et al., 2010):

rather, they assume that each species experiences completely independent effects

of environmental change in isolation.This represents amajor shortcoming, given

the powerful effects network structure and dynamics have on the ability of

organisms to colonize and establish themselves within an ecosystem. Network-

level responses are more than simply the aggregate sum of all their component

species-level responses and, as such, the latter cannot simply be extrapolated to

predict the former (Tylianakis, 2009; Woodward, 2009).

Making predictions about network assembly based on a species-by-species

perspective will be challenging given that the recipient network governs the

likelihood that incoming species and life history stages will become estab-

lished, whilst the incoming organisms also rewire and hence shape the

network. Consequently, understanding the patterns and processes that gov-

ern network assembly will be crucial in determining the potential impacts of

climate change. The key driving forces behind network assembly and disas-

sembly are immigration, speciation and environmental filtering (Weiher and

Keddy, 1999). As new habitats are created or old habitats are altered through

climatic events, such as environmental warming, changing ocean currents, ice

scouring, droughts or flooding, these factors will determine how species and

links are gained or lost from the network. Immigration and speciation will be

governed by the spatial and temporal dynamics of the system. If species

adapted to new environmental conditions already exist nearby, the primary

mechanism for assembly will be colonization. Dispersal ability plays a key

role here, and certain taxa in particular systems (e.g. aquatic organisms

without flying adult stages in landlocked lakes, East–West oriented river

networks or freshwaters in small oceanic islands) will have little opportunity

to track poleward warming by invading new networks (Ings et al., 2009;

Woodward and Hildrew, 2002b). If the environment is sufficiently isolated

from source populations of potential new species, network assembly is more
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likely to be fulfilled by evolution or adaptation of existing species through

time (Emerson and Gillespie, 2008). Environmental filtering may lead to

network disassembly, if certain species can no longer tolerate altered biotic

or abiotic factors in the locale, and this could overpower the effects of

stochastic processes predicted by neutral theory, for example birth, death,

colonization, speciation (Chase, 2007).

In the absence of barriers to migration, range shifts and expansions will

lead to the arrival of new species in local communities as climate changes

(Rahel and Olden, 2008). Through the links that these species forge in the

network, they can have direct and indirect effects on many other species in

the community (Henneman and Memmott, 2001) and hence the structure

and thereby the stability of the entire web (Romanuk et al., 2009). Non-

independent responses of species to environmental change provide the

potential for complex effects on patterns of community assembly and disas-

sembly, and evidence from small-scale experiments suggests that indirect

effects of temperature change can be substantial (Davis et al., 1998). This

growing body of evidence makes it increasingly clear that it is no longer

tenable to make simple predictions about networks based only on species’

climate envelopes; rather, the species that can invade or go extinct are

dependent not only on changes in environmental conditions, but also on

the other species that have invaded already, or have gone extinct already.

In addition, new species assemblages may emerge due to the differential

rates of range shifts by species within ecosystems: present assemblages of

interacting populations will not simply shift further north or to the west or to

higher altitudes. Some species will move faster and further than others.

Short-lived species with high dispersal abilities will re-assemble differently

within networks from those which are long-lived and have low dispersal

potentials (Montoya and Raffaelli, 2010). Spatial dislocations will have

important impacts for above-ground versus below-ground terrestrial assem-

blages, which, although intimately linked, are characterized by quite differ-

ent rate processes, and could become dislocated as ranges shift through

climate change. An example is the effects of such dislocations on future

plant distributions and diversity, which might explain why some plants

may be lost, whereas others may become more abundant, in their native

versus new ranges owing to climate change (Van der Putten et al., 2010).

Despite the strong effects interspecific interactions and network structure

can have on community assembly (e.g. Warren, 1996), there are still few

studies of how environmental change affects the rate and trajectory of

assembly, and fewer still of disassembly (González, 2000), to be able to

make reliable generalizations at present. Although not explicitly linked to

climate change effects per se, a recent whole-network study was carried out in

a series of large subtidal mesocosms in Lough Hyne to explore empirical

patterns and processes related to food web assembly and disassembly
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(O’Gorman and Emmerson, 2009, 2010). Identical core assemblages of pre-

datory fish, decapods and echinoderms were established within the cages.

Smaller species from lower trophic levels were allowed to recruit naturally,

creating multiple replicates of complex food webs consisting of over 100

species. Targeted species extinctions carried out on subsets of the mesocosms

highlighted the importance of both strong and weak interactors for food web

stability (O’Gorman and Emmerson, 2009; Figure 2C), with cascading

effects of strong interactors on ecosystem processes being dampened in the

presence of weakly interacting species. Further, the loss of either strong or

weak interactors increased the variability of ecosystem process rates and

reduced the resistance of the communities to secondary extinctions and

invasions. Given that the strong and weak interactors manipulated in this

study were the largest species present in the webs, occurring at high trophic

levels, these targeted extinctions mirror the loss of large species predicted by

climate change scenarios and thus highlight the potential impacts of such

losses on network stability (e.g. Raffaelli, 2004).

Some additional evidence for potential changes to freshwater networks

under future climatic scenarios can be drawn from a range of studies con-

ducted along temporal and spatial (altitudinal or latitudinal) environmental

gradients as proxies for climate change (e.g. Friberg et al., 2009; Lavandier

and Décamps, 1983; Parker and Huryn, 2006; Woodward et al., 2010a).

In the Alaskan study of Parker and Huryn (2006) (Figure 7), higher stream-

bed disturbance, due to more frequent and intense peak flows arising precip-

itation-based flow (rather than spring-derived), reduced mean food chain

length, altered the identity of top predators and the proportion of biomass at

different trophic levels, and significant differences in material and energy

flow. Some glacially influenced streams will warm as ice masses shrink in

response to climate change, which is generally predicted to increase overall

invertebrate diversity whilst simultaneously facilitating the local extinction of

cold-stenotherm taxa. However, Flory and Milner (1999) showed that the

extinction of an early-colonizing chironomid genus (Diamesa), however, was

not due to increased water temperature per se, but to competitive exclusion

by another chironomid, Pagasia partica, which colonized later, indicating

that warming strengthened biotic interactions, thereby influencing network

assembly indirectly. Nevertheless, Milner et al. (2008) showed in a long-term

study of a stream where water temperature had increased from 2 to 18 �C

that the mechanism of community assembly was typically tolerance, and that

only a few taxa (<15%) were lost, suggesting that in these kinds of systems

networks will increase in both size and complexity as glacial influences wane.

In a study of biomass production in quantified stream food webs along an

altitudinal gradient in the French Pyrénées, Lavandier and Décamps (1983)

characterized changes in the distribution and magnitude of energy flows,

together with increases in taxonomic richness, along a maximum water
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temperature gradient from 4.5 to 13 �C. The larvae of small taxa (Chirono-

midae) were replaced as the dominant primary consumer of periphyton and

detritus by larger taxa (Baetis mayflies and Allogamus auricollis caddisflies)

along the thermal gradient. However, the Chironomidae still formed the

major energy source for invertebrate predators across all sites, perhaps

owing to their smaller body size not affording them an upper body-size

refugium from gape-limited predators (cf. Woodward et al., 2005a). Such

taxonomic and functional shifts in mountain stream food webs might be

expected more widely across the world, owing to global reductions in glacier

and snowpack extent (e.g. Brown et al., 2007; Milner et al., 2009).

Highly resolved studies of natural systems that can be used for detecting

climate change impacts on ecological networks are still scarce, but several

model systems, including those we identified in Section II, offer promise

within this context. The biogeographical isolation of Antarctica provides a

close-to-pristine environment for studying intact ecosystems (Arntz et al.,

1994; Chown and Gaston, 2000; Clarke, 1983; Dayton, 1990; Gray, 2001;

Hedgpeth, 1971) and the recently characterized food web of the eastern

Weddell Sea shelf and slope region (Figure 9) contains 488 species and over

16,000 feeding links (Brose et al., 2005; Jacob, 2005). Many species are

opportunistic trophic generalists, resulting in high omnivory and linkage

density within the network (Brenner et al., 2001; Jacob et al., 2003). Rising

temperatures and shifts in the position of warm and cold waters as the ice

sheets melt, however, could open the door to colonization of a suite of new

apex predators: invasions of shark species not previously found in the Ant-

arctic could potentially exert powerful top-down effects upon the slow-

growing and poorly defended resident fauna in the food web (Aronson

et al., 2007; Clarke et al., 2004), and this is likely to lead to extensive rewiring

of the network if these species are lost (Figure 9). In addition to potential

increases in the rate and number of these biological perturbations (i.e. inva-

sions), physical disturbances are also likely to increase in the Antarctic,

where icebergs are being calved from glaciers and ice sheets at an accelerating

rate, which can alter large areas of benthic marine food webs by scouring the

sea bed and effectively resetting the clock of food web assembly at more local

scales (Teixidó et al., 2007; Figure 10).

We need a mechanistic framework that allows us to predict where a given

species is likely to forge links in a given network: several approaches based on

body size have been used successfully in predator–prey networks (e.g.

Petchey et al., 2002), and other approaches have also been developed recently

in the plant–pollinator and host–parasitoid literature. These need to be

refined to account for changing environmental conditions and then tested

for their ability to predict network effects of climate change. Ives and Zhu

(2006)have proposed a method that could be applied to host–parasitoid

webs, based on the phylogenetic structure of the network. Essentially, if the

ECOLOGICAL NETWORKS IN A CHANGING CLIMATE 107



Sleepershark

Spurdog Lanternshark

Etmopterus granulosus (a. 0.6 m)Squalus acanthias (a. 0.8−1.6 m)

Porbeagle

Somniosus microcephalus (a. 6.4 m) Lamna nasus (a. 2.5 m)

Figure 9 Directional change in the Weddell Sea food web, Antarctica. The pre-
invasion food web contains 492 species, 16,137 links and no ‘true’ top predators; the
post-invasion food web contains 497 species, 16,344 links and true top predators. The
post-invasion web here is a hypothetical web, constructed by simply including
the sharks and links with prey items they would likely take according to expert
opinion. Cascading effects including possible extinctions are not considered.
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Figure 10 Weddell Sea food web, Antarctica, depicting cycles of ice-scouring of the
sea bed and subsequent recovery of the benthic food web. Photographs# supplied by
Julian Gutt at the Alfred Wegener Institute for Polar and Marine Research, 27568
Bremerhaven, Germany.
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host range of a parasitoid is constrained by host phylogeny (i.e. hosts within

the range are more closely related to each other than they are to hosts outside

the parasitoid’s range), and likewise the ‘parasitoid range’ of a host is con-

strained by parasitoid phylogeny, then it should be possible to calculate the

probability that an invading species with a given phylogenetic position will

interact with each of the species already in the network. Similar approaches

might be usefully extended to other systems, particularly plant–pollinator

networks where modular structures seem to be extremely common, and

which might reflect analogous phylogenetic constraints within closely related

taxa and coevolutionary links between consumers and resources (Jordano

et al., 2010). Unlike food webs and host–parasitoid systems, however, the

interactions within these networks are primarily mutually beneficial and also

typically more temporally dynamic (at least at higher latitudes) (Olesen et al.,

2010). In addition to the current range of approaches and modelling techni-

ques used to predict network assembly, more recent work has identified a

possible link between ecological stoichiometry and invasion success

(González et al., 2010). This suggests another possible means to employ a

first-principles approach, in line with the general aims of this chapter, as a

predictive tool that could help to reduce the high levels of contingency which

typify many of the current phenomenological approaches used to assess

species range shifts (e.g. bioclimatic envelope models).

B. Phenological Matches and Mismatches: Temporal
Rewiring of Ecological Networks

The impacts of climate change on ecological networks are likely to act via

both spatial (previous section) and temporal/phenological coupling and

decoupling of interactions (Winder and Schindler, 2004). Direct, species-

level climate change effects that may precipitate phenological rewiring of

networks could include decreased development time, and increased survival

and a longer growing season, leading to more generations per season. These

changes may also impact population dynamics, as observed for Arctic insect

herbivores (Strathdee et al., 1993). Changes in generation time may be

relatively slow to respond to a changing climate (Hulle et al., 2008), especially

if photoperiod (which is independent of climate change), rather than temper-

ature, is a key driver of life-history events (such as diapause and reproduc-

tion). The important role of phenology, that is the timing of key life history

events, in ecological communities was recognized many decades ago by

Charles Elton, who devoted an entire chapter to ‘Time and animal commu-

nities’ in his influential book Animal Ecology (1927). He wrote: ‘Many of the

animals in a community never meet owing to the fact that they become active

at different times’ (p. 83). In modern ecological parlance, Elton was
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highlighting the important role of phenology in controlling the links that are

realized in ecological networks (cf. Durant et al., 2007). The so-called match/

mismatch hypothesis, a term first coined by Cushing (1975), originally

focused on the extent of coincidence between the time of hatching of fish

larvae and the time when their planktonic prey become available. This was

later extended by Pope et al. (1994), who discussed how larval and juvenile

fishes needed to ‘ride’ the seasonal wave of plankton production to grow and

survive: if the phenology of consumers and resources becomes decoupled due

to differential responses (which again, may be related to correlates between

body size, individual metabolism, and life history and developmental rates),

this could break or weaken many of the key links, especially those at the base

of the food web.

In host–parasitoid and other insect-dominated networks in temperate

zones, for example insects enter an overwintering state, either as eggs, larvae,

pupae or adults, depending on the taxon. The effects of warming could

simply result in all insects becoming active earlier in the season to the same

degree (e.g. Harper and Peckarsky, 2006), but there is also evidence that

increasing day length, which is independent of climate change, plays an

important role for some taxa. This could lead to a mismatch in early season

emergence of species that rely differently on light versus temperature cues,

with powerful repercussions for community dynamics, due partly to priority

effects. For example an early emerging aphid species can support a popula-

tion of a parasitoid that prevents the establishment of a later-arriving aphid

species through apparent competition, while synchronized arrival leads to

exclusion of the former aphid and the parasitoid, due to resource competition

and unstable dynamics, respectively (Jones et al., 2009). Although it is

currently difficult to make general predictions about these kinds of effect,

given the limited availability of suitable data, it is likely that the relative

importance of day length and temperature for different taxa depends on the

developmental stage in which they overwinter. It seems reasonable to suggest

that species that overwinter as adults might simply need to reach a minimum

temperature for activity to commence, whereas those that overwinter as

pupae, for example may need external cues such as day length to trigger

the onset or completion of metamorphosis. If this is the case, it gives us some

identifiable species traits that could potentially be used in future work to

formulate more general theories and to improve our ability to predict how

and when phenological decoupling might arise within certain types of eco-

logical networks.

Within most ecological networks, a large proportion of possible links

remain unobserved. Some of these are missing from available data because

of insufficient sampling, as revealed by yield–effort curves (e.g. Ings et al.,

2009; Woodward et al., 2005a), whereas others are truly absent in nature and

will not be observed, irrespective of sampling effort (Jordano et al., 2003;

Olesen et al., 2010). Truly absent links are accounted for by biological
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phenomena, including phenological and spatial uncoupling, size- or reward-

mismatching and foraging constraints (Jordano, 1987; Jordano et al., 2006;

Nilsson, 1988; Olesen et al., 2008). Phenological uncoupling (Figure 11)

occurs when the phenophases (activity periods) of species in a network do

not overlap (Cushing, 1975; Jordano, 1987), and such overlaps often have to

be substantial for links to be both manifested and detected by an observer

(Jordano, 1987).

Olesen et al. (2010) have demonstrated the importance of phenological

uncoupling (weak or no overlap in phenophases) in a Greenland pollination

network from the high Arctic (74�300N, 21�000W), where connectance was

only 15%, that is the proportion of unobserved potential links was 85%. They

found that phenological uncoupling accounted for nearly one-third of all

unobserved links in this network. However, the importance of phenological

uncoupling varies among networks and is likely to be more extreme at the

edge of species ranges and at high latitudes, due to a severely constrained
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Figure 11 Phenological matches and mismatches in plant–pollinator networks in
Greenland (after Olesen et al., 2008). See also Olesen et al. (2010) for further details of
the study system and network properties.
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growing season, whereas it may be insignificant where one or both of the

interacting entities are perennial. Examples of the latter scenario include the

tropical Trinidad hummingbird–plant network studied by Snow and Snow

(1972), where resident hummingbirds harvest nectar all year round, and

tropical domatia ant–plant networks (Fonseca and Ganade, 1996), where

both mutualists are intimately linked to each other for extended periods.

There is increasing evidence that significant changes in the phenology of

plants and animals have occurred in response to recent climatic changes

(Forrest et al., 2010) and uncoupling has now been documented in a number

of systems (herbivorous insects/insectivorous birds/raptors: Both et al., 2009;

Thackeray et al., 2010), highlighting potential for climate-driven reshuffling

of phenologies to alter network structure and dynamics dramatically (e.g.

Hegland et al., 2009; Høye et al., 2007; Inouye, 2008; Inouye et al., 2003;

Memmott et al., 2007; Tylianakis et al., 2008). A recent review of phenologi-

cal change in terrestrial and aquatic systems in the UK has highlighted that

higher trophic levels (i.e. secondary consumers) are slower to respond to

climatic changes than are the lower trophic levels, making the former espe-

cially vulnerable to phenological uncoupling (Thackaray et al., 2010).

Additional challenges to predicting responses to climatic change arise if the

onset and length of phenophase are species specific (Høye et al., 2007).

Further, differential responses may even occur among populations of the

same species: for example phenological uncoupling has been reported for

great tits and the winter moth larvae they feed their young on in Denmark

(Visser et al., 2009), whereas another population in the UK has been able to

match the earlier emergence of winter moth caterpillars (Charmantier et al.,

2008). These differences are likely to reflect both genetic variation and

phenotypic plasticity.

Because species responses are embedded within the wider network, the

latter’s degree of modularity or compartmentalization has important con-

sequences for phenological matches/mismatches (Olesen et al., 2010). Large

mutualistic networks are typically nested, modular and hierarchical, with a

dense core of links shared by small club of generalists connected by two tails

to a swarm of specialists. Consequently, the latter may have their relatively

short phenophase displaced considerably before they become uncoupled

from their generalized linkage partner (Olesen et al., 2010). The hierarchical

nature of these nested link patterns adds a strong element of robustness

against perturbations and helps to facilitate species coexistence, at least in

mutualistic networks: most species in modules are short-lived specialists

linked to local module hubs of intermediate lifespan, which are further linked

to network hubs of greater longevity (Olesen et al., 2010). Consequently, the

importance of phenophase displacement among specialists can be mitigated

by module hubs, and displacement among these may be buffered by network

hubs, such that nestedness and modularity can counteract the effects of

phenophase disturbance. Climate change could potentially trigger extinction

vortices within mutualistic networks: for instance, as a species becomes rarer

ECOLOGICAL NETWORKS IN A CHANGING CLIMATE 113



its population phenophase shortens, which increases the chances of it becom-

ing phenologically uncoupled from its resources, which in turn can reduce

mean fitness and abundance, and so on. However, phenological coupling/

uncoupling appears to be a gradual phenomenon, and Olesen et al. (unpub-

lished data) have shown that many unobserved links in a network may be due

to limited temporal overlap, which needs to be substantial to achieve a high

linkage probability (Olesen et al., 2010).

Whilst these models give invaluable insights into the importance of pheno-

logical constraints in plant–pollinator networks, they do have limitations. In

particular, they still lack a general mechanistic basis, and thus predictive

power, and they have to rely upon making fundamental assumptions about

pollinator responses to global warming due to the current lack of data. It is

therefore vital that future studies begin to characterize species responses to

elevated temperature directly (e.g. see studies on causal effects of temperature

on bird reproduction; Visser et al., 2009), and also to test more rigorously for

presence of easily measured traits (e.g. body size) that could improve our

ability to generalize. Within food webs, there are suggestions, for instance

that the extent of phenological uncoupling varies with trophic status and/or

body size, with faster responses occurring among smaller organism lower in

the web, which can release them from top-down control as their more slowly

responding consumers become progressively shifted out of phase (e.g.

Thackeray et al., 2010; Winder and Schindler, 2004). There is also evidence

that community assembly over biogeographic scales is related to food web

structure, in a seemingly analogous manner to that observed in mutualistic

networks, with webs initially being composed of a core of a few trophic

generalist species to which more specialist taxa attach themselves progres-

sively over time (Piechnik et al., 2008).

Although many of the studies highlighted earlier have demonstrated the

importance of phenological change in ecological networks, a more mecha-

nistic viewpoint is needed to begin to predict the potential impacts of climate

change on ecological networks through phenological coupling/uncoupling.

Detailed phenophase data will become essential baseline information for

future studies estimating climate effects on network structure, especially in

Arctic networks, where climate changes are most marked (e.g. Witze, 2008).

High-quality phenophase data are available for some network types, and

models incorporating such data have suggested that plant–pollinator inter-

actions are likely to be severely disrupted, with consumers potentially en-

countering periods without food and plants encountering periods without

pollinators (Memmott et al., 2007). The development of this understanding is

currently hindered by the population level focus of most phenophase

research to date (i.e. from when the first individual in a population initiates

its activity until the last ceases). By implication, more abundant species are

likely to have a longer population-level phenophase at a given site, but from a

network perspective, interactions between individuals are crucial, so in future
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we will need to shift our focus to consider changes in individual phenophase,

or at least mean individual phenophase (Olesen et al., 2010).

VII. MULTIPLE AND INTERACTING COMPONENTS

OF CLIMATE CHANGE

So far, we have subdivided climate change into several seemingly neatly

delimited components (e.g. changes in environmental temperature, atmo-

spheric composition and fluid viscosity). In reality, though, many of these

will be occurring simultaneously, and may act additively or synergistically

(e.g. Feuchtmayr et al., 2009; Moss et al., 2003). Synergies, which might

either exacerbate or ameliorate the overall effects of climate change, have

been largely overlooked from a network-level perspective. In this final sec-

tion, we will consider how the components of climate change combine, in

terms of their impacts on the higher levels of biological organization, in either

an additive or synergistic manner.

A. Combined Impacts of Warming and Atmospheric
Change on Metabolism and Stoichiometry Within
Ecological Networks

Metabolic theory and ecological stoichiometry provide a useful roadmap for

accomplishing the task of assessing the combined effects of two of the most

obvious aspects of climate change, warming and elevated CO2 levels in the

environment, because they draw clear linkages between easily measured

characteristics (e.g. body size, temperature) and higher level ecological

dynamics (e.g. metabolism, population growth, energy and material flux).

Moreover, these unifying frameworks are rooted in first principles of ther-

modynamics and mass conservation and can be applied across multiple levels

of organization, from individuals to whole ecosystems (Brown et al., 2004;

Sterner and Elser, 2002).

Metabolism and rates of ecological processes are clearly inseparable from

the stoichiometric requirements of organisms for biologically important

elements such as nitrogen (N) and phosphorus (P), and these may differ

markedly between consumers and resources within a network (Allen and

Gillooly, 2009; Gillooly et al., 2005; Reich and Oleksyn, 2004; Sterner and

Elser, 2002). For instance, N:P ratios of marine primary producers increase

with ambient temperature, whereas this does not seem to be the case for

animals, which show a virtually negligible response (Figure 12). Building new

biomass and maintaining elemental homeostasis (as in the case of consumers)

necessitate the uptake or assimilation of N or P in some proportion to the

amount of carbon fixed or assimilated. Although metabolic theory may
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explain significant variability in metabolism and energy flux across broad

ranges in temperature and body size, important additional variation may be

related to resource stoichiometry (Brown et al., 2004; Jeyasingh, 2007;

Sterner, 2004; Sweeney et al., 1986). Thus, theoretical and empirical advances

that combine metabolic and stoichiometric approaches should strongly im-

prove our ability scale-up lower level effects to predict interactive effects of

climate change on food webs and ecosystems (Allen and Gillooly, 2009).

For many ecosystems, the components needed to develop a systematic

approach to understanding these additive or interactive effects of environmen-

tal warming and changes in CO2 concentrations may already be available to a

large extent but have not yet been integrated into a network-level perspective.

Studies into the interacting effects of the different components of climate
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Figure 12 The effects of temperature on NP ratios in marine autotrophs (A) and
heterotrophs (B). Data are redrawn from Brey et al. (2010). Notice that the Log10
(NP) of autotrophs is strongly, positively related to the mean annual temperature (K)
of the organisms environment, while the Log10 (NP) of heterotrophs is relatively
independent of environmental temperature. These patterns likely reflect the relative
stoichiometric plasticity of autotrophs relative to the homeostatic nature of hetero-
trophs. However, a mechanistic explanation for the apparent increase in plant NP
with increasing temperature is currently lacking in the literature.
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change on the growthof primary producers at the base of the network provide a

useful starting point for gauging the potential joint effects of elevated CO2 and

temperature, especially in aquatic systems, for which both theory and experi-

mental evidence are better developed. For instance, phytoplankton growth

physiology has been extensively studied using chemostats and modelled using

a range of generalizations (e.g. Klausmeier et al., 2004a,b; Litchman et al.,

2004; White and Zhao, 2009) of the classic Droop model (Droop, 1983) of

nutrient uptake and growth. Importantly, parameters of this model and its

variants are related to body size (Litchman et al., 2007, 2009) and temperature

(Aksnes and Egge, 1991;Geider et al., 1998). The influence of the availability of

multiple nutrients has also been extensivelymodelled and examined experimen-

tally (e.g. Geider et al., 1998; Urabe and Sterner, 1996). Recent work has used

allometric parameterization of models to show quantitatively that the optimal

size of competing phytoplankton cells increases with the typical period between

nutrient upwelling events (Litchman et al., 2007, 2009), and a similar approach

could clearly be used to model the separate and combined effects of increased

temperature and CO2 on this competitive balance.

In a study of lake plankton, Hessen et al. (2004) showed algal C:P ratios

were significantly higher in summer than in winter, which they attributed to

seasonal shifts in the thermal stimulation of photosynthesis. Both tempera-

ture and CO2 concentrations affect autotroph stoichiometry in ways that

can ramify through the food web, and theory suggests a competitive trade-

off exists between growth and nutrient storage in phytoplankton along an

axis of individual body size. Essentially, larger phytoplankton can store

nutrients to survive periods of resource limitation, whereas smaller phyto-

plankton can grow faster when nutrients are abundant; however, if CO2

uptake is diffusion-limited larger cells should be favoured as concentrations

rise (Aksnes and Egge, 1991; Finkel et al., 2010; Litchman et al., 2009). This

raises the intriguing suggestion that elevated CO2 levels and rising tempera-

tures might have opposite (i.e. synergistic) effects on body size. Since tem-

perature affects rates of both nutrient uptake (Aksnes and Egge, 1991) and

growth (Geider et al., 1998), it should alter this competitive balance, poten-

tially changing the size structure of marine phytoplankton assemblages at

the base of the food web. Stratification within the water column of many

lakes and oceans is also likely to increase as temperatures rise (unless

mitigated by increased mixing due to more intense storm events), reducing

availability of limiting nutrients (i.e. low N:P ratios) to phytoplankton in the

photic zone (Richardson and Schoeman, 2004; Winder et al., 2009). In

addition to the potential impacts on size-selective herbivores, changes in

phytoplankton body size will alter the rate of sinking through pycnoclines,

which has additional implications for encounter rates with zooplankton at

the next trophic level, and hence the rates and magnitude of energy transfer

and nutrient cycling with the food web. If, for instance, temperature, rather

than CO2 availability, is the primary driver, smaller phytoplankton should
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be favoured, and there is some evidence to suggest that this might be the case

(e.g. Moran et al., 2010).

One exciting avenue towards blending metabolic and stoichiometric

approaches that has great potential for predicting climate change effects on

ecological networks is the application of threshold elemental ratio (TER)

models (Frost et al., 2006; Sterner, 1997; Sterner and Hessen, 1994). These

incorporate information about consumer elemental composition (CNP ratios)

and physiology (assimilation efficiencies, respiration) to quantify the resource

elemental ratios at which the consumer switches from limitation by one element

(e.g. C) to another (e.g. P; Frost et al., 2006). In addition, these models provide

quantitative estimates of consumer–resource elemental imbalances, which have

the potential to influence community assembly, material flux in food webs and

interaction strengths. Such models can be easily modified to incorporate

changes in temperature (via effects on individual respiration or ingestion;

Frost and Elser, 2002) or food quality (via effects on CNP ratios of prey

items), and, when applied to entire food webs, may provide a powerful tool

for predicting climate-induced shifts in food web structure and dynamics.

The TER approach incorporates important stoichiometric differences

between autotrophs and heterotrophs that may lead to contrasting responses

to climate warming and emergent effects on network patterns and processes

(Sterner and Elser, 2002). For example autotrophs show considerable varia-

tion in C:nutrient ratios (even within a single species) and can vary strongly

with regard to their nutrient-use efficiencies (Cross et al., 2005; Rhee and

Gotham, 1981; Sterner et al., 1997; Vitousek, 1982). This flexibility means

that a broad range of carbon fixation rates can be maintained with the same

rate of nutrient supply. Thus, holding nutrient concentrations constant, both

autotrophic production and C:nutrient ratios should increase with warming.

In contrast to autotrophs, elemental stoichiometry of heterotrophic con-

sumers is relatively fixed or homeostatic (Elser et al., 2000; Frost et al., 2003,

but see Cross et al., 2003; Demott et al., 2001). Although consumer metabolic

rate should respond positively to increases in temperature (Gillooly et al.,

2001), this increased metabolism must be matched with increased assimila-

tion of nutrients to maintain positive growth or homeostasis (Frost et al.,

2005). In the short term, a combination of flexible (and increasing) autotroph

C:nutrient ratios and fixed consumer C:nutrient ratios should result in ele-

vated elemental imbalances with increased temperature. Despite immediate

increases in consumer metabolic rates, these increased imbalances should

negatively affect growth and production of consumers, particularly those

taxa with high nutrient requirements and low TERs (Figure 13).

Long-term food web responses to elevated temperature should, however,

be fundamentally different because of time lags between short-term physio-

logical responses of individual taxa and taxonomic shifts in the community.

Over these longer time scales, elevated temperatures and low nutrient avail-

ability (Figure 13) should select for consumers with relatively low nutrient

requirements (Frost et al., 2006), high body C:nutrient ratios (Woods et al.,
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2003) and high TERs. These warming-induced shifts in food web structure

and stoichiometry should therefore alter the identity of the nodes (i.e. species

turnover and/or altered size-classes), as well as the strength of interactions

and the rates of elemental fluxes within trophic networks.

Although use of TER models is still in its infancy (i.e. most studies have

focused on single consumer–resource interactions; Anderson and Hessen,

2005; Frost and Elser, 2002), there is great potential for expansion to exam-

ine the dynamics of whole food webs. Importantly, recent theoretical

advances (Allen and Gillooly, 2009; Gillooly et al., 2005) that integrate

metabolic theory and ecological stoichiometry should aid in application of

this approach to the study of complex food webs. For example Allen and

Gillooly (2009) derived an elegant model that predicts TERs based on the

densities and individual mass of fundamental metabolic units (e.g. protein
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Figure 13 Predicted changes in food quantity and quality with increased tempera-
ture (from open circle in cold streams to filled circle in warm streams) and consumer
threshold elemental ratio isoclines (TERs; solid, dashed, and dotted lines). Both food
quantity and C:nutrient ratios are predicted to increase with warming. The solid line
represents the TER of cold-adapted taxa in cold streams. If the combination of food
quantity and quality falls below this line (as in the open circle), the consumer is
predicted to be quantity (or C) limited. In contrast, if the combination of food
quantity and quality falls above this line, the consumer is predicted to be nutrient
limited (Sterner, 1997). The dashed line represents short- to mid-term response of the
TER of this taxon in warm streams; the shift in TER is due to increased consumer
respiration at higher temperatures (Frost and Elser, 2002). In this case, declines in
food quality (increased C:nutrient ratios) and shifts in TER (driven by increased
consumer respiration at higher temperatures) lead to nutrient limitation of consumer
production and reduced flows of carbon and nutrients through this consumer. The
dotted line represents predicted TER isoclines of consumers in temperature-accli-
mated communities (i.e. long-term evolutionary responses or shifts in community
structure). Taxa in these communities are predicted to have high TERs and conse-
quently should not experience warming-induced nutrient limitation.
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complexes) and organelles (e.g. ribosomes and mitochondria) responsible for

metabolism, which scale predictably with body size and temperature. These

authors demonstrated a reasonable fit between their theoretically based

TERs and those parameterized from literature values (Frost et al., 2006)

for >30 aquatic animal taxa spanning a broad array of body size and

phylogenetic history. These results are encouraging and suggest that scaling

theory may indeed help guide predictions about food web responses to

climate change. Nonetheless, as we progress towards using these models,

more rigorous validation against empirical food web data will be essential.

B. Other Additive and Synergistic Effects of the Components
of Climate Change

The potential synergies among the components of climate change other than

temperature and elevated CO2 are currently far less well known. For in-

stance, although a few studies have highlighted the potential for viscosity-

derived effects in ecological networks, little is known about their importance

relative to other temperature-dependent mechanisms (e.g. metabolic rates).

The metabolic costs of predator-induced phenotypic defences, which are

prevalent in many zooplankters, may, for instance be determined by viscosi-

ty, which might account for their reduced expression at lower temperatures

(Lagergren et al., 2000). Whilst we have quantitative evidence for the impor-

tance of temperature-dependent viscosity for individual responses that affect

encounter and ingestion rates (e.g. via altered swimming speed and feeding

rates), our understanding of the implications for population and community

dynamics is still in its infancy.

Given the potential for a complex array of synergies between the different

components of climate change to affect ecological networks, a key priority is to

distinguish the likely main effects and interactions from those that are subsidi-

ary or trivial. The powerful overarching effects across multiple levels of organi-

zation (Brown et al., 2004) of body size and temperature (and their combined

effect on metabolism) are strong contenders for being principal drivers. As

such, the temperature–metabolism relationshipmight be viewed as the first axis

of interest, with others representing the residual variation about the line.

Similarly, body size has well-known effects on individual foraging behaviour,

such as allometric relationships with handling time and attack rates (Petchey

et al., 2002). Thus, quantifying body sizes of consumers and resources (and

recording the environmental temperature) should capture a relatively large

portion of the relevant characteristics of an ecological network. It is encourag-

ing that this appears to the case for the small but increasing number of food

webs that have been described in this way (e.g. Jonsson et al., 2005; Layer et al.,

2010b; McLaughlin et al., 2010; Mulder and Elser, 2009; O’Gorman and

Emmerson, 2010; Petchey et al., 2002; Woodward et al., 2005a), but more

data are still needed before we can make robust generalizations.
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Among the subsidiary (but potentially interacting) axes, stoichiometric

constraints may well be the next major determinant of the strength of inter-

actions in many ecological networks, at least between the basal resources and

the primary consumers that represent the first links in the food chain (e.g.

Jeyasingh, 2007). The outline of a predictive framework for gauging likely

responses of ecological networks to climate change, based upon well-de-

scribed and relatively simple relationships related to metabolic scaling, for-

aging theory, and ecological stoichiometry, seems to be edging slowly

towards being within our grasp (e.g. Petchey et al., 2010). This general

framework could then be overlain with the seemingly more contingent effects

of species-specific bioclimatic envelopes, phenological effects and community

assembly/disassembly models. Indeed, some recent studies have started to

forge links from first principles to these higher-level responses, such as the

posited relationship between ecological stoichiometry and invasion success

(i.e. chemical-metabolic constraints on network assembly) suggested by

González et al. (2010).

VIII. CONCLUSIONS

One of the key challenges for predicting effects of climate change on ecologi-

cal networks is developing theory that explicitly incorporates both the sepa-

rate components of climate change and their potential interactions among

them (e.g. increased temperature�atmospheric CO2). In an ideal world,

ecological networks would be constructed from individual-based data, with

directly observed nodes and links, over multiple generations, and at spatial

and temporal scales that capture the essential properties of the study system,

because this provides the most relevant and reliable data with which to assess

the likely responses of these complex systems to climate change. Further, the

relevant components of climate change under investigation should be

imposed on the system as dynamic stressors, to identify causal relationships

and to differentiate between potentially transient and equilibrial responses.

Once these criteria have been met, a range of more specific hypotheses can be

tested rigorously within a general predictive framework. Of course, in reality

compromises must be made, but even if these goals are only partially met we

will be better able to develop a more coherent and less contingent view of

how Earth’s ecosystems might respond to climate change. Given that one

commonly recurring theme is that larger organisms seem to be those most

adversely affected by many of the components of climate change (e.g.

Jeppesen et al., 2003; Meerhoff et al., 2007; Moran et al., 2010), and that

metabolic and stoichiometric constraints underpin so many key ecological

processes, focusing on these drivers and responses seems to be an obvious

place to start developing the network-level perspective we need to help

predict the impacts of future climate change. In particular, we need to start
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constructing, monitoring and manipulating networks from as wide a range of

natural systems as possible over extended time frames, and across multiple

levels of organization. Disentangling the responses to climate signals in

natural multi-species systems is a major challenge that will require consider-

able logistic commitments on a truly global scale and over many years, but

initiating such research at this still early stage will undoubtedly prove invalu-

able for developing our predictive capacity in the near future, as our climate

continues to change apace.
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Abrusàn, G. (2004). Filamentous cyanobacteria, temperature and Daphnia growth:
The role of fluid mechanics. Oecologia 141, 395–401.

Aksnes, D.L., and Egge, J.K. (1991). A theoretical model for nutrient uptake in
phytoplankton. Mar. Ecol. Prog. Ser. Oldendorf 70, 65–72.

Allen, A.P., and Gillooly, J.F. (2009). Towards an integration of ecological stoichi-
ometry and the metabolic theory of ecology to better understand nutrient cycling.
Ecol. Lett. 12, 369–384.

Allen, A.P., Gillooly, J.F., and Brown, J.H. (2005). Linking the global carbon cycle to
individual metabolism. Funct. Ecol. 19, 202–213.

Anderson, T.R., and Hessen, D.O. (2005). Threshold elemental ratios for carbon
versus phosphorus limitation in Daphnia. Freshw. Biol. 50, 2063–2075.

Arntz, W.E., Brey, T., and Gallardo, V.A. (1994). Antarctic marine zoobenthos.
Oceanogr. Mar. Biol. Annu. Rev. 32, 241–304.

Aronson, R.B., Thatje, S., Clarke, A., Peck, L.S., Blake, D.B., Wilga, C.D., and
Seibel, B.A. (2007). Climate change and the invasibility of the Antarctic benthos.
Annu. Rev. Ecol. Evol. Syst. 38, 129–154.

Atkinson, D. (1994). Temperature and organism size—A biological law for
ectotherms. Adv. Ecol. Res. 25, 1–58.

Atkinson, D., Ciotti, B.J., and Montagnes, D.J.S. (2003). Protists decrease in size
linearly with temperature: ca. 2.5% C-1. Philos. Trans. R. Soc. Lond. B 270,
2605–2611.

Badger, M.R., Andrews, T.J., Whitney, S.M., Ludwig, M., Yellowlees, D.C.,
Leggat, W., and Price, G.D. (1998). The diversity and coevolution of Rubisco,
plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in
algae. Can. J. Bot.-Rev. Can. Bot. 76, 1052–1071.

122 GUY WOODWARD ET AL.



Barnes, D.K.A., Verling, E., Crook, A., Davidson, I., and O’Mahoney, M. (2002).
Local population disappearance follows (20 yr after) cycle collapse in a pivotal
ecological species. Mar. Ecol. Prog. Ser. 226, 311–313.

Barnes,C., Bethea,D.M.,Brodeur,R.D., Spitz, J.,Ridoux,V., Pusineri, C.,Chase, B.C.,
Hunsicker,M.E., Juanes, F., Kellermann, A., Lancaster, J.,Ménard, F., et al. (2008).
Predator and body sizes in marine food webs. Ecology 89, 881.

Barnes, C., Maxwell, D.L., Reuman, D.C., and Jennings, S. (2010). Global patterns in
predator–prey size relationships reveal size-dependency of trophic transfer efficien-
cy. Ecology 91, 222–232.

Barnett, T.P., Adam, J.C., and Lettenmaier, D.P. (2005). Potential impacts of a
warming climate on water availability in snow-dominated regions. Nature 438,
303–309.

Bascompte, J., and Stouffer, D.B. (2009). The assembly and disassembly of ecological
networks. Philos. Trans. R. Soc. Lond. B 364, 1781–1787.

Battarbee, R.W. (2000). Palaeolimnological approaches to climate change, with
special regard to the biological record. Quatern. Sci. Rev. 19, 107–124.

Beckerman, A.P., Petchey, O.L., and Warren, P.H. (2006). Foraging biology predicts
food web complexity. Proc. Natl. Acad. Sci. USA 103, 13745–13749.

Berlow, E.A., Dunne, J.A., Martinez, N.D., Starke, P.B., Williams, R.J., and
Brose, U. (2009). Simple prediction of interaction strengths in complex food
webs. Proc. Natl. Acad. Sci. USA 106, 187–191.

Beveridge, O.S., Humphries, S., and Petchey, O.L. (2010). The interacting effects of
temperature and food chain length on trophic abundance and ecosystem function.
J. Anim. Ecol. 79, 693–700.

Beverton, R.J.H., and Holt, S.J. (1959). A review of the lifespans and mortality rates
of fish in nature, and their relation to growth and other physiological character-
istics. CIBA Found. Symp, Lifespan Animals 5, 142–177.

Bolton, T.F., and Havenhand, J.N. (1998). Physiological versus viscosity-induced
effects of an acute reduction in water temperature on microsphere ingestion by
trochophore larvae of the serpulid polychaete Galeolaria caespitose. J. Plankton
Res. 20, 2153–2164.

Bolton, T.F., and Havenhand, J.N. (2005). Physiological acclimation to decreased
water temperature and the relative importance of water viscosity in determining the
feeding performance of larvae of a serpulid polychaete. J. Plankton Res. 27,
875–879.

Bonsall, M.B., and Hassell, M.P. (1998). Population dynamics of apparent competi-
tion in a host–parasitoid assemblage. J. Anim. Ecol. 67, 918–929.

Borrell, B.J. (2006). Mechanics of nectar-feeding in the orchid bee Euglossa imperialis:
Pressure, viscosity and flow. J. Exp. Biol. 209, 4901–4907.

Both, C., van Asch, M., Bijlsma, R.G., van den Burg, A.B., and Visser, M.E. (2009).
Climate change and unequal phenological changes across four trophic levels: Con-
straints or adaptations? J. Anim. Ecol. 78, 73–83.

Boudreau, P.R., and Dickie, L.M. (1992). Biomass spectra of aquatic ecosystems in
relation to fisheries yield. Can. J. Fish. Aquat. Sci. 49, 1528–1538.

Boulton, A.J. (2003). Parallels and contrasts in the effects of drought on stream
macroinvertebrate assemblages. Freshw. Biol. 48, 1173–1185.

Brenner, M., Buck, B.H., Cordes, S., Dietrich, L., Jacob, U., Mintenbeck, K.,
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González, A., Kominoski, J.S., Danger, M., Ishida, S., Iwai, N., and Rubach, A.
(2010). Can ecological stoichiometry help explain patterns of biological invasions?
Oikos 119, 779–790.

Gray, J.S. (2001). Antarctic marine benthic biodiversity in a world-wide latitudinal
context. Polar Biol. 24, 633–641.

Hagiwara, A., Yamamiya, N., and Belem de Araujo, A. (1998). Effect of water
viscosity on the population growth of the rotifer Brachionus plicatilis Muller.
Hydrobiology 387–388, 489–494.

Hannah, D.M., Brown, L.E., Milner, A.M., Gurnell, A.M., McGregor, G.R.,
Petts, G.E., Smith, B.P.G., and Snook, D.L. (2007). Integrating climate–
hydrology–ecology for alpine river systems. Aquat. Conserv.: Mar Freshw. Ecosyst.
17, 636–656.

Hari, R.E., Livingstone, D.M., Siber, R., Burkhardt-Holm, P., and Guttinger, H.
(2006). Consequences of climate change for water temperature and brown trout
populations in Alpine rivers and streams. Global Change Biol. 12, 10–26.

Harmon, J.P., Moran, N.A., and Ives, A.R. (2009). Species response to environmen-
tal change: Impacts of food web interactions and evolution. Science 323,
1347–1350.

Harper, M.P., and Peckarsky, B.L. (2006). Emergence cues of a mayfly in a high-
altitude stream ecosystem: Potential response to climate change. Ecol. Appl. 16,
612–621.

Harris, R.M.L., Milner, A.M.M., Armitage, P.D., and Ledger, M.E. (2007). Replica-
bility of physicochemistry and macroinvertebrate assemblages in stream meso-
cosms: Implications for experimental research. Freshw. Biol. 52, 2434–2443.

Harrison, G.W. (1995). Comparing predator prey models to Lucknbills’s experiment
with Didinium and Paramecium. Ecology 76, 357–374.

Hassell, M.P. (2000). The spatial and temporal dynamics of host–parasitoid interac-
tions. Oxford University Press, 154 pp.

Hays, G.C., Richardson, A.J., and Robinson, C. (2005). Climate change and marine
plankton. Trends Ecol. Evol. 20, 337–344.

Hedgpeth, J.W. (1971). Perspectives of benthic ecology in Antarctica. In: Research in
the Antarctic (Ed. by L.O. Quam), pp. 93–136. American Association for the
Advancement of Science, Washington.

Hegland, S.J., Nielsen, A., Lázaro, A., Bjerknes, A.-L., and Totland, Ø. (2009). How
does climate warming affect plant–pollinator interactions? Ecol. Lett. 12, 184–195.

ECOLOGICAL NETWORKS IN A CHANGING CLIMATE 127



Henneman, M.L., and Memmott, J. (2001). Infiltration of a Hawaiian community by
introduced biological control agents. Science 293, 1314–1316.

Hessen, D.O., Faerovig, P.J., and Andersen, T. (2002). Light, nutrients, and P:C
ratios in algae: Grazer performance related to food quality and quantity. Ecology
83, 1886–1898.

Hessen, D.O., Agren, G.I., Anderson, T.R., Elser, J.J., and De Ruiter, P.C. (2004).
Carbon, sequestration in ecosystems: The role of stoichiometry. Ecology 85,
1179–1192.

Hessen, D.O., van Donk, E., and Gulati, R. (2005). Seasonal seston stoichiometry:
Effects on zooplankton in cyanobacteria-dominated lakes. J. Plankton Res. 27,
449–460.

Hickling, R., Roy, D.B., Hill, J.K., Fox, R., and Thomas, C.D. (2006). The distribu-
tions of a wide range of taxonomic groups are expanding polewards. Global Change
Biol. 12, 450–455.

Hildrew, A.G. (2009). Sustained research on stream communities: A model system
and the comparative approach. Adv. Ecol. Res. 41, 175–312.

Hladyz, S., Gessner, M.O., Giller, P.S., Pozo, J., andWoodward, G. (2009). Resource
quality and stoichiometric constraints in a stream food web. Freshw. Biol. 54,
957–970.

Hogg, I.D., Williams, D.D., Eadie, J.M., and Butt, S.A. (1995). The consequences of
global warming for stream invertebrates: A field simulation. J. Thermal Biol. 20,
199–206.

Høye, T.T., Post, E., Meltofte, H., Schmidt, N.M., and Forchhammer, M.C. (2007).
Rapid advancement of spring in the High Arctic. Curr. Biol. 17, R449–R451.

Hulle, M., Bonhomme, J., Maurice, D., and Simon, J.C. (2008). Is the life cycle of
high arctic aphids adapted to climate change? Polar Biol. 31, 1037–1042.

Hunt von Herbing, I., and Keating, K. (2003). Temperature-induced changes in
viscosity and its effects on swimming speed in larval haddock. The Big Fish
Bang, Proceedings of the 26th Annual Larval Fish Conference, 23–34.

Ims, R.A., and Fuglei, E. (2005). Trophic interaction cycles in tundra ecosystems and
the impact of climate change. Bioscience 55, 311–322.

Ings, T.C., Montoya, J.M., Bascompte, J., Bluthgen, N., Brown, L., Dormann, C.F.,
Edwards, F., Figueroa, D., Jacob, U., Jones, J.I., Lauridsen, R.B., Ledger, M.E.,
et al. (2009). Ecological networks—Beyond food webs. J. Anim. Ecol. 78, 253–269.

Inouye, D.W. (2008). Effects of climate change on phenology, frost damage, and
floral abundance of montane wildflowers. Ecology 89, 353–362.

Inouye, D.W., Saavedra, F., and Lee-Wang, W. (2003). Environmental influences on
the phenology and abundance of flowering by Androsace septentrionalis (Primula-
ceae). Am. J. Bot. 90, 905–910.

IPCC Climate Change (2007). The Physical Sciences Basis. In: Contribution of Work-
ing Group I to the Fourth Assessment Report of the Intergovernmental Panel on
Climate Change (Ed. by M. Parry, O. Canziani, J. Palutkof, P. Van der Linden
and C. Hanson). Cambridge University Press, Cambridge, UK.

Ives, A.R., and Zhu, J. (2006). Statistics for correlated data: phylogenies, space, and
time. Ecol. Appl. 16, 20–32.

Jacob, U. (2005). Trophic Dynamics of Antarctic Shelf Ecosystems—FoodWebs and
Energy Flow Budgets. University of Bremen, Germany, PhD Thesis, 125 pp.

Jacob, U., Terpstra, S., and Brey, T. (2003). The role of depth and feeding in regular
sea urchins niche separation—An example from the high Antarctic Weddell Sea.
Polar Biol. 26, 99–104.

128 GUY WOODWARD ET AL.



Jennings, S.J., and Brander (2010). Predicting the effects of climate change on marine
communities and the consequences for fisheries. J. Mar. Syst. 79, 418–426.

Jeppesen, E., Søndergaard, M., and Jensen, J.P. (2003). Climatic warming and regime
shifts in lake food webs: Some comments. Limnol. Oceanogr. 48, 1346–1349.

Jeyasingh, P.D. (2007). Plasticity in metabolic allometry: The role of dietary stoichi-
ometry. Ecol. Lett. 10, 282–289.

Jiang, L., and Morin, P.J. (2004). Temperature-dependent interactions explain unex-
pected responses to environmental warming in communities of competitors.
J. Anim. Ecol. 73, 569–576.

Johnson, E.A., and Miyanishi, K. (2008). Testing the assumptions of chronose-
quences in succession. Ecol. Lett. 11, 419–431.

Jones, T.S., Godfray, H.C.J., and van Veen, F.J.F. (2009). Resource competition and
shared natural enemies in experimental insect communities. Oecologia 159,
627–635.

Jonsson, T., Cohen, J.E., and Carpenter, S.R. (2005). Food webs, body size, and
species abundance in ecological community description. Adv. Ecol. Res. 36, 1–84.

Jordano, P. (1987). Patterns of mutualistic interactions in pollination and seed
dispersal: Connectance, dependence asymmetries, and coevolution. Am. Nat.
657–677.

Jordano, P., Bascompte, J., and Olesen, J.M. (2003). Invariant properties in coevolu-
tionary networks of plant–animal interactions. Ecol. Lett. 6, 69–81.

Jordano, P., Bascompte, J., and Olesen, J.M. (2006). The ecological consequences of
complex topology and nested structure in pollination webs. In: Plant–pollinator
interactions: From specialization to generalization (Ed. by N.M. Waser and
J. Ollerton), pp. 173–199. University of Chicago Press, Chicago.

Jordano, P., Vázquez, D.P., and Bascompte, J. (2010). Redes complejas de interac-
cions mutualistas planta–animal. In: Ecologı́a y evolución de interacciones planta–
animal: conceptos y applicaciones (Ed. by R. Medel, M.A. Aizen and R. Zamora),
pp. 17–41. Edotorial Universitaria, Santiago de Chile.

Kingsolver, J., andWoods, H. (1998). Interactions of temperature and dietary protein
concentration in growth and feeding of Manduca sexta caterpillars. Physiol.
Entomol. 23, 354–359.

Kishi, D., Murakami, M., Nakano, S., and Maekawa, K. (2005). Water temperature
determines strength of top-down control in a stream food web. Freshw. Biol. 50,
1315–1322.

Kissling, W.D., Field, R., Korntheuer, H., Heyder, U., and Böhning-Gaese, K.
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