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Abstract

Vector borne diseases are susceptible to climate change because distributions and densi-

ties of many vectors are climate driven. The Amazon region is endemic for cutaneous leish-

maniasis and is predicted to be severely impacted by climate change. Recent records

suggest that the distributions of Lutzomyia (Nyssomyia) flaviscutellata and the parasite it

transmits, Leishmania (Leishmania) amazonensis, are expanding southward, possibly due

to climate change, and sometimes associated with new human infection cases. We define

the vector’s climatic niche and explore future projections under climate change scenarios.

Vector occurrence records were compiled from the literature, museum collections and Bra-

zilian Health Departments. Six bioclimatic variables were used as predictors in six ecologi-

cal niche model algorithms (BIOCLIM, DOMAIN, MaxEnt, GARP, logistic regression and

Random Forest). Projections for 2050 used 17 general circulation models in two green-

house gas representative concentration pathways: “stabilization” and “high increase”.

Ensemble models and consensus maps were produced by overlapping binary predictions.

Final model outputs showed good performance and significance. The use of species

absence data substantially improved model performance. Currently, L. flaviscutellata is

widely distributed in the Amazon region, with records in the Atlantic Forest and savannah

regions of Central Brazil. Future projections indicate expansion of the climatically suitable

area for the vector in both scenarios, towards higher latitudes and elevations. L. flaviscutel-

lata is likely to find increasingly suitable conditions for its expansion into areas where

human population size and density are much larger than they are in its current locations. If
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environmental conditions change as predicted, the range of the vector is likely to expand to

southeastern and central-southern Brazil, eastern Paraguay and further into the Amazonian

areas of Bolivia, Peru, Ecuador, Colombia and Venezuela. These areas will only become

endemic for L. amazonensis, however, if they have competent reservoir hosts and transmis-

sion dynamics matching those in the Amazon region.

Introduction

The latest report of the Intergovernmental Panel on Climate Change (IPCC) states that climate

change will affect human health through exacerbation of health problems that already exist

[1,2]. Vector borne diseases are particularly susceptible to climate change because the distribu-

tions of the species involved in the complex transmission cycles are highly related to climatic

variables. Under the assumption that species occupy only climatically suitable areas, changes in

the geographical distribution of infectious diseases vectors are expected [3–5]. Leishmaniases

are climate-sensitive diseases, not least because the distribution and behaviour of their sand fly

vectors are strongly affected by rainfall, temperature and humidity [6,7]. The current report

investigates the potential effects of climate change on the spatial distribution of Lutzomyia

(Nyssomyia) flaviscutellata (Mangabeira) (Diptera, Psychodidae), a phlebotomine sand fly vec-

tor [8] of the parasitic protozoan Leishmania (Leishmania) amazonensis Lainson & Shaw

(Kinetoplastida, Trypanosomatidae), a causative agent of zoonotic cutaneous leishmaniasis

(ZCL) throughout much of tropical South America [9,10].

Leishmaniases are among the world’s six most neglected diseases, affecting men, women

and children. The World Health Organization estimates the yearly occurrence as about

200,000 to 400,000 human cases of visceral leishmaniasis and 700,000 to 1.2 million human

cases of cutaneous leishmaniasis distributed in 98 countries. In the American continent, Brazil

is the country with the highest estimated incidences of both visceral and cutaneous leishmania-

ses [11]. During the past decades, human migrations have resulted in major deforestation and

unplanned settlements in Brazil. This has led to the emergence of new transmission profiles of

ZCL, driven mostly by human-made environmental changes [12].

In Brazil, seven Leishmania species are involved in ZCL transmission [13]. The most widely

distributed is Leishmania (Viannia) braziliensis (Vianna), recorded in every Brazilian state and

causative agent of mucocutaneous leishmaniasis. Leishmania (Viannia) guyanensis Floch is

also noteworthy, because of its characteristic clinical manifestation with multiple skin lesions.

Leishmania amazonensis is mainly distributed in the Amazon region. This parasite, when

infecting humans, can cause localized cutaneous lesions and eventually develop a more severe

clinical form, diffuse cutaneous leishmaniasis (DCL). This clinical form is rare, with chronic

development, where the immunodepressed patient shows frequent relapses and insufficient

responses to available therapies. Human cases of DCL caused by L. amazonensis are recorded

sporadically in Amazon areas of Brazil, Venezuela, Colombia, Bolivia and Peru. In Brazil, DCL

is recorded in North, Northeast, Central West and Southeast regions [14, 15].

Lutzomyia flaviscutellata has been incriminated as the vector of L. amazonensis in Amazo-

nian Brazil [16,17]. It is a sylvatic sand fly that feeds at ground level on a variety of animals

including marsupials and birds, but it is most strongly attracted to rodents [18]. In addition to

L. flaviscutellata, there may be as many as five other taxa in the “L. flaviscutellata complex”

[19,20], which share morphological and behavioural characteristics and are implicated in the

transmission of L. amazonensis or closely related Leishmania species [9]. Lutzomyia
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(Nyssomyia) olmeca olmeca (Vargas & Nájera) is restricted to Central America; L. (N.) olmeca

bicolor Fairchild & Theodor is found in Central America and northern South America; L. (N.)

olmeca nociva Young & Arias is restricted to western Amazonian Brazil; L. (N.) reducta Feli-

ciangeli, Ramirez Pérez & Ramirez is restricted to the western Amazon region; and L. (N.) inor-

nataMartins, Falcão & Silva can be considered a synonym of L. flaviscutellata [20]. In contrast,

Galati [21] treated the L. flaviscutellata complex as the genus Bichromomyia.

There is evidence that the distribution and population ecology of L. flaviscutellata are influ-

enced by climate, particularly by seasonal precipitation. In eastern Amazon, for example, this

vector was more abundant during the dry season in flooded Igapó forests but during the wet

season in secondary Capoeira forests [22,23]. Its distribution stretches to forest patches and riv-

erine gallery forests in the Brazilian savannah (the Cerrado biome) and also in the coastal

Atlantic forest [20,21].

Future projections from General Circulation Models (GCMs, models that simulate energy

transfer in the atmosphere) indicate that the Amazon region will become progressively drier

through strengthening and lengthening of the dry season [24] and the precipitation variability

associated with the El Niño-Southern Oscillation (ENSO) will likely intensify [25]. In the last

eight years, there have been reports of the first human infected by L. amazonensis in Rio de

Janeiro State, Brazil [26], together with more widespread captures of L. flaviscutellata to the

south of the Amazon region, namely in the Atlantic forest [27,28] and in the Cerrado [29–32].

This has prompted the hypothesis that this vector could be expanding its geographical distribu-

tion. Ecological niche modelling (ENM) provides a way of exploring the environmental

requirements of L. flaviscutellata and how its distribution might change in response to climate

change.

The known occurrences of species can be linked to environmental variation across land-

scapes in order to estimate ecological niches and geographic distributions. Ecological niche

modelling has been widely used in ecology, biogeography and conservation studies, with many

published reviews on general applications and specific steps of model development [33–35]. In

these models, an algorithm is used to calculate the relationship between species’ occurrence

records and environmental variables, in order to create a surface of environmental suitability

or probability of species occurrence [36,37]. In climate change studies, after an ENM is criti-

cally tested and validated, it can be projected in different time or space, allowing the examina-

tion of possible range expansions, contractions or shifts. Discussions of future projections of

species’ distributions have to account for variability between different GCMs. Although the use

of different GCMs and climate change scenarios can be a great source of variation in ENM,

comparative studies demonstrate that most uncertainty is caused by the use of different ENM

algorithms [38,39]. Recent comparisons of several niche modelling algorithms concluded that

there is not a single approach recommended for every study, and therefore a suite of algorithms

should be tested for predictive ability before answering particular questions regarding species

niches [40]. In addition to the importance of testing the use of different algorithms, the type

and quality of species data strongly influence model outputs. Most ENMs of disease vectors are

based on accessible species presence datasets and randomly generated pseudo-absences,

instead of carefully selecting absence data in order to significantly improve model performance

[41]. The use of species absence data tends to produce better model outputs, which are closely

fitted to input data because they can more effectively detect the environmental features dis-

criminating between species presence and absence [42].

Few published studies assessed current and future projections of ecological niches of sand

flies using different methods [43–45]. Among South American species, three ZCL vectors in

central and southern Brazil–L. (N.) whitmani (Antunes & Coutinho), L. (N.) intermedia (Lutz

& Neiva) and L.migonei (França)—were modelled and the results showed that each should
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find improving climatic conditions in the future, with L. whitmani having the largest predicted

range expansion [46]. These three sand fly species are involved mostly in the transmission of

Leishmania (Viannia) braziliensis in long-colonized regions, a parasite species with wider dis-

tribution and different epidemiology than L. amazonensis [10]. Most transmission of L. amazo-

nensis occurs in the lessdeforested Amazon region. Therefore, it cannot be assumed that L.

flaviscutellata will expand into southeastern Brazil, the most populous region of the country

[47], in the same way as predicted for L. whitmani [46]. The aims of the current study, there-

fore, were to define the climate niche of L. flaviscutellata and to use it to explore future projec-

tions under climate change scenarios.

Materials and Methods

Review of the current distribution

We performed an extensive literature review to compile occurrence records of L. flaviscutellata.

We searched three online databases (PubMed, http://www.ncbi.nlm.nih.gov/pubmed; ISI Web

of Knowledge, http://apps.webofknowledge.com and SCOPUS, http://www.scopus.com) dur-

ing October 2014 using different combinations of the keywords “Psychodidae”, “Lutzomyia”

and “flaviscutellata”. We considered as valid records the following species names: Lutzomyia

(Nyssomyia) flaviscutellata, Bichromomyia flaviscutellata, Phlebotomus flaviscutellatus, Fleboto-

mus flaviscutellatus, Psychodopygus flaviscutellatus and Phlebotomus apicalis. We also gathered

unpublished records from the Health Departments of Brazil and from major Brazilian sand fly

collections (Centro de Pesquisas Rene Rachou—FIOCRUZ, Instituto Evandro Chagas—IEC

and Faculdade de Saude Publica—USP).

Prior to the descriptions of L. olmeca, L. olmeca bicolor and L. olmeca nociva, all morpholog-

ically similar sand flies were identified as L. flaviscutellata. Articles published up to 1980,

therefore, were more carefully reviewed and excluded from the database if cited as having iden-

tification errors in later reviews [20,48]. In addition, L. flaviscutellata only occurs in South

America, whereas the range of L. olmeca stretches northward into Central America and up to

Mexico [20,49].

For the ENMs, we also inferred absence records from the literature. The vast majority of the

reviewed studies used light traps to capture sand flies. This lowers detectability because L. fla-

viscutellata is not as highly attracted to light as many sand fly vectors. The most effective traps

for L. flaviscutellata are rodent-baited “Disney”-like traps [18,50]. Nonetheless, it can be cap-

tured in light traps if the local abundance is high enough–usually in the Amazon forest

[51,52]–or in long-term monitoring studies in other biomes [28,53]. Therefore, only localities

with at least one year of monthly sand fly sampling with no record of L. flaviscutellata, regard-

less of the capture method, were considered as absence records.

Species occurrence datasets from secondary data tend to be spatially biased, especially in the

Amazon, with records following access points such as roads or rivers [54,55]. Because this

could hinder model accuracy, we refined our dataset by removing duplicate records. First, all

unique presence and absence points were classified in three categories according to their spatial

precision (High: geographical coordinates of capture site given in the reference; Medium: geo-

graphical coordinates approximated according to description of capture site; Low: only district

or municipality level information, S1 Fig). Then a 20 km buffer was set around each record–if

multiple records fell inside the same buffer zone, we retained only the one with the higher spa-

tial precision. The final occurrence dataset used to run the models was composed of 199 pres-

ence and 86 absence points (S2 Fig).
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Climate variables

WorldClim (http://www.worldclim.org) provides 19 bioclimatic variables derived from

monthly averages of temperature and precipitation [56]. We used a subset of these variables as

predictors in the current (average for 1950–2000) and 2050 (average for 2041–2060) projec-

tions of L. flaviscutellata climate suitability. For future conditions we used downscaled and cali-

brated projections of 17 GCMs (S2 Table) from the fifth assessment report of the International

Panel on Climate Change [25], under two different greenhouse gas concentration pathways:

“stabilization” (RCP 4.5) and “high increase” (RCP 8.5). These were chosen to represent con-

trasting scenarios of 21st century climate policies, where radiative forcing of greenhouse gas sta-

bilizes by 2100 (in RCP4.5) or keeps rising after 2100 (in RCP8.5) [25, 57]. All climate data

were at the spatial resolution of 10 arc-minutes (ca. 344 km2 at the equator). This coarse resolu-

tion is compatible with the spatial precision of our L. flaviscutellata occurrence data. Further-

more, climatic effects on species distributions are better perceived at coarser spatial resolutions

[33,58].

To reduce collinearity in the bioclimatic dataset, we selected a subset of less correlated vari-

ables. We generated a Pearson correlation matrix (S3 Fig) from the bioclimatic values of L. fla-

viscutellata’s records using the package corrplot in the software R (version 0.73 [59]) and

within each pair or group of highly correlated variables (r> 0.6) all but one was removed, with

the selection criteria being ecological relevance to the vector. The final set of climate predictors

used to run the models consisted of: annual mean temperature (BIO1), mean diurnal range

(BIO2), temperature seasonality (BIO4), annual precipitation (BIO12), precipitation seasonal-

ity (BIO15) and precipitation of warmest quarter (BIO18).

Ecological Niche Models

A critical step is the selection of the modelling algorithm, because the use of different methods

can lead to different results [40,42,60]. We modelled using two different algorithms for each

type of species dataset: presence only (BIOCLIM and DOMAIN), presence/background

(MaxEnt and GARP) and presence/absence (GLM and Random Forests). These six algorithms

represent different modelling approaches: climate envelope (BIOCLIM), environmental dis-

tance (DOMAIN), statistical adjustment (GLM) and machine learning (MaxEnt, GARP and

Random Forests).

For the models produced by BIOCLIM and DOMAIN, only the set of 199 presence records

of L. flaviscutellata was used. These presence-only models are developed by constraining the

range of environmental predictors to either the minimum and maximum values assigned to all

presence records, as in BIOCLIM [61] or by multivariate metrics in environmental space, as in

DOMAIN [62].

Presence/background methods estimate potential distributions by comparing the environ-

mental characteristics at sites where the species has been recorded (presence) with those

throughout the study region (background). We used MaxEnt, a machine learning algorithm

based on maximum entropy [63] and GARP, the genetic algorithm for rule set prediction [64].

For these models, we used the 199 presence records with 10,000 randomly generated back-

ground points throughout the study area (South America).

Statistical adjustment and classification algorithms are often used when absence data are

available. We used logistic regression, the most common type of Generalized Linear Models

(GLM) used in ENM [65] and Random Forests, a machine learning algorithm based on classifi-

cation of regression trees [66]. GLM and Random Forests models used the full set of 199 pres-

ence and 86 absence records.

Ecological Niche Model of Lutzomyia flaviscutellata
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Most models were developed using the package dismo (version 1.0–5 [67]) in the software R

(version 3.1.1 [68]). GARP models were run in OpenModeller (version 1.1.0 [69]), using its

“Best Subsets” new implementation [70]. For every model, we used 10-fold cross validation in

order to use the whole set of presence/absence points for both model training and testing. In

each model run, 10% of points were randomly selected for model testing. Sixty model runs

were performed (10 runs for each one of the six algorithms).

We restricted the model outputs to historically accessible areas to the species via dispersal

(M area in the BAM diagram framework [71, 72]). We hypothesized the accessible area of L.

flaviscutellata based on the ecoregions and elevation where it occurs (using data fromWWF

[73] and WorldClim [56]) and excluding known areas of the vector absence due to major dis-

persion barriers, such as the Andes [20,49].

The outputs of the algorithms were mapped as continuous values per pixel representing cli-

mate suitability. We used standard deviation to compare results from different algorithms and

map uncertainty. As the range of values is different for each algorithm, outputs were converted

to binary (0 and 1) by applying a threshold, in order to create ensemble maps. We tested two

different threshold rules: i) maximization of sensitivity (true positive rate) and specificity (true

negative rate), which performs well in evaluations of climate change impacts on species’ ranges

[74,75] and ii) zero omission, a more conservative approach which fully maximizes sensitivity

while decreasing specificity. We also masked out the predictor values outside the ranges of the

input data to avoid strict model extrapolation in the binary predictions of each algorithm,

because, for instance, this could include the consideration of high suitability under extreme val-

ues unlikely to be biologically realistic [76]. Model significance was evaluated by binomial

probabilities calculated over binary outputs, whereas model performance was assessed by True

Skill Statistics (TSS) and Cohen’s kappa. Both TSS and kappa range from -1 to +1, where +1

indicates perfect agreement and values of zero or less indicate a performance no better than

random [77].

We then produced ensemble maps overlapping the binary projections of the six models

with highest TSS and kappa values for each algorithm. Only the areas of agreement of at least

four models were retained in the final maps, following the majority ensemble rule [78]. As we

opted to include variability of all 17 GCMs, we summed their projection maps for each algo-

rithm. Final consensus maps of current and future predictions were overlapped to visualize

expansion and contraction areas of climate suitability in both climate change scenarios.

All binary output maps were projected in the Albers Equal Area Conic coordinate system

using the software ArcGIS 10.1. We then calculated the total predicted area of climate suitabil-

ity for L. flaviscutellata from the final consensus maps and the changes between current and

future predictions. The elevation range of the whole climatically suitable area from the current

and future consensus maps was calculated using the Digital Elevation Model available from

WorldClim. We sampled elevation values from 10,000 randomly generated points inside the

predicted climatically suitable areas, and produced kernel density plots to compare the eleva-

tion profiles under current and future scenarios. Wilcoxon rank sum tests were performed to

assess statistical differences between each future scenario and the current prediction. Graphics

and statistical tests were developed in the software R.

Results

The complete occurrence database of L. flaviscutellata included 342 presence records. Most of

them are from Brazil (277), but other South American countries with records of the species

include French Guiana (17), Suriname (15), Colombia (11), Peru (10), Trinidad and Tobago

Ecological Niche Model of Lutzomyia flaviscutellata

PLOSONE | DOI:10.1371/journal.pone.0143282 November 30, 2015 6 / 21



(4), Venezuela (4), Bolivia (2) and Ecuador (2) (S1 Fig, see S1 Table for the gazetteer of occur-

rence records).

Lutzomyia flaviscutellata occurs in areas where the annual mean temperature ranges from

21 to 27.6°C and the annual precipitation varies between 1,139 and 3,843 mm (Table 1). Its

current elevation range stretches between 4 and 1,539 m (Table 1).

Model performance ranged from fair to excellent (0.4< TSS> 1; 0.3< kappa> 1, Fig 1).

Outputs with higher values of both TSS and kappa were selected to produce the ensemble mod-

els; all of them were significantly better than random predictions (binary probabilities, p<

0.001). For predictions under current climatic conditions, the different algorithms showed a

common general pattern with some regional variation (Fig 2). Testing different threshold rule

methods showed differences in binary outputs, more evidently in DOMAIN and GLM, while

in Random Forests the difference could barely be noticed (S4 Fig). Masking out the predictor

values outside the ranges of the input variables showed that models produced by all algorithms

had little to no areas of model extrapolation (S5 Fig).

Table 1. Bioclimatic and elevation ranges of occurrence records of Lutzomyia flaviscutellata.

Min. Median Mean Max.

Annual Mean Temperature (°C) 21 26.1 25.6 27.6

Mean Diurnal Range (°C) 6.4 9.8 10.21 15.5

Temperature Seasonality (standard deviation) 2.35 5.53 7.203 28.69

Annual Precipitation (mm) 1139 2109 2089 3843

Precipitation Seasonality (coefficient of variation) 15 58 56.98 94

Precipitation of Warmest Quarter (mm) 19 318 354.2 1034

Elevation 4 134 200.3 1539

doi:10.1371/journal.pone.0143282.t001

Fig 1. Performance of models produced by the different algorithms according to TSS and Cohen’s
kappa.

doi:10.1371/journal.pone.0143282.g001
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Under current climate conditions, all six algorithms predict most of the Amazon as climati-

cally suitable (Fig 2). Mapping the uncertainty between models (Fig 3) showed that the north-

western region of the continent (most of Colombia, southern Venezuela, northern Peru and

northwestern Brazil) were areas of disagreement between models. This becomes clearer in the

ensemble outputs, where lighter shades of blue and red indicate fewer consensus between mod-

els (Fig 4).

Fig 2. Climate suitability for Lutzomyia flaviscutellata in South America under current conditions from six modelling algorithms.Continuous output:
stretched values of climate suitability. Binary output: suitable areas after the application of the threshold that maximizes model sensitivity and specificity.

doi:10.1371/journal.pone.0143282.g002
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Projections under climate change conditions showed quite different results for each of the

17 GCMs, although there was more variation between different ENM algorithms than between

different GCMs (S6, S7, S8 and S9 Figs). When combined, however, most algorithms predicted

an expansion of the total area of climate suitability of L. flaviscutellata (Fig 4). All models agree

that the species should find improving climate conditions towards the southern limits of its dis-

tribution, especially in the “high increase” scenario (RCP 8.5).

Fig 3. Uncertainty mapping for ecological nichemodels of L. flaviscutellata.

doi:10.1371/journal.pone.0143282.g003

Fig 4. Current and future climate suitability for Lutzomyia flaviscutellata from six modelling algorithms and ensemble maps.

doi:10.1371/journal.pone.0143282.g004
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The final consensus maps for both scenarios predict the expansion of the southern limits of

the climatically suitable area for L. flaviscutellata (Fig 5), including most notably the Brazilian

states of Minas Gerais, Mato Grosso do Sul, São Paulo, Amazonas and Maranhão. Other major

expansion areas include eastern Paraguay and Loreto Department in Peru. Some minor con-

traction is also projected in specific areas of central Brazil, Venezuela and Peru.

The final predicted climate suitability area for L. flaviscutellata increased by 12.8% in the

“stabilization” scenario and by 10.7% in the “high increase” scenario when compared with cur-

rent predictions (Table 2). There were significant changes in the predicted elevation profile of

the species (Fig 6), with the maximum elevation value increasing from 1,545 m to 2,213 m in

the “stabilization” scenario and to 2,265 m in the “high increase” scenario (Table 2).

Discussion

Model predictions and uncertainty

The performance testing of different algorithms followed by selection of the best ones in a con-

sensus is becoming the norm [40,78,79], because the use of different modelling methods may

lead to contrasting results [38,39,80]. Presence only models are more mathematically simple

and therefore our models produced by BIOCLIM and DOMAIN showed the widest variation

in predictive performance. Presence/background methods MaxEnt and GARP had good and

Fig 5. Consensusmaps of predicted future climate suitability of Lutzomyia flaviscutellata. Left: Stabilization climate scenario (RCP4.5); right: High
increase climate scenario (RCP8.5). Future expansion areas (red), future contraction (blue) and no change between current and future climate suitability
(grey).

doi:10.1371/journal.pone.0143282.g005
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similar performances, although MaxEnt had a shorter TSS variability between its outputs.

Therefore, MaxEnt would be the algorithm with the best results if we did not have any infor-

mation on absence records of L. flaviscutellata. This agrees with a comparative study of the pre-

dictive power of several modelling algorithms, where MaxEnt was one of the best among

methods that do not use absence data [80]. MaxEnt has been a popular method in recent years

[43–45,81–83], possibly because of its easy interface and good performance. Random Forests

models had the best performance, which agrees with a modelling exercise of Culicoides imicola

Kieffer, vector of Bluetongue virus in Spain, where it outperformed GLM and discriminant

Table 2. Predicted area of climate suitability and elevation ranges of Lutzomyia flaviscutellata calculated from binary predictions of final consen-
susmaps.

Area (km²) Elevation (m)

Total Difference Min. Median Mean Max. Difference*

Current 8,126,549 - 0 185 242.9 1,545 -

2050 (“stabilization” scenario) 9,165,933 +12.8% 0 197 277.6 2,213 W = 47,022,356 p<0.001

2050 (“high increase” scenario) 8,991,938 +10.7% 0 202 287.7 2,265 W = 46,296,853 p<0.001

*Statistical significance in elevation difference defined from Wilcoxon rank sum tests between each future scenario and the current prediction.

doi:10.1371/journal.pone.0143282.t002

Fig 6. Elevation profiles of current and future projections of climate suitability of Lutzomyia flaviscutellata.

doi:10.1371/journal.pone.0143282.g006
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analysis [41]. Our results showed that the inclusion of species absence data greatly improves

model performance, which is in accordance with recent ENM studies [41, 42]. Absence data,

however, can also be a source of bias in models if not treated correctly. An absence record may

be false if the studied species has low detectability, which could happen for reasons such as low

abundance, marked seasonality or lack of an optimal capture method. Even if a species is really

absent from a surveyed region, this might be explained by reasons other than lack of environ-

mental suitability, such as dispersal limitations, historical factors or biotic interactions [84].

This is why we used a very conservative criterion for selecting absence records of L. flaviscutel-

lata. Several locations were surveyed for sand flies without the detection of L. flaviscutellata,

but they were not used for modelling because, being mostly sporadic captures, they did not

provide the sampling effort needed to detect the fly’s presence.

Variation from different GCMs were expected because there is an inherent uncertainty in

forecasting anthropogenic climate change [38,85]. However, comparative studies demonstrate

that the use of different ENM algorithms, rather than different GCMs, causes most model

uncertainty [38,39]. This was shown in individual predictions by ENM algorithms and GCMs

(S6, S7, S8 and S9 Figs), where outputs from the same algorithms are more similar to each

other than outputs from different ones. The 17 GCMs used here are the most up-to-date, from

the phase 5 of the Coupled Model Intercomparison Project [25]. For earlier sets of GCMs, com-

parative studies demonstrated that HadCM3 had very good representation of the South Ameri-

can climate [86]. However, the latest GCMs have only recently become available and their

regional variation is yet to be fully explored. Future attempts to improve projections of species

distributions based on climate models would benefit from assessments of regional performance

of GCMs.

Future projections from our models indicate that the climatically suitable area for L. flavis-

cutellata should expand mainly southeastward and southward towards higher latitudes. Other

ZCL vectors from South America showed similar results, including L. whitmani [46], as well as

other sand flies from Central and North America [43,45]. Both climate change scenarios also

indicate that some parts of the Amazon (mainly west and central) should become less climati-

cally suitable for L. flaviscutellata, which might be associated with the region’s predicted

reduced precipitation in future decades [24]. ENMs combined with climate change predictions

also demonstrated some loss of suitable environments in the Amazon for L. whitmani and L.

intermedia [46]. However, these two species occur mainly in the Brazilian savannah and the

Atlantic forest, and they are not as widespread in the Amazon as L. flaviscutellata.

In the “high increase” scenario, we expected the total area of climate suitability to be higher

than in the “stabilization” scenario, but we found the opposite result (Table 2). This might be

an indication that moderate changes in precipitation and temperature may be beneficial to L.

flaviscutellata, whereas strong changes would be harmful. This type of response to different

scenarios of climate change was observed for other ecological systems, such as the effect of tree

species composition on forest net primary production [87]. The increase in the upper elevation

bound predicted by both climate change scenarios (Table 2) suggests that the species could

shift its elevation range upwards. This was empirically demonstrated for Phlebotomus ariasi

Tonnoir from the Madrid region, Spain [88,89]. Future elevation shifts were also predicted for

Lutzomyia (Lutzomyia) longipalpis (Lutz & Neiva) and L. evansi (Nuñez-Tovar), vectors of vis-

ceral leishmaniasis in Colombia [90].

Public health priorities and future research

Knowledge about vector distributions is essential for understanding leishmaniasis eco-epide-

miology and for the success of control and surveillance activities. Our results include the

Ecological Niche Model of Lutzomyia flaviscutellata
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updated geographical distribution of L. flaviscutellata, main incriminated vector of L. amazo-

nensis in South America. This new list of occurrence locations (S1 Table) can support Health

Departments for the planning of surveillance activities. The updated distribution, however,

does not substantially change the previously known country range of the species according to

Young & Duncan [20]. A few recent records of L. flaviscutellata are outside the boundaries of

the previously known distribution, such as in Mato Grosso do Sul, Brazil [91,92], in Cusco,

Peru [93] and in Orellana, Ecuador [94]. The species has been recorded in almost every South

American country north of the Equator except Guyana, although it is likely to occur there

based on all model outputs (Fig 2). In Guyana and elsewhere in South America, the detection

of L. amazonensis in human cases should ideally be followed up by vector surveys using

rodent-baited traps, such as modified Disney traps [50].

There are recent records of L. flaviscutellata in southeastern Brazil [27,28,53,95]. It is nearly

impossible, however, to test the hypothesis of a recent expansion of L. flaviscutellata distribu-

tion associated with climate change, because of insufficient earlier sampling to demonstrate the

species’ prior absence in some regions. Both the coastal Atlantic forest and savannah regions in

Southeast and Central Brazil are already climatically suitable for L. flaviscutellata according to

our models for current conditions. This result could be interpreted as a refutation of the

hypothesis of a recent distribution expansion associated with climate change. However, the

recent records of the species in the Atlantic forest and Brazilian savannah biomes were incor-

porated into the model, assuming that they represent part of the historical distribution of the

species. Because these records were included in model building, the classification of the region

where they occur as climatically suitable under current conditions was expected, and could be a

methodological artefact. However, the emergence of transmission of L. amazonensis could be a

proxy for the vector’s expansion, such as the recent records in Paraty, southeast Brazil [26] and

in Serra da Bodoquena region, central-west Brazil [91,96]. At the same time, there is growing

evidence that L. flaviscutellata can be found near human dwellings in rural areas. The species

has been recently captured in peridomestic areas outside the Amazon forest [28,32,97] and

even in peri-urban areas [29,30,95,98]. The ability of L. flaviscutellata to survive deforestation

and rapidly colonize secondary habitats has been demonstrated near the Brazilian city of

Belém [22] as well as in plantations of exotic trees in the eastern Amazon [23]. This suggests

that, even if L. flaviscutellata does not fully expand its distribution to the predicted future areas

of climate suitability, it may colonize areas of recent deforestation at a local scale and thus

increase the local risk of human exposure to L. amazonensis. The inclusion of land cover vari-

ables in our models would likely have reduced the biotic uncertainty of our predictions at a

local scale. Nevertheless, the decision to use only climate variables was justified because of the

continental scale and relatively low resolution of the current study.

Our models do not include information on the occurrence of the parasite L. amazonensis.

Some correlations between ENSO and increases in leishmaniasis have been demonstrated [99–

102]. Because future forecasts suggest an intensification of ENSO-related precipitation variabil-

ity [25], ZCL transmission in the Amazon might increase due to climate change, regardless of

the likely changes in the distribution of its vectors. Surveillance for infections of L. amazonensis

is difficult, because identification of the parasite to species is not routine. Inclusion of data on

parasite occurrence would improve our ability to predict risk areas for human infection, for

which information on the distribution of competent reservoir hosts would also be required, as

well as a mechanistic, process-based modelling of the transmission dynamics [8,103].

The current results raise awareness of the predicted expansion of L. flaviscutellata near the

borders of the Amazon–in Bolivia, Peru, Colombia and Venezuela–as well as many parts of

Minas Gerais and São Paulo states, in Southeast Brazil (Fig 5). The resident population of these

two states is approximately 60.8 million people, more than twice the 25.4 million people living

Ecological Niche Model of Lutzomyia flaviscutellata
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in all the Amazonian states of Brazil [47], where most recorded transmission of L. amazonensis

currently occurs. In fact, there are two relatively recent records of L. amazonensis infections in

domestic dogs in both states, Minas Gerais [104] and São Paulo [105]. The predicted expansion

of the area of climate suitable for L. flaviscutellata in Maranhão state has the potential to signif-

icantly increase the prevalence of DCL caused by L. amazonensis, because this form of the dis-

ease is associated with the state [14]. This parasite species has also been recorded sporadically

in Paraguay, but not L. flaviscutellata [9,106]. The elevation range of L. flaviscutellata could

increase as predicted, although vector abundances might well remain too low to permit estab-

lishment of new L. amazonensis transmission cycles. At high elevation, such as the Andes

region, sand fly diversity is lower and leishmaniasis transmission is sustained by a few domi-

nant vectors [107,108]. If transmission cycles of L. amazonensis driven by the dispersion of the

vector L. flaviscutellata establish in these regions, more people will be at risk of acquiring the

disease.

Our large-scale study serves as a base for future studies exploring factors that constrain the

distribution of L. flaviscutellata at finer scales, which is a necessary contribution to Public

Health research and interventions aimed at reducing the disease burden. We conclude that this

vector might well find improving climate conditions for its expansion in the approaching

decades, although these new areas will only become endemic for the transmission of L. amazo-

nensis, if reservoir host populations are present and transmission dynamics are sufficient. In

Southeast Brazil, at least, this is already happening [26,104,105, 109].

Supporting Information

S1 Fig. Presence and absence locations of Lutzomyia flaviscutellata classified according to

spatial precision.High: geographical coordinates of capture site given in the published article;

Medium: geographical coordinates approximated according to description of capture site; Low:

only district or municipality level information.

(TIF)

S2 Fig. Set of presence and absence records of Lutzomyia flaviscutellata used to run the

models.

(TIF)

S3 Fig. Pearson correlation matrix of the 19 bioclimatic variables. bio1: annual mean tem-

perature; bio2: mean diurnal range; bio3: isothermality; bio4: temperature seasonality; bio5:

max temperature of warmest month; bio6: min temperature of coldest month; bio7: tempera-

ture annual range; bio8: mean temperature of wettest quarter; bio9: mean temperature of driest

quarter; bio10: mean temperature of warmest quarter; bio11: mean temperature of coldest

quarter; bio12: annual precipitation; bio13: precipitation of wettest month; bio14: precipitation

of driest month; bio15: precipitation seasonality; bio16: precipitation of wettest quarter; bio17:

precipitation of driest quarter; bio18: precipitation of warmest quarter; bio19: precipitation of

coldest quarter.

(TIFF)

S4 Fig. Binary outputs of current predictions of climate suitability for Lutzomyia flaviscu-

tellata using two different threshold rules.

(TIF)

S5 Fig. Masked outputs of current predictions of climate suitability for Lutzomyia flaviscu-

tellata.

(TIF)
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S6 Fig. Current and 2050 (RCP 4.5) projections of climate suitability for Lutzomyia flavis-

cutellata from six modelling algorithms and 17 General Circulation Models, part 1 of 2.

Each map shows binary model outputs. Future projections include the percentage of area lost

or gain in comparison with current predictions. For names of each General Circulation Model,

see S2 Table.

(TIF)

S7 Fig. Current and 2050 (RCP 4.5) projections of climate suitability for Lutzomyia flavis-

cutellata from six modelling algorithms and 17 General Circulation Models, part 2 of 2.

Each map shows binary model outputs. Future projections include the percentage of area lost

or gain in comparison with current predictions. For names of each General Circulation Model,

see S2 Table.

(TIF)

S8 Fig. Current and 2050 (RCP 8.5) projections of climate suitability for Lutzomyia flavis-

cutellata from six modelling algorithms and 17 General Circulation Models, part 1 of 2.

Each map shows binary model outputs. Future projections include the percentage of area lost

or gain in comparison with current predictions. For names of each General Circulation Model,

see S2 Table.

(TIF)

S9 Fig. Current and 2050 (RCP 8.5) projections of climate suitability for Lutzomyia flavis-

cutellata from six modelling algorithms and 17 General Circulation Models, part 2 of 2.

Each map shows binary model outputs. Future projections include the percentage of area lost

or gain in comparison with current predictions. For names of each General Circulation Model,

see S2 Table.

(TIF)

S1 Table. Lutzomyia flaviscutellata occurrence database.

(XLSX)

S2 Table. General Circulation Models used in the models.

(XLSX)
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