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55  ABSTRACT 

56 Although ecosystems respond to global change at regional to continental scales (i.e., 

57 macroscales), model predictions of ecosystem responses often rely on data from targeted 

58 monitoring of a small proportion of sampled ecosystems within a particular geographic area. In 

59 this study, we examined how the sampling strategy used to collect data for such models 

60 influences predictive performance. We subsampled a large and spatially-extensive dataset to 
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61 investigate how macroscale sampling strategy affects prediction of ecosystem characteristics in 

62 6,784 lakes across a 1.8 million km2 area. We estimated model predictive performance for 

63 different subsets of the dataset to mimic three common sampling strategies for collecting 

64 observations of ecosystem characteristics: random sampling design, stratified random sampling 

65 design, and targeted sampling. We found that sampling strategy influenced model predictive 

66 performance such that (1) stratified random sampling designs did not improve predictive 

67 performance compared to simple random sampling designs and (2) although one of the scenarios 

68 that mimicked targeted (non-random) sampling had the poorest performing predictive models, 

69 the other targeted sampling scenarios resulted in models with similar predictive performance to 

70 that of the random sampling scenarios. Our results suggest that although potential biases in 

71 datasets from some forms of targeted sampling may limit predictive performance, compiling 

72 existing spatially-extensive datasets can result in models with good predictive performance that 

73 may inform a wide range of science questions and policy goals related to global change. 

74

75 KEYWORDS: extrapolation, interpolation, lakes, prediction, sampling design, macroscale, 

76 data-intensive ecology, monitoring, sampling, ecological context

77

78 INTRODUCTION

79 Scientific evidence from focused monitoring efforts has been used since the 1990’s to 

80 inform environmental policy in response to broad-scale environmental stressors such as acid rain 

81 and lake eutrophication (Olsen et al. 1999), and there has been much interest in knowing how 

82 different strategies used to select sample ecosystems may affect inference (e.g., Janousek et al. 

83 2019). Previous work has been conducted primarily at local to regional scales, often focusing on 

84 geographic areas containing the most sensitive ecosystems. In recent years, there has been a 

85 growing recognition of the need to predict ecosystem responses to global change over broader 

86 spatial extents that encompass scales from regions to continents (Miller et al. 2004, Dietze et al. 

87 2018, Peters et al. 2018; hereafter referred to as macroscales sensu Heffernan et al. 2014). To 

88 date, it is unknown how sampling design affects our ability to understand and predict states and 

89 relationships in unsampled ecosystems at macroscales. 

90 Prediction at macroscales is complicated because it requires integration of the multi-

91 scaled spatial variation that underlies temporal responses to drivers of global change. Because 

92 spatial heterogeneity can be large and can exceed temporal variation (Soranno et al. 2019), it is a 
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93 critical component to be accounted for when predicting ecosystem states and relationships at the 

94 macroscale. Further, prediction accuracy is strongly influenced by the spatial variation of the 

95 data used to generate models, which means that the strategy used to select sample ecosystems 

96 plays a large role in predictive modeling success (Thompson 2012).  

97 There are two main ways to acquire data for predictive models at the macroscale – 

98 coordinated national monitoring programs and compilations of more localized (e.g., local or 

99 regional) and disparate datasets. Examples of the first approach include the U.S. Environmental 

100 Protection Agency’s National Lakes Assessment program that samples approximately 1,000 

101 lakes every five years, comprising ~1 % of lakes > 1 ha (U.S. Environmental Protection Agency 

102 Office of Wetlands, Oceans and Watersheds Office of Research and Development 2017). 

103 Similarly, the U.S.D.A. Forest Service’s Forest Health Monitoring Program samples 

104 approximately 12,500-25,000 plots annually, comprising 10-20% of all forest plots (Smith 

105 2002). A recent example of the second approach is a macroscale dataset of lake observations 

106 created by compiling almost 90 disparate local and regional datasets across 17 U.S. states 

107 resulting in approximately 12,000 lakes with at least one observation, comprising 24% of lakes > 

108 4 ha (Soranno et al. 2017). In both approaches, a small proportion of ecosystems is sampled and 

109 the knowledge gleaned from them is consequently applied to unsampled ecosystems. 

110 Various strategies have been used to select ecosystems for sampling in macroscale 

111 monitoring programs in the past, each with their strengths and weaknesses in terms of resources 

112 required, potential biases introduced, and predictive power (Urquhart et al. 1998, Olsen et al. 

113 1999, Thompson 2012, Sauer et al. 2013). At the macroscale, sample ecosystems are rarely 

114 selected using a simple random design but are sometimes selected using a stratified random 

115 design. There has also been a long history of sampling ecosystems for purposes such as 

116 ecosystem management without using a probabilistic sampling design that allows representation 

117 of the entire population. In these cases, targeted sampling is conducted for subsets of ecosystems 

118 or landscapes that are of interest, such as regions that are of high conservation interest or 

119 ecosystems that are at high-risk of human perturbation (i.e., observational studies where there is 

120 little to no control over which ecosystems are sampled; Thompson 2012). None of these 

121 strategies result in a dataset that is a perfectly representative sample of the entire population, 

122 particularly when using the sample data for prediction of unsampled ecosystems. In practice, the 

123 majority of existing macroscale datasets are likely to be biased in different ways, with some 

124 datasets over- or others undersampling particular ecosystems or those with particular 
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125 characteristics (e.g., Webb et al. 2013, Stanley et al. 2019, Zhao et al. 2019). For example, when 

126 multiple disparate datasets are compiled, the resulting datasets include data from a mixture of 

127 probabilistic sampling designs and targeted sampling efforts, the effects of which can only be 

128 quantified after the database has been created (e.g., GBIF, LAGOS-NE; Gaiji et al. 2013, 

129 Soranno et al. 2017). 

130 When building a predictive model, it is a common practice to train the model using a 

131 subset of the dataset (training data) and then test the model using data that were withheld (out-of-

132 sample or test data; Lohr 2019). A fundamental assumption behind most predictive empirical 

133 models is that the training and test data are generated from the same distributions (i.e., 

134 predictions made within the model space). Thus, the resulting predictions are thought of as 

135 interpolations. However, if the training and test data are from different distributions, then there is 

136 no guarantee that the model fitted to the training data will perform well on the test data (i.e., 

137 predictions made outside the model space). For example, predictions at unsampled ecosystems 

138 with predictor variables that exceed the range of predictors in the training data and/or comprise a 

139 novel combination of predictors may be unreliable and are commonly referred to as 

140 extrapolations (Conn et al. 2015). Encountering such novel settings may occur often in 

141 macroscale studies due to the broad spatial extent associated with them and the large gradients 

142 that exist at these extents for the many characteristics that make up an ecosystem’s ecological 

143 context (e.g., land use/cover, geology, climate). Therefore, it is critical to assess how various 

144 sampling strategies with different purposes may introduce biases that affect distributions of 

145 training and test datasets and could change interpolations to extrapolations, thus influencing 

146 model predictive performance.  

147 We used a large database compiled from local and regional disparate datasets to ask: 

148 what is the effect of sampling design on predictive models of ecosystem characteristics in 

149 unsampled ecosystems at the macroscale? We used 4,253-6,784 observations of lake nutrients 

150 and productivity from a dataset of 51,101 lakes and their ecological contexts within a spatial 

151 extent of 1,778,100 km2 in the northeastern and midwestern U.S. to answer this question 

152 (Soranno et al. 2015, 2017). Although this database has its own inherent biases (e.g., 

153 undersampling of small lakes; Stanley et al. 2019), it includes a wide range of lake types with 

154 large gradients of ecosystem characteristics located across many regions with large gradients of 

155 ecological contexts. Therefore, it is an ideal database to create subsets of data that represent 
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156 known degrees of bias in order to quantify the effects of sampling design on predictive models of 

157 ecosystem characteristics. 

158 We developed scenarios (described below) that mimic three common strategies used for 

159 collecting observations on ecosystem characteristics at macroscales: random sampling design, 

160 stratified random sampling design, and targeted sampling. We used three measures of lake 

161 ecosystem characteristics, total phosphorus, total nitrogen, and chlorophyll a, to compare the 

162 predictive performance of models across these scenarios and strategies. We expected models to 

163 have highest predictive performance in cases of assumed interpolation and lowest in cases of 

164 assumed extrapolation (Conn et al. 2015). We also expected stratified random designs to increase 

165 predictive performance of the interpolation scenarios because the strata are chosen based on 

166 underlying ecological processes that are more likely to be related to spatial variation than strictly 

167 random sampling. Therefore, we expected predictive performance to be highest when using the 

168 stratified random designs, moderate when using the random designs, and lowest when using the 

169 targeted sampling. We also expected better predictive performance when using a relatively large 

170 proportion of lakes to train or build the predictive model. Finally, we expected nutrients, which 

171 are directly linked with landscape context variables, to be better-predicted than lake productivity. 

172 Our results will inform the design of macroscale ecosystem assessments, lead to more robust 

173 understanding of macroscale variation among ecosystems, and result in better predictions of 

174 unsampled ecosystems. 

175

176 Conceptualizing the effect of sampling design on predictive models of unsampled 

177 ecosystems

178 We created seven scenarios that fall within one of the three common sampling strategies 

179 employed in macroscale studies, the data from which are used to develop models used to predict 

180 at unsampled ecosystems. Figure 1 depicts these strategies as columns with multiple scenarios 

181 under each strategy labeled (a-g) and with training data in orange and test data in blue. The 

182 scenarios depicted in the left panel of Figure 1 (a-b) illustrate the rare cases when ecosystems are 

183 selected at random at the macroscale, called random sampling design. Figure 1a depicts the best-

184 case scenario whereby a large proportion of the data are used to train the model and a small 

185 proportion of data are used to test the model. We use this scenario as a predictive baseline to 

186 compare with the other scenarios that have smaller training datasets since having large datasets 

187 to build predictive models is extremely rare in ecology and those that are available often have 
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188 been compiled from multiple (non-random) sources that are question- or problem-driven. Figure 

189 1b shows the more common scenario in which a smaller dataset is available for model training 

190 and the test dataset is larger. If the sample size of the training dataset is sufficiently large, model 

191 predictions in these cases are assumed to be within the model space, resulting in interpolation.

192 A second set of scenarios demonstrate stratified random sampling designs that are 

193 commonly used in macroscale ecosystem assessments (Figure 1c–d). In these cases, factors that 

194 are thought to be important for driving ecosystem processes and patterns are used to first stratify 

195 the entire population of ecosystems and then ecosystems are randomly selected within each 

196 stratum. Figure 1c-d represents two common cases of stratified random sampling design. Figure 

197 1c depicts sample selection using strata based on ecosystem type and Figure 1d depicts selection 

198 using strata based on spatial location of the ecosystem, i.e. region. Species presence and/or 

199 abundance are commonly estimated with stratified sampling designs whereby the landscape is 

200 stratified by ecologically important characteristics (e.g., moose surveys across vegetation types 

201 or high/low quality habitat or fish surveys in lakes stratified by depth and area; Ver Hoef 2008, 

202 Rask et al. 2010). Stratified random designs assume that the feature(s) used to define strata are 

203 ecologically relevant for the response variables being considered by the study (i.e., ecosystem 

204 type or regions drive variation among ecosystems). Therefore, as long as the sample size of the 

205 training dataset is sufficiently large, predictions for unsampled ecosystems are assumed to be 

206 interpolations.

207 The third common sampling strategy is targeted sampling that happens when assessments 

208 are question- or problem-driven. In these cases, particular ecosystem types or regions are 

209 targeted for sampling in order to answer specific questions or to assess specific populations of 

210 ecosystems. Two examples of this design are giant sequoia trees sampled to reconstruct regional 

211 fire histories (Swetnam 1993) and lakes in the U.S. sampled as part of the National 

212 Eutrophication Survey to study causes of eutrophication (US Environmental Protection Agency 

213 1975). Figure 1e-g depict examples of targeted sampling that result in the training datasets being 

214 based on particular ecosystem types (Figure 1e), regions (Figure 1f), or regions with particular 

215 land uses (Figure 1g). In such cases of targeted sampling, when the data are used in predictive 

216 models of unsampled ecosystem types or regions, we assume that these ecosystems are not 

217 representative of all ecosystems. Therefore, we assume that these may represent cases of 

218 extrapolation.  

219
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220 METHODS

221 Study site and dataset

222 We used the LAGOS-NE database that spans the lake-rich regions of the northeastern 

223 and midwestern U.S. (Soranno et al. 2015, 2017) and includes 4,253 – 6,784 lakes depending on 

224 the response variable (from a total population of 51,101 lakes > 4 ha). The study lakes include 

225 both shallow and deep lakes (interquartile range of maximum depth = 4.6-13.7 m), natural lakes 

226 and reservoirs, and lakes with watersheds that are entirely forested to entirely surrounded by 

227 agricultural land use. The lakes in this database cover broad gradients in climate, geology, land 

228 use/cover, hydrology, and topography. LAGOS-NE-GEO v1.05 includes lake, local, and regional 

229 ecological context (Soranno and Cheruvelil 2017a) and LAGOS-NE-LIMNO v1.087.1 includes at 

230 least one in situ observations of lake water quality for 10,173 lakes (Soranno and Cheruvelil 

231 2017b). These lakes are nested within 65 regions defined by the level 4 hydrologic units 

232 regionalization (Seaber et al. 1987; hereafter referred to as regions and HU4s; Figure 1). These 

233 regions with an average area of 43,500 km2
, have been shown to account for regional variation in 

234 nutrients and productivity of this lake population (Cheruvelil et al. 2013). Data and code are 

235 available (see Data Availability). 

236 Lake response variables

237 We analyzed three ecosystem characteristics of lakes that represent major nutrients and 

238 primary productivity – total phosphorus (TP), total nitrogen (TN), and chlorophyll a (CHL). 

239 These variables are routinely measured by a wide range of academic, governmental, and non-

240 governmental programs to assess water quality (Poisson et al. 2019). We selected lakes and 

241 observations using the following criteria. Lake nutrient and productivity observations were 

242 selected during the time of peak production in these lakes (i.e., the summer stratified period of 15 

243 June through 15 September) during the years 1980 to 2011. For lakes with multiple observations 

244 within a summer or across multiple years, we selected a single sample that contained the most 

245 response variables. The resulting data came from lakes ranging from very nutrient-poor and low 

246 productivity systems to very nutrient-rich and high productivity systems that are distributed 

247 across our study area (Table 1; Figure 1). 

248 Local and regional ecological context predictor variables 

249 We selected 18 predictor variables a priori that are consistently related to lake nutrients 

250 and productivity (Table 2; Read et al. 2015, Collins et al. 2017, Lapierre et al. 2018, Soranno et 

251 al. 2019). At the local scale, we included six lake-specific characteristics – lake connectivity type 
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252 (defined as either lakes that have either no stream connections or only outflowing stream 

253 connections (Isolated), lakes with inflowing and outflowing stream connections (DR_Stream), or 

254 lakes with connections to upstream lakes (DR_LakeStream); lake water clarity (as measured by 

255 Secchi disk depth); maximum lake depth; lake complexity (a metric of lake shape that measures 

256 the deviation of the shoreline from a circular shape); and, lake elevation. Lake water clarity was 

257 included because it is available for nearly all lakes in our study sample (Figure 2) and model 

258 predictions are more accurate when they are conditional on water clarity (Wagner et al. 2020, 

259 Wagner and Schliep 2018). We also included five watershed-specific characteristics for the area 

260 of land draining directly into the lake as well as the area that drains into upstream-connected 

261 streams and lakes <10 ha (i.e., the inter-lake watershed; Soranno et al. 2017) – watershed 

262 wetland cover; watershed complexity (a metric of watershed shape that measures the deviation of 

263 the watershed boundary from a circular shape); watershed to lake area ratio; watershed stream 

264 density; watershed forest cover; and, watershed road density. Finally, seven regional-scale 

265 characteristics calculated for each HU4 were included in models – mean percent baseflow (an 

266 index of regional groundwater contribution); mean runoff; percent agricultural land use; mean 

267 annual temperature; mean annual precipitation; mean total nitrogen deposition in 1990; and, the 

268 difference in mean total nitrogen deposition from 1990 to 2010. Details on the data sources for 

269 these variables are provided in Soranno et al. (2017). 

270 Macroscale sampling scenarios

271 We created seven sampling scenarios that mimic common approaches used for collecting 

272 observations on ecosystem characteristics at the macroscale (Figure 1a-g). In these scenarios, we 

273 assumed that the population of LAGOS-NE lakes with TP (n = 5,896), TN (n = 4,253), or CHL 

274 (n = 6,784) represent the census population (but see Stanley et al. 2019), and that the training and 

275 test data were subsets of this population. We fitted models to each of these seven scenario 

276 datasets and compared predictive performance (see below for details) for modeling the state of 

277 ‘unsampled’ ecosystems in the test dataset.

278 Random sampling designs: In these two scenarios, we used a random sampling design 

279 and examined the effect of sample size on predictive model performance (Figure 1a-b). First, we 

280 created a scenario that represents an analytical predictive baseline with a large training dataset of 

281 75% of sampled lakes (Figure 1a). As a contrast, we created a scenario that uses a small training 

282 dataset of 25% of sampled lakes (Figure 1b). 
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283 Stratified random sampling designs: In these two scenarios, we stratified the sampling 

284 based on ecological context measured at either the local scale (based on lake type) or the regional 

285 scale (based on the region membership of each lake) (Figure 1c-d).  For the lake type strata, we 

286 created four clusters of lakes based on watershed and regional landscape context characteristics 

287 (Table 2) and using hierarchical clustering using Ward’s method (Ward 1963). Cluster 1 was 

288 characterized by lakes in regions with above average number of and extent of upstream lakes. 

289 For the remaining three clusters that had below average regional upstream lake connectivity, 

290 lakes were characterized by either high stream density in the watershed (cluster 3), high percent 

291 of wetlands in the watershed and around the lake perimeter (cluster 4,) or by both low stream 

292 density and low wetland percent in the watershed (cluster 2). For both stratified random 

293 scenarios, we selected 25% of lakes within each strata (lake type or region) to build the 

294 predictive models, and then predicted the values for the remaining 75% of lake ecosystems as we 

295 did for the random sampling design scenario that had a small training dataset (described above).   

296 Targeted sampling: We created three targeted sampling scenarios by selecting lakes of 

297 particular types, particular regions, or particular types of regions. First, using the above four lake 

298 type clusters, we selected all lakes in two of the four clusters to form the training dataset, and 

299 tested the model on the lakes in the remaining two of the four clusters. Second, we selected all 

300 lakes in half of the regions to form the training dataset and tested the model on lakes in the 

301 remaining half of the regions. For these two targeted scenarios, we split the sampled lake data 

302 approximately 50:50 and randomly selected the lake type clusters or regions for training the 

303 models. For the third targeted scenario, we deliberately selected half of the regions with the 

304 lowest proportion of agricultural land to form the training dataset and tested the model on lakes 

305 in the remaining regions with the highest proportion of agricultural land. However, because lakes 

306 are not distributed equally across regions, the number of lakes was not 50:50 in the training:test 

307 datasets for this scenario. The high-agriculture regions contain only 25% of the sampled lakes in 

308 the study area, whereas the low-agricultural regions are very lake-rich and contain 75% of the 

309 sampled lakes in the study area. 

310 Predictive models of ecosystem characteristics 

311 We used random forest models (Breiman 2001, Liaw and Wiener 2002) to predict each of 

312 the three response variables (TP, TN, CHL) based on the 18 local (lake-specific and watershed) 

313 and regional predictor variables described above that are related to lake nutrients and 

314 productivity in the LAGOS-NE lakes (Table 1, 2). Random forest is an ensemble learning 
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315 method that generates its prediction by averaging the outputs produced by a set of regression 

316 trees; and, each regression tree is created via bootstrapping by applying sampling with 

317 replacement on the training data (Breiman 2001, Zhou 2012). Although there are no 

318 distributional assumptions for random forests, the algorithm determines the best model based on 

319 squared error between predictions and true, out of sample, data (Breiman 2001). 

320 We log-transformed the response data after adding 0.1 to the values to down-weight 

321 errors on lakes with large data values so that our error terms are closer to percent error than to 

322 absolute error.  For predictor variables, there were a few cases of missing values (1.97% of 

323 values). Those values were imputed with the mean value for that variable so that all observations 

324 could be used in the random forest models. The predictor variables were standardized by 

325 subtracting the mean and dividing by the standard deviation. 

326 After these pre-processing steps, the dataset was split into training and test datasets based 

327 on the seven scenarios depicted and described above (Figure 1). To minimize the likelihood of 

328 chance selection affecting modeling results, we randomly split the dataset into training and 

329 testing datasets 10 times for each scenario possible (four of the seven scenarios). For the two 

330 scenarios that used four lake types, we could only create six sets of training and testing datasets 

331 (all possible combinations of four types). For the targeted sampling scenario that used regional 

332 land use, only one train/test dataset could be created. 

333 We then used the random forest method, building 189 total independent models, one for 

334 each combination of response variable (3), sampling design scenario (7), and train/test dataset 

335 combination (1, 6, or 10 as described above). Random forest has several hyperparameters that 

336 need to be tuned with the training data, including maximum tree depth and number of trees. We 

337 conducted a grid search, with both of these hyperparameters allowed to range from 50 to 200. 

338 We performed 5-fold cross validation (Stone 1974) on the training data to determine the optimal 

339 hyperparameter setting. Specifically, we iteratively reserved four of the five folds for model 

340 building and used the remaining fifth fold as a validation set to select the best hyperparameters. 

341 We then re-trained the random forest model on the entire training set using the best 

342 hyperparameter values and applied the resulting model to the test dataset to predict the response 

343 variables. We trained our random forest model using the Python scikit-learn RandomForest 

344 package with Gini impurity as the splitting criterion of the tree (Pedregosa et al. 2011). 

345 Predictive performance: We quantified model predictive performance three ways for 

346 each of the 189 independent models to compare the effect of sampling scenarios on model 
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347 performance. First, we calculated the root mean squared error (RMSE), which is a measure of 

348 average prediction error that is in the units of the log-transformed response variable. Second, we 

349 calculated the median relative absolute error (MRAE; ), which is a unitless � =  ������(|� ―  �|� )

350 measure of relative error that can be useful for comparing model performance across response 

351 variables. Third, we calculated the predictive R2, which is a bounded measure of model relative 

352 accuracy whereby 0 indicates that model prediction is no better than using the mean value of the 

353 response variable and 1 indicates perfectly accurate model prediction. For the five scenarios with 

354 multiple train/test dataset combinations, we calculated average predictive performance and 

355 corresponding standard error over the multiple train/test dataset combinations.  

356

357 RESULTS

358 The predictive models accounted for 34-63% of the variation in lake nutrients and 

359 productivity across the seven scenarios that mimic three common macroscale sampling strategies 

360 (Figure 3A). In general, R2 values decreased from larger to smaller training datasets, from 

361 random sampling design (stratified or not) to targeted sampling, and from TP to TN and to CHL. 

362 R2 was > 0.5 for all of the response variables and sampling scenarios, except for when modeling 

363 TN using the regional land use targeted sampling scenario (Figure 3A (g)). The predictor 

364 variables that accounted for most of the variation in responses were lake and watershed 

365 landscape characteristics such as lake maximum depth, watershed percent forest, and water 

366 clarity (Appendix S1: Table S1-S3). 

367 The two random sampling design scenarios are (a) and (b) in Figure 3. The scenario that 

368 used 75% of lakes to build the model (a) resulted in predictions of nutrients and productivity 

369 with the lowest error as measured by RMSE and MRAE (Figure 3B-C). Although we considered 

370 this scenario to be somewhat unrealistic in practice due to the large sample size (e.g., n = 4,422 

371 for TP), when we decreased that sample size to 25% of sampled lakes (e.g., n = 1,474 for TP; 

372 (b)), the effect on predictive performance was negligible (change in RMSE of 0.02-0.03; Figure 

373 3B, Table 3). 

374 The two stratified random sampling design scenarios are (c) and (d) in Figure 3. When 

375 comparing the simple random sampling design scenarios with the smaller training dataset (b) to 

376 these two stratified random sampling designs, we found small differences in predictive 

377 performance (Figure 3, Table 3). In fact, the differences among these three random sampling 

378 design scenarios (stratified or not) were nonexistent to negligible. Therefore, the three assumed 
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379 interpolation scenarios with smaller training datasets (b – d) were similarly able to predict lake 

380 nutrients and productivity. 

381 The three scenarios that represent targeted sampling are (e) - (g) in Figure 3. Targeted 

382 sampling based on lake type (e) or region (f), resulted in slightly lower predictive performance 

383 and higher variation across simulated datasets compared to the random sampling design scenario 

384 that uses the smaller training dataset (b) (Figure 3). However, the scenario that mimicked 

385 targeted sampling of regions with high agriculture (g) resulted in the poorest performance of any 

386 scenario, particularly for TN. This poor performance is likely due to this scenario being a case of 

387 extrapolation as demonstrated by differences in the distributions of the response variables and 

388 important predictor variables between the training and testing datasets for (g) that was not 

389 apparent for the other scenarios (Figure 4).  

390

391 DISCUSSION

392 We studied 6,784 lakes across a spatial extent of 1.8 million km2 to understand how 

393 different sampling strategies may affect model predictions of commonly measured ecosystem 

394 characteristics in unsampled ecosystems at macroscales. We found that although the sampling 

395 strategy used is likely to influence model predictive performance, the differences may not always 

396 be as large or as expected based solely on sample sizes and whether the strategy results in 

397 interpolation or extrapolation. We have two specific take home messages from this research. 

398 First, sampling designs based on two commonly used stratified random approaches (i.e., by 

399 region or by ecosystem type) did not result in better predictions of lake nutrients and productivity 

400 compared to a simple random sampling design, suggesting that at the macroscale, stratified 

401 random sampling designs may not always be better than simple random sampling designs. 

402 Second, models trained with data from targeted sampling were not always the poorest 

403 performing models. However, the predictive performance varied across the three targeted 

404 sampling scenarios and three response variables. This fact suggests that data from some targeted 

405 sampling may result in extrapolation and poor model performance, and thus should be examined 

406 for potential biases before use. Below, we discuss the effects of sampling strategies on predictive 

407 model performance and interpret these effects within the context of LAGOS-NE, the database 

408 that was used to create the seven sampling scenarios. Then, we discuss the implications of our 

409 results for optimizing macroscale sampling designs. 

410
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411 Effects of sampling strategies on predictive performance

412 We anticipated that random and stratified random sampling designs would outperform 

413 targeted sampling. This expectation was based mainly on the assumption that targeted sampling 

414 designs would result in the training and test data having different distributions, meaning 

415 predictions would be made outside of the model space (i.e., extrapolation). However, our results 

416 demonstrated that this assumption does not always hold true. For example, the distributions of 

417 the training and testing datasets for the response and predictor variables were very similar for the 

418 Targeted-Type scenario (Figure 4). Recent work on identifying when predictions will be 

419 extrapolation or interpolation suggests that this can be done by either examining distributions of 

420 predictor variables or comparing predictive variance at out-of-sample locations to a threshold 

421 (e.g. maximum predictive variance) based on in-sample locations (Bartley et al. In Press, Conn et 

422 al. 2015). As our example shows, not all targeted sampling designs will result in extrapolation 

423 and it may be acceptable to include data from such targeted efforts in larger, compiled datasets. 

424 We also anticipated that stratified random sampling would result in better predictive 

425 performance than random sampling. There is intuitive appeal to stratified random sampling 

426 designs, particularly given the large amounts of ecological variation that exist at the regional 

427 scale (e.g., Cheruvelil et al. 2013, Lapierre et al. 2018). However, we did not find this to be the 

428 case, perhaps because LAGOS-NE includes a large sample size of 6,784 lakes (Table 3) that are 

429 relatively evenly distributed such that they capture the large geographic gradients that are present 

430 across the study area. It is also important to recognize that stratified random sampling design is 

431 better than random sampling design only if the strata used are ecologically relevant. For 

432 example, some sampling designs stratify by ecosystem size or area (e.g., U.S. EPA 2017). 

433 However, we did not include lake area as a stratum because it is not related to lake characteristics 

434 in LAGOS-NE (Stanley et al. 2019). Although we did not find stratified random designs to 

435 improve predictions over simple random designs, there may be other ways to stratify lakes that 

436 we did not consider here; further, there may be other ecosystem types, locations, or uses of 

437 macroscale monitoring data that require stratification. 

438 Finally, we expected that lake nutrients would be better predicted than productivity 

439 because nutrients are more directly related to landscape context characteristics (Wagner and 

440 Schliep 2018) and exhibit a stronger spatial structure than CHL in our study area (Lapierre et al. 

441 2018). This expectation was supported by lower R2s and higher RMSEs for CHL than for the 

442 nutrients. In fact, the errors may be enough to suggest an alternate trophic state (e.g., the 
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443 predicted value could be beyond a trophic threshold between mesotrophic and eutrophic). These 

444 results suggest that there is no one best sampling design for all response variables and that 

445 multiple metrics should be used when evaluating model predictive performance. The different 

446 diagnostic metrics also suggest that there are some subtle differences depending on which metric 

447 is used, and caution should be made in interpreting the results when selecting a sampling design 

448 based on one model performance metric alone. 

449 Our conclusions should be interpreted within the context of the data used to conduct the 

450 research, specifically regarding the type of database, the study area, and the sample sizes used. 

451 This research was conducted using a compiled database of 87 disparate lake water quality 

452 datasets, many of which were sampled by individual U.S. state agencies (LAGOS-NE; Soranno 

453 et al. 2015, 2017). Consequently, sample lakes in LAGOS-NE were selected using a variety of 

454 different sampling strategies. In particular, sampled lakes tend to be larger and more connected 

455 than all lakes in the study area (Stanley et al. 2019). Therefore, lakes with in situ measurements 

456 in LAGOS-NE may not completely represent all lakes within the study area and the mimicked 

457 random sampling designs are not truly random (i.e., random selection from ~4,000 to 8,000 lakes 

458 with lake nutrients and productivity data rather than random selection from ~51,000 lakes in the 

459 census population). However, we believe that the sampled lakes in LAGOS-NE can provide a 

460 good approximation of all lakes in this geographic extent for three important reasons: (1) 

461 Because LAGOS-NE contains sampled lakes that vary widely by lake type, region, and 

462 ecological contexts, it contains sufficient variation in predictors and responses to effectively 

463 build predictive models; (2) a prior resampling exercise that corrected for the surface area 

464 sampling bias that we know is present in LAGOS-NE did not substantially change the statistical 

465 distributions of total nutrients and productivity (Stanley et al. 2019); and, (3) the combined 

466 sample sizes are likely large enough that any existing biases due to individual program sampling 

467 designs would have only minor effect on model performance.  

468 Implications for macroscale sampling designs

469 Macroscale monitoring programs often use either a stratified random design or targeted 

470 sampling. Our results from LAGOS-NE, which includes a variety of sampling designs, suggest 

471 that predictions from targeted sampling designs may sometimes perform similarly to those from 

472 random sampling designs. Thus, there is potential to include these datasets that were created to 

473 answer particular questions or to address specific environmental problems in compiled datasets 

474 because the bias associated with these data have only minimal effect on prediction errors. This 
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475 fact will be especially true when data from targeted sampling designs make up a small proportion 

476 of the total compiled ecosystem data, resulting in differences between the distributions of 

477 training and test datasets (i.e., extrapolation). Moreover, because it is unlikely that a large 

478 number of datasets will have exactly the same sample biases, assembling multiple datasets 

479 should tend to minimize the impact of any one dataset collected for one particular reason on 

480 prediction. Therefore, the use of such secondary datasets compiled from multiple sources, as was 

481 done for LAGOS-NE, is useful for macroscale prediction of ecosystem characteristics. Based on 

482 our results using lake nutrients and productivity, we make two specific suggestions for 

483 optimizing sampling designs at macroscales. 

484 To stratify or not?  Our results suggest that it may not be necessary to stratify when a 

485 relatively large sample size is feasible and relevant strata for prediction are either not present or 

486 unknown. Macroscale monitoring programs generally sample less than 20% of ecosystems, and 

487 sometimes as little as 1%. In comparison, LAGOS-NE includes 8 to 13% of all lakes > 4 ha, 

488 depending on the response variable. And, for a stratified random design to be effective, the 

489 stratification must account for some variation in the ecosystem characteristics of interest such 

490 that resulting predictions are interpolations (predictions within model space) as opposed to 

491 extrapolation (predictions outside of model space). We tested two commonly used approaches 

492 for stratification that have been shown to capture variation in lake nutrients and productivity - 

493 regions (e.g., Cheruvelil et al. 2013) and local lake and watershed characteristics (e.g., Collins et 

494 al. 2018) - but were unable to document substantial improvements in model performance over 

495 simple random designs. This fact is likely because the relatively large number of lakes spread 

496 across wide environmental gradients in LAGOS-NE resulted in similar distributions of training 

497 and testing data (Figure 4) such that strata were not necessary to effectively capture variation in 

498 predictors and responses. Therefore, predictive performance was not substantially improved by 

499 adding stratification to a simple random sampling design.

500 Further, it is not likely that a single stratification design would adequately capture the 

501 complexity of all ecosystem characteristics, particularly when one considers biological, physical, 

502 and chemical characteristics in diverse ecosystems. Because the key characteristics that are most 

503 beneficial to use as strata will vary by response variable, it may be more effective to increase the 

504 total sample size across the study area rather than to spread samples across strata. Such relatively 

505 large and distributed sampling should help to increase predictive performance. The relative 

506 performance of simple random versus stratified random designs warrants testing in other 
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507 settings, for other macroscale datasets, and for other ecosystem characteristics to test the 

508 generality of our results. For example, the need for stratification may become more important as 

509 landscapes become more heterogeneous or vary across strata and as sample sizes drastically 

510 decrease, resulting in sampled ecosystems being less likely to represent a large proportion of the 

511 total landscapes or ecosystems within a study area.

512 Space or time? Our study examined the macroscale spatial predictions of lake nutrients 

513 and productivity by leveraging the broad spatial gradients in the LAGOS-NE database. In fact, 

514 an analysis of LAGOS-NE data using annual time scales across several decades found that 

515 spatial variation of lake nutrients and productivity far exceeded temporal variation (Soranno et 

516 al. 2019). However, if the goal is to predict responses of all ecosystems across regions and 

517 continents to a range of global change stressors, then making predictions across both space and 

518 time is essential (Janousek et al. 2019). Unfortunately, there are few spatially- and temporally-

519 extensive datasets and the costs of long-term monitoring through both time and space are 

520 untenable. Thus, for new macroscale sampling programs, we recommend first capturing the 

521 existing spatial variation in predictor and response variables by sampling across the full range of 

522 ecological contexts present across a study area. Then, once sufficient spatial variation is 

523 captured, resources could be directed towards a smaller number of systems that are repeatedly 

524 sampled to capture temporal variation. By combining the use of secondary datasets that have 

525 excellent spatial coverage across a range of ecological context settings with sampling designs 

526 focused on filling in gaps in the temporal domain, macroscale studies will be able to inform a 

527 wide range of science questions and policy goals related to forecasting the effects of global 

528 change on ecosystem characteristics.
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689 TABLES

690

691 Table 1: Summary of response variables (minimum, maximum, median, mean, 25th and 75th 

692 percentiles. 

Response Variable Units n Min 25th Median Mean 75th Max

Total Phosphorus µg/l 5896 0 10 16 39.9 34 1184

Total Nitrogen µg/l 4253 0 380 600 944.3 990 20574

Chlorophyll-a µg/l 6784 0 2.6 5 16.28 13 553.4
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695

696

697 Table 2: Summary of the predictor variables (minimum, maximum, median, mean, 25th and 75th 

698 percentiles) at the local (lake and watershed) and regional scales. Note, lake connectivity is a 

699 categorical variable with 3 categories (Isolated, DR_Stream, and DR_LakeStream). Lake and 

700 watershed complexity refer to lake and watershed boundary complexity factor, respectively, 

701 which are measures of reticulation, N dep refers to nitrogen deposition in 1990, and N dep 

702 difference refers to N deposition in1990 minus that in 2010. 

Predictor Variable Units Min 25th Median Mean 75th Max 

Local

lake connectivity1 NA NA NA NA NA NA NA 

lake water clarity1 m 0 1.30 2.40 2.75 3.80 18.25 

lake max depth1  m 0.30 4.60 8.53 10.84 14.02 198.4 

lake complexity1  NA 1.00 1.40 1.75 2.11 2.35 30.27 

lake elevation2  m 0 241.1 323.9 316.5 412.1 1038.6 

watershed wetland3 % 0.00 2.42 7.23 12.28 17.77 93.08 

watershed complexity1  NA 1.21 2.02 2.37 2.59 2.85 25.49 

watershed lake ratio1 NA 0.01 3.88 8.31 42.63 21.03 53517.4 

watershed stream density1 m/ha 0 0 3.08 4.54 7.57 71.77 

watershed forest3 % 0 23.70 53.8 49.91 75.05 100 

watershed road density4 m/ha 0 14.50 24.35 30.96 39.36 262.66 

Regional        

baseflow mean5 % 14.18 47.92 52.62 52.08 58.44 78.83 

runoff mean5 in/year 2.80 7.26 10.65 13.21 22.59 26.95 

agriculture3 % 1.79 5.67 26.33 28.64 34.07 78.66 

temperature mean6 oC 3.46 5.44 6.15 6.83 8.17 15.40 

precipitation mean6 mm 606.60 714 839.3 910.3 1106.8 1282.7 

N dep mean7 kg/ha 2.68 4.37 5.36 5.27 5.99 8.67 

N dep difference7  kg/ha -1.49 -0.11 1.47 1.30 2.47 4.66 

703

704 1 National Hydrography Dataset (NHD) 2013; and Soranno et al. 2015 

705 2 USGS National Elevation Dataset (NED); 2013

706 3 National Land Cover Database (NLCD); 2006

707 4 United States Census TIGER roads data; 2013 
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708 5 United States Geological Survey (USGS); 1951-1980

709 6 PRISM climate group 30-year normal; 1981-2010

710 7 National Atmospheric Deposition Program; 1990-2010

711

712 Table 3. The number of lakes in the training and testing datasets for each of the seven sampling 

713 scenarios and three response variables. For all scenarios except (g), these are average numbers of 

714 lakes over multiple subsets of training and testing data. The numbers in parentheses are the 

715 percent of the total lake population > 4 ha comprised for each scenario and response variable 

716 combination.

TP TN CHL

Sampling Scenario Training Testing Training Testing Training Testing

(a) Random-Large 4,422

(9 %)

1,474

(3 %)

3,190

(6 %)

1,063

(2 %)

5,088

(10 %)

1,696

(3 %)

(b) Random-Small 1,474

(3 %)

4,422

(9 %)

1,063

(2 %)

3,190

(6 %)

1,696

(3 %)

5,088

(10 %)

(c) Stratified-Type 1,474

(3 %)

4,422

(9 %)

1,063

(2 %)

3,190

(6 %)

1,696

(3 %)

5,088

(10 %)

(d) Stratified-Region 1,474

(3 %)

4,422

(9 %)

1,063

(2 %)

3,190

(6 %)

1,696

(3 %)

5,088

(10 %)

(e) Targeted-Type 2,869

(6 %)

3,024

(6 %)

2,079

(4 %)

2,171

(4 %)

3,393

(7 %)

3,379

(7 %)

(f) Targeted-Region 2,927

(6 %)

2,927

(6 %)

2,127

(4 %)

2,127

(4 %)

3,392

(7 %)

3,392

(7 %)

(g) Targeted-AgRegion 4,422

(9 %)

1,474

(3 %)

3,190

(6 %)

1,063

(2 %)

5,088

(10 %)

1,696

(3 %)

717

718

719

720 FIGURE LEGENDS

721

722 Figure 1. Conceptual figure depicting three types of sampling strategies (1-3) used for selecting 

723 ecosystems to sample at macroscales. Underneath each type is a description of the assumptions 

724 underlying the resulting models. In all seven depictions (a-g), there are ecosystems that are used 
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725 to build predictive models (training dataset; blue circles) and ecosystems that are used to test the 

726 predictive models (test, orange circles). From left to right: 1. Random sampling designs whereby 

727 ecosystems are chosen completely randomly from the sample extent; predictive models for 

728 unsampled ecosystems are assumed to be interpolation, if sample size is sufficient. 2. Stratified 

729 random sampling designs whereby ecosystems are first stratified by ecosystem type (top) or their 

730 location within ecological regions (regions depicted by dark lines, bottom) that are thought to 

731 drive variation among ecosystems and second, ecosystems are selected randomly within those 

732 strata; predictive models for unsampled ecosystems are assumed to be interpolation, if the strata 

733 are ecologically relevant and sample size is sufficient. 3. Targeted sampling whereby particular 

734 types of ecosystems (top), particular ecological regions (middle), or regions with particular land 

735 uses (bottom) are targeted for sampling in order to answer a particular question; predictive 

736 models for unsampled ecosystems are assumed to be extrapolation. Black lower-case letters 

737 relate to the seven scenarios used in this study that are described and depicted throughout.

738

739 Figure 2. Map of lakes color coded by water clarity measured as Secchi disk depth (m), colored 

740 by percentile. Gray lines delineate regions.

741

742 Figure 3. Boxplots showing the model predictive performance of each scenario indicated by 

743 letters (X axis labels, letters as per Fig. 1) as measured by predictive R2 (A), root mean square 

744 error (RMSE; B), and median relative absolute error (MRAE; C). The colors signify the different 

745 types of sampling strategies: random (yellow), stratified (green), and targeted (blue). Y-axis 

746 scales are truncated for better visualization. 

747

748 Figure 4. Density plots showing the distribution of data in the training (blue) and testing 

749 (orange) dataset for each sample design scenario (a-g as per Fig. 1) and for left to right: TP 

750 (μg/L), TN (μg/L), CHL (μg/L), water clarity (m), lake maximum depth (m), and watershed 

751 percent forested. One randomly selected dataset for each sample design scenario is portrayed in 

752 this figure. The X-axis is truncated and axis labels are not shown to better visualize the majority 

753 of the data for best visual comparison of the training vs test datasets. The letters are as for Figure 

754 1.
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