
RESEARCH ARTICLE

Ecological restoration of agricultural land can
improve its contribution to economic
development

Adrian C. NewtonID
1*, Paul M. Evans1, Stephen C. L. Watson1, Lucy E. Ridding2,

Steven Brand3, Morag McCracken2, Arjan S. Gosal1, James. M. Bullock2

1 Faculty of Science and Technology, Centre for Ecology, Environment and Sustainability, Bournemouth
University, Poole, United Kingdom, 2 UKCentre for Ecology and Hydrology, Wallingford, United Kingdom,

3 Plymouth Business School, University of Plymouth, Plymouth, United Kingdom

* anewton@bournemouth.ac.uk

Abstract

Given the negative environmental impacts of intensive agriculture, there is an urgent need

to reduce the impact of food production on biodiversity. Ecological restoration of farmland

could potentially contribute to this goal. While the positive impacts of ecological restoration

on biodiversity are well established, less evidence is available regarding impacts on eco-

nomic development and employment. Potentially, prospects for economic development

could be enhanced by ecological restoration though increased provision of ecosystem ser-

vices, on which some economic activity depends. Here we examined this issue through the

development of contrasting land use scenarios for the county of Dorset, southern England.

Two scenarios of future agricultural expansion were compared with two scenarios of land-

scape-scale ecological restoration and the current situation. Impacts on provision of multiple

ecosystem services (ES) were explored using InVEST models and proxy values for different

land cover types. Impacts on economic employment were examined using an economic

input-output model, which was adjusted for variation in ES flows using empirically deter-

mined ES dependency values for different economic sectors. Using the unadjusted input-

output model, the scenarios had only a slight economic impact (� 0.3%Gross Value Added,

GVA). Conversely, when the input-output model was adjusted to take account of ES flows,

GVA increased by up to 5.4% in the restoration scenarios, whereas under the scenario

with greatest agricultural expansion, GVA was reduced by -4.5%. Similarly, employment

increased by up to 6.7% following restoration, compared to declines of up to -5.6% following

maximum agricultural expansion. These results show that the economic contribution of rural

land is far greater than that attributable to agricultural production alone. Landscape-scale

restoration of agricultural land can potentially increase the contribution of farmland to eco-

nomic development and employment, by increasing flows of multiple ES to the many eco-

nomic sectors that depend on them.
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1. Introduction

Approximately 40% of the Earth’s land surface is now being used for food production, indicat-

ing that agriculture is now the predominant type of land use [1]. The intensification and

expansion of agriculture is widely being pursued as a policy option, with the aim of improving

food security and supporting human development [2]. However, it is widely recognised that

farming is often associated with a wide range of negative environmental impacts, which can

include increased emissions of greenhouse gases (GHG) and ammonia; eutrophication; appli-

cation of toxic herbicides and pesticides; depletion of freshwater; and increased soil compac-

tion, depletion and erosion [3–5]. In particular, agriculture is recognised as the leading

contributor to biodiversity loss, which principally occurs through the conversion of natural

habitats to farmed systems. Consequently there is an urgent need to reduce the impact of food

production on biodiversity, which could potentially be achieved by changing patterns of both

food production and consumption, and through a combination of conservation, sustainable

management and ecological restoration [6]. While many techniques and strategies are already

available that can contribute to this goal, there is a particular need to scale them up from local

to landscape or regional scales [6].

Ecological restoration of farmland has generally focused on moderating the effects of habi-

tat fragmentation and loss, and reducing the intensity of management [7]. For example, Rey

Benayas et al. [8,9] describe the establishment of wooded islets on farmland as a way of increas-

ing connectivity of woodland habitats in agricultural landscapes. More widely, habitat

improvements have been supported by the introduction of different types of agri-environmen-

tal scheme, such as those supported by the European Union (EU) Common Agricultural Pol-

icy (CAP) in more than 26 countries, and the Conservation Reserve Program in the USA [7].

Such approaches may directly support large-scale ecological restoration, or can usefully be

combined with it [10]. The need to plan and implement restoration at relatively large spatial

scales is supported by empirical evidence indicating that landscape-scale factors influence the

abundance of key functional groups of species in agricultural landscapes, such as pollinators,

seed dispersers and natural enemies [5,7,11].

While ecological restoration is often implemented through active management interven-

tion, passive habitat recovery can also occur if farming is abandoned. Such abandonment is

becoming increasingly widespread in many high-income countries, especially in small and

extensive farming systems that are economically marginalised, for example those located in

mountain areas [12]. The potential impact of land abandonment on biodiversity has been the

focus of scientific debate. Many traditional, low-intensity farming landscapes can be highly

species rich; examples include semi-natural grasslands in Europe, themilpa systems in South

America and satoyama landscapes in Japan [13]. A number of investigations have demon-

strated biodiversity declines in such landscapes following abandonment of agricultural prac-

tices [13]. Conversely, abandonment can provide an opportunity for the passive recovery of

native ecosystems with high conservation value, for example forests or grasslands. This has

stimulated interest in rewilding as a land use option [14]. For example in Europe, Navarro

and Pereira [15] argue that traditional agriculture practices are not environmentally friendly,

whereas rewilding involving passive management approaches could benefit a wide range of

species, including 60 species of birds and 24 species of mammals. Although rewilding is

increasingly being adopted as a land management approach, it is still controversial, partly

owing to uncertainty regarding its ultimate outcomes [16–18].

The positive impacts of ecological restoration on biodiversity are now well established, as

revealed by global meta-analyses. For example, in a meta-analysis of 89 restoration assessments

undertaken in a wide range of different ecosystem types, Rey Benayas et al. [19] reported a
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44% increase in biodiversity measures following restoration. Similarly, in a meta-analysis of

221 study landscapes worldwide, Crouzeilles et al. [20] found that forest restoration enhanced

biodiversity by 15–84% and vegetation structure by 36–77%. A further analysis of 133 studies

in tropical forests showed that natural regeneration provided significantly higher benefits for

biodiversity (plants, birds and invertebrates) and vegetation structure than did active restora-

tion approaches [21], strengthening the case for restoration using passive ecological recovery.

With respect to agricultural ecosystems, Barral et al. [22] examined the results of 54 studies

drawn from 20 countries, which showed an increase biodiversity measures following restora-

tion by a mean of 68%.

However, less information is available regarding the potential impact of landscape-scale

ecological restoration on human communities. In this context, the concept of ecosystem ser-

vices (ES), or the benefits provided by ecosystems to people, is of particular value. According

to analytical frameworks that are now widely being used to influence environmental policy,

ecological restoration represents a form of investment in natural capital, which could benefit

human well-being by increasing ES flows to people [23]. A number of studies have provided

evidence that ecological restoration can increase ES flows; for example, in their global meta-

analysis, Rey Benayas et al. [19] found that that restoration increased provision of ES by 25%,

although values tended to remain lower in restored than in intact reference ecosystems. Simi-

larly, in their review of agricultural systems, Barral et al. [22] reported that provision of sup-

porting and regulating ES increased by means of 42% and 120% respectively, relative to values

recorded prior to restoration. Previous research has also documented projected increases in ES

provision when ecological restoration is undertaken at the landscape scale (e.g. [24,25]). How-

ever, few studies have explicitly examined rewilding in this context (e.g. see [24]); the evidence

summarized by Cerqueira et al. [26] is based on analysis of wilderness areas as a proxy for

future rewilding, rather than the outcomes of actual rewilding initiatives.

In recent years, considerable progress has been made in assessing ES values in different

contexts, and in understanding how these values inform decision-making relating to land use

[27]. However, there are important gaps in the research undertaken to date. For example, com-

prehensive ES analyses should assess both the supply of and demand for ES, but the vast major-

ity of studies have examined only the supply side [28]. Demands for ES can be evaluated using

economic valuation techniques in real or hypothetical markets, or by assessing people’s per-

ceptions of the importance of different ES, yet in practice this is done relatively rarely [28].

Furthermore, most studies only provide a static analysis of the current situation, and fail to

consider how ES flows might change over time, despite the importance of providing forecasts

to inform policy and land-use decisions. Although forecasts of ES dynamics can be developed

through the use of scenario approaches [28], these have not been widely applied to date. Con-

sequently, there is a lack of evidence regarding the changes in ES flows that might arise as a

result of ecological restoration, and how these relate to economic demands.

Here we explore the potential impacts of landscape-scale ecological restoration on natural

capital, and associated provision of ES, in a lowland agricultural landscape in southern

England. The UK currently provides a valuable opportunity to examine this issue, given its

departure from the European Union (EU) and the EU’s Common Agricultural Policy (CAP)

schemes, which have formerly been an important source of revenue for landowners. As a result

of Brexit, the UK is currently in the process of developing new land use policies, which may

enable landowners to receive government funds for the provision of ES [29]. This represents a

profound policy shift that might provide economic opportunities for large-scale ecological res-

toration and rewilding. Potentially, such interventions could provide benefits to economic

development and employment, if they increase provision of those ES that support economic

activity. Here we examine this possibility through the use of scenarios of potential future land
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use options, including both landscape-scale restoration and agricultural expansion, which we

compare with the current situation. Using models and proxies of ES provision, we forecast

projected changes in ES delivery over an interval of 35 years under these different scenarios.

The potential impacts on economic growth and employment are then explored using an eco-

nomic input-output model, an approach that is widely used to inform regional development

planning [30]. Specifically, this research was designed to test the following hypothesis: land-

scape-scale ecological restoration of agricultural land will increase its contribution to eco-

nomic development, by increasing the provision of multiple ES for which there is economic

demand.

2. Materials andmethods

2.1. Study area and land cover maps

The county of Dorset is situated in southern England. The current landscape is predominantly

agricultural, comprising 32% arable cropland and 48% improved grassland by area. Other land

cover types include urban (6%), native broadleaved woodland (6%), conifer plantations (3%),

lowland heathland (2%) and unimproved grassland (including calcareous grassland)(1%).

These land cover values are broadly typical of other lowland rural areas of north-west Europe.

This specific area was selected for study owing to the unusual availability of time-series data

describing both biodiversity and land cover, spanning more than 80 years. To provide a base-

line for assessing the impacts of land use changes on natural capital, we used a land cover map

for 1930 produced by Hooftman and Bullock [31] based on a survey undertaken in the 1930s

[32]. In addition, a 2015 map was derived from the CEH Land Cover Map 2015 (LCM2015)

[33]. Details of how these maps were produced are provided by Ridding et al. [34–36].

Although Dorset is currently ca. 2653 km2 in area, its boundaries were extended in 1974 to

include the towns of Bournemouth, Poole and Christchurch; prior to this date, the area of the

county was ca. 2500 km2 [31]. We employed the latter boundary for the current study, to

enable changes over time to be assessed. All maps were produced at a resolution of 100 m x

100 m, to ensure consistency across all of the data sets, and processed using ArcGIS v 10.1

(ESRI, Redlands, California, USA).

2.2. Scenarios of land cover change

To explore the potential impacts of future land cover change, we developed five scenarios for

the period 2015–2050, which were designed to cover a wide spectrum of possibilities: (i) “Busi-

ness as usual” (BAU), in which the land cover of Dorset remains unchanged; (ii) “High Inten-

sity Green Brexit” (HIGB), in which the area of agricultural land (i.e. arable cropland plus

improved grassland) declines by 41.5% over the 35 year interval; (iii) “Low Intensity Green

Brexit” (LIGB), in which the area of agricultural land declines by 20.7%; (iv) “Low Intensity

Agribrexit” (LIAB), in which the area of agricultural land increases by 9%; and (v) “High

Intensity Agribrexit” (HIAB), in which the area of agricultural land increases by 18%, relative

to the BAU value (Table 1). The 35 year duration of the scenarios was designed to be relevant

to the timescale of current strategic planning within the study area.

Land cover maps were produced for each of the scenarios based on LCM2015 [33]. For the

BAU scenario, representing no future land cover change, LCM2015 was used in an unaltered

form. To produce the land cover maps for ecological restoration (LIGB and HIGB), we used

the South-West Nature Map (http://www.biodiversitysouthwest.org.uk/nm_dwd.html). This

represents a regional approach to landscape-scale planning for habitat restoration that was

developed by conservation organisations in SouthWest England. Areas proposed for restora-

tion of priority habitats are referred to on the map as Strategic Nature Areas (SNAs), and were
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identified using a combination of research and expert judgement following an ecoregional

planning approach [37,38]. The land cover map for HIGB was based on complete implementa-

tion of the Nature Map, by converting all pixels of agricultural land that were overlayed by

SNAs to their respective semi-natural habitat type. The LIGB land cover map was produced by

halving the number of pixels of agricultural land that were converted in this way; the pixels

were selected by using a buffering procedure within ArcGIS. LIGB therefore represents 50%

implementation of the SNAs.

For the “Agribrexit” scenarios (HIAB and LIAB), remaining semi-natural habitats that are

suitable for agriculture were converted to farmland; the type of agriculture in each location

(i.e. arable cropland or livestock) was determined by the relative suitability of different soil

types. For this purpose, soil data were obtained from (NATMAP National Soil Map; National

Soil Resources Institute, Silsoe, Bedfordshire, UK). Specifically sandy, clay and peaty soils

became improved grassland, whereas lime-rich and high fertility loams were converted to ara-

ble cropland. In the HIAB scenario, all of the following habitats were converted to agriculture:

neutral, calcareous and acid grassland; heathland; broadleaved and coniferous woodland. The

total increase in agricultural land of 18% therefore represents the maximum amount of con-

version to farmland that is possible in this study area. The LIAB implemented half of this value

of land cover change (i.e. 9%). Selection of pixels for conversion under this scenario was con-

ducted using a buffering procedure using the LCM2015 map, in which areas of new agricul-

tural land were situated adjacent to existing farmland. The buffer distance was increased until

the target of 9% expansion of agricultural land was reached.

2.3. Habitat fragmentation analysis

To assess the impact of land cover change on habitat fragmentation, the land cover maps asso-

ciated with each scenario were analysed using FRAGSTATS (v4) [39]. We used the following

class metrics generated by FRAGSTATS: Patch Density, Mean Patch Size, Edge Density (using

a value of 100 m edge depth), Mean Shape Index, Mean Core Area, Euclidean nearest-neigh-

bour distance and Interspersion and Juxtaposition Index. Values of each of these metrics

were calculated for each land cover type in each scenario, as well as the 1930 land cover map.

Table 1. The extent of land cover change in the different scenarios.

Land cover type BAU (%) HIGB (%) LIGB (%) HIAB (%) LIAB (%)

Acid grassland 0.15 0.15 0.15 0 0

Arable cropland 30.0 19.8 24 32.3 31.7

Broadleaved, mixed and yew woodland 6.24 20 13.9 0 3.11

Built-up areas and gardens 8.14 8.14 8.14 8.14 8.14

Calcareous grassland 0.6 10.4 6.12 0 0

Coastal 1.68 1.68 1.68 1.68 1.68

Coniferous woodland 3.66 3.66 3.66 0 3.66

Fen, Marsh, Swamp (incl. Saltmarsh) 0.53 2.32 0.85 0.53 0.53

Heathland 2.64 5.18 3.27 0 0

Improved grassland 45.5 24.4 35.8 56.7 50.6

Inland rock 0.31 0.37 0.32 0.31 0.31

Inland water 0.28 0.28 0.28 0.28 0.28

Neutral grassland 0.28 3.64 1.74 0 0

Values presented are percentages of total land cover. BAU: “Business as usual”; HIGB “Green Brexit”, High Intensity; LIGB “Green Brexit”, Low Intensity; HIAB

“Agribrexit”, High Intensity; LIAB “Agribrexit”, Low Intensity.

https://doi.org/10.1371/journal.pone.0247850.t001
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2.4. Ecosystem service assessment

The InVEST suite of models has been widely used to examine the spatial dynamics of ecosys-

tem service (ES) flows in different contexts [40,41]. The models are based on production

functions relating to a wide variety of ES. Here we used InVEST to model changes in carbon

sequestration and storage, water yield, nitrogen retention and export, crop production and

recreation (S1 Appendix). The water yield and nutrient retention models have recently been

tested and validated using contemporary data in the UK [42,43]. Where an InVEST model

was unavailable for a particular ES or was considered unsuitable, an extended benefit transfer

approach was utilized incorporating indices based on the land cover map categories linked to

ES delivery. The following ES were mapped using such proxy values: flood regulation, timber

production, livestock production, soil quality, aesthetic value, habitat suitability for pollinators

and biodiversity. The proxy values for each land cover type were derived from [24,25] (see S1

Appendix). Using these approaches, ES were mapped for each scenario using the land cover

maps as input.

2.5. Economic impact

To examine the potential economic impacts of land cover change, scenario development was

supported by use of an input-output economic model. This is a conventional form of eco-

nomic model, which is currently being used to inform strategic planning within the study area.

To construct the model, we used a combination of Office for National Statistics data and the

Cambridge Econometrics Local Economic Forecasting Model ([44]) for the Dorset area for

the period 1981–2015. Model outputs included traditional economic metrics of Gross Value

Added (GVA) and full-time equivalent (FTE) employment (see S2 and S3 Appendices). The

model was used to estimate changes in GVA and employment for each scenario by assuming

that agricultural productivity varied in direct proportion to the total area of agricultural land.

All other model inputs remained constant for the different scenarios.

While input-output models are widely used to support economic planning, they do not

explicitly consider links with the environment. For this reason we performed an additional set

of calculations that factored in variation in the demands of different economic sectors for dif-

ferent ES. For this analysis, we employed values describing the dependence of different eco-

nomic sectors on ES provision provided byWatson and Newton [45], based on a survey of 212

Dorset businesses drawn from 28 different sectors (S4 Appendix). In this survey, dependencies

of businesses on flows of different ES were elicited on a five-point Likert scale, ranging from 0

(“not at all dependent”) to 1 (“entirely dependent”). A dependency value of zero implies that a

change in flow of a particular ES would have no effect on business performance. In contrast, a

dependency value of one suggests that business performance would vary in direct proportion

to changes in flow of that ES. In this way, these dependency values provide a measure of

demand for different ES. On this basis, for each scenario we adjusted the inputs of each eco-

nomic sector to the input-output model, by combining dependency values with changes in ES

flows. To achieve this, we first calculated the total flow in each ES by summing values across

the entire study area, using the results of the ES assessment. Relative changes in ES flow for

each scenario were then calculated as a proportion of the initial values. The values of relative

change in each ES were then multiplied by the mean dependency values for each individual

economic sector obtained from [45]. These values were then summed to provide a combined

measure of change in business performance, taking into account changes in all ES and the

dependency of different economic sectors upon them. This set of calculations was conducted

using Netlogo [46]. The analysis was performed for each scenario, and values were expressed

relative to those obtained from the BAU scenario, to provide percentage change values for
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each economic sector. These were then entered into the input-output model to examine

impacts on GVA and employment.

3. Results

3.1. Land cover change

In the 1930s, the landscape of Dorset was dominated by semi-natural grassland pastures, with

neutral unimproved grassland accounting for ~41% of the total area together with additional

swathes of calcareous grassland (19%) and smaller patches of acid grassland (1.7%). Heathland

(5.5%), broadleaved woodland (8%) and arable cropland (17.8%) were also significant land

cover types [34,35]. By 2015 (the BAU scenario), semi-natural grassland (combining the neu-

tral unimproved, calcareous and acid grassland categories) had declined to approximately 1%

of the total area (Table 1). Areas of heathland and broadleaved woodland had also declined by

2015 to values of 1.5% and 3.6% respectively. Conversely, the area of improved grassland

increased from zero in the 1930s to 45% by 2015, and arable cropland increased to 30% by the

latter date, as a result of agricultural expansion and intensification in the region. Coniferous

plantations also increased from 0% to 3.7% over the same period, coincident with this intensi-

fication process.

In the HIAB and LIAB scenarios, arable cropland increased only slightly relative to the

BAU scenario, with values of 32.3% and 31.7% respectively. Improved grassland increased by

slightly larger amounts, giving values of 56.7% and 50.5%. This illustrates the limited scope

for further agricultural expansion within the study area; most of the land that is currently of

value for agriculture has already been converted (Fig 1). The two scenarios also differed in the

amount of broadleaved and coniferous woodland, with combined values of around 6.8% in

LIAB and zero in HIAB (Table 1). In contrast, in the HIGB and LIGB scenarios, broadleaved

woodland area increased from 6.24% in the BAU to values of 20% and 13.9% respectively, both

values exceeding the area present in 1930. Areas of neutral grassland, heathland and calcareous

grassland also increased significantly under both scenarios, reaching respective values of

3.64%, 5.18% and 10.4% under HIGB. These increments were associated with corresponding

declines in arable cropland and improved grassland (Table 1). The projected habitat changes

under HIGB and LIGB varied spatially according to underlying bedrock and soil characteris-

tics; while expansion of broadleaved woodland and calcareous grassland was primarily associ-

ated with the chalk landscapes of the western and northern parts of the county, heathland

expansion was limited to the acidic gravels and sands of south-eastern areas (Fig 1).

3.2. Habitat fragmentation

The expansion and intensification of agriculture in the study area between 1930 and 2015

caused significant fragmentation of semi-natural habitats with high value for biodiversity con-

servation, including calcareous grassland, broadleaved woodland, heathland and neutral grass-

land. For example, Mean Patch Size values of these habitats declined by 73%, 32%, 67% and

96% respectively, during this interval. Patch Density also declined in all four semi-natural hab-

itats between 1930 and 2015, by values of 94%, 44%, 39% and 91% respectively (Fig 2). Arable

cropland and improved grassland demonstrated corresponding increases in Mean Patch Size

and Patch Density over the same timescale, with the exception of Patch Density of arable crop-

land, which declined by 67%. This likely reflects a trend of increasing size of both arable fields

and farms during the process of agricultural intensification.

In the agricultural intensification scenarios, fragmentation continued to intensify, such that

Mean Patch Size of the four semi-natural habitats each reached a value of zero under HIAB.

Conversely, under the restoration scenarios, Mean Patch Size values increased in all four of
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Fig 1. The spatial pattern of land cover change in the different scenarios. (a) BAU: “Business as usual”, (b) (d) (b) LIAB “Agribrexit”, Low Intensity; (c)
HIAB “Agribrexit”, High Intensity; (d) LIGB “Green Brexit”, Low Intensity; (e) HIGB “Green Brexit”, High Intensity.

https://doi.org/10.1371/journal.pone.0247850.g001
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Fig 2. Fragmentation of different land cover types, as determined using FRAGSTATS (see text). (a) Mean Patch Size (MPS), (b) Patch Density
(PD).

https://doi.org/10.1371/journal.pone.0247850.g002
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these habitats, especially under the HIGB scenario (Fig 2a). These increases were particularly

pronounced in calcareous grassland, where values significantly exceeded those from 1930

under both HIGB and LIGB; the same was true for broadleaved woodland. However, in heath-

land and neutral grassland, Mean Patch Size under either restoration scenario failed to reach

the values recorded in 1930. Differences between the scenarios in terms of Patch Density were

somewhat less pronounced. For example, although Patch Density values for calcareous grass-

land were higher in the restoration scenarios than those for agricultural expansion, they were

still much lower than those recorded for 1930 (Fig 2b). This likely reflects the focus of the res-

toration plans used here on restoring large contiguous blocks of land, with the aim of establish-

ing functional habitat networks, rather than increasing the number of discrete habitat patches.

Patch Density values for the other semi-natural habitats (i.e. broadleaved woodland, heathland

and neutral grassland) showed a similar pattern. Similar results were observed with the other

metrics of fragmentation (Table 2); the restoration scenarios tended to increase values of edge

density, shape index and core area for habitats of high conservation value, the increments

being particularly noticeable for the latter metric. Restoration also increased connectivity

between habitats in some cases, such as heathland and calcareous grassland, but this was less

evident for broadleaved woodland as indicated by a slight decline in values of the nearest-

neighbour metric (Table 2).

3.3 Ecosystem services

Variation in the provision of ES between the different scenarios differed markedly depending

on the ES concerned (Fig 3). As expected, crop yield and livestock production were higher

under HIAB and LIAB than under the restoration scenarios. However, for every other ES,

provision was higher under HIGB and LIGB than under the agricultural expansion scenarios;

values under the restoration scenarios were also consistently higher than the BAU scenario

(equivalent to 2015). In other words, ecological restoration increased ES flows compared to

the current situation in every case except for those ES associated with agricultural production.

Furthermore, with the exception of crop and livestock production, ES flows were consistently

higher under HIGB than under LIGB. Some ES flows under HIGB and LIGB also exceeded

values recorded for 1930; this was the case for carbon storage, nitrogen export and retention,

timber production, and flood mitigation. However, the value of the biodiversity index was far

higher in 1930 than under any of the other scenarios; the highest value of the pollinator index

was also observed for 1930.

3.4 Economic impact

Using the unadjusted input-output model, the scenarios had only a slight economic impact in

terms of the forecast change in GVA. While the ecological restoration scenarios had a slight

negative impact on GVA (� -0.25%), the agricultural expansion scenarios resulted in a slight

increase (� 0.25%). In each case, the impacts were larger for the higher intensity scenario than

for the lower intensity (Fig 4a). Conversely, when the input-output model was adjusted to take

account of ES flows, GVA under the LIGB and HIGB increased by 3.0% and 5.4% respectively,

whereas under LIAB and HIAB GVA was reduced by 0.9% and 4.5% respectively.

The current employment in Dorset, according to the Dorset Local Economy Forecasting

Model for Dorset County Council 2016/7, is approximately 380,000. The largest sectors are

retail (17%), health and social work (15.3%), manufacturing (9%) and accommodation and

food services (9%). Agriculture and forestry currently account for approximately 0.2% of full

time employment. The scenarios developed here using the unadjusted input-output model dif-

fered very little in terms of employment; LIAB and HIAB registered slight increases of 0.12%
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Table 2. Assessment of habitat fragmentation using FRAGSTATS (see text). (a) For 1930 (b) For the future scenarios. BAU is business as usual, LI/HI = low/high
intensity, and AB/GB = Agri-Brexit/Green-Brexit.

Land cover type ED MSI MCA NN IJI

Acid grassland 2.10 1.38 3.64 418 67.7

Arable cropland 15.7 1.31 11.6 341 54.7

Broadleaved woodland 10.9 1.22 3.01 367 62.5

Calcareous grassland 12.9 1.67 49.7 272 51.8

Coastal 0.18 1.67 2.68 2334 51.1

Coniferous woodland 0.04 1.05 0 5053 66.9

Fen, marsh, swamp 0.15 1.38 5.85 1062 69.9

Heathland 2.78 1.44 42.6 318 69.4

Inland water 1.42 1.12 0.45 510 62.2

Neutral grassland 18.9 1.53 101 267 66.5

Land cover type Scenario ED MSI MCA NN IJI

Acid grassland BAU 0.12 1.18 1.94 1620 55.2

Arable cropland BAU 9.42 1.39 42.9 354 28.8

Broadleaved woodland BAU 5.34 1.20 1.08 3756 47.9

Calcareous grassland BAU 0.24 1.41 9.26 922 68.8

Coniferous woodland BAU 1.65 1.29 7.70 601 62.8

Fen, marsh, swamp BAU 0.15 1.21 0.64 481 76.2

Heathland BAU 0.98 1.29 10.8 504 67.2

Improved grassland BAU 11.9 1.41 93.8 284 45.1

Neutral grassland BAU 0.22 1.21 0.97 1090 64.0

Arable cropland HIAB 9.90 1.34 42.9 341 9.59

Fen, marsh, swamp HIAB 0.21 1.21 0.64 481 64.2

Improved grassland HIAB 10.6 1.33 164 287 24.3

Arable cropland LIAB 9.49 1.37 46.4 343 13.3

Broadleaved woodland LIAB 2.65 1.18 0.73 437 32.3

Coniferous woodland LIAB 1.65 1.29 7.70 601 53

Fen, marsh, swamp LIAB 0.15 1.21 0.64 481 59.3

Improved grassland LIAB 12.6 1.35 104 285 46.4

Acid grassland HIGB 0.12 1.18 1.94 1620 77

Arable cropland HIGB 5.92 1.37 41.2 401 36.7

Broadleaved woodland HIGB 5.10 1.20 22.1 386 78.2

Calcareous grassland HIGB 1.61 1.71 370 473 63.6

Coniferous woodland HIGB 1.65 1.29 7.70 601 56.1

Fen, marsh, swamp HIGB 0.72 1.39 15.8 528 77.3

Heathland HIGB 1.59 1.38 28.7 436 66.7

Improved grassland HIGB 7.16 1.42 39.4 297 50.3

Neutral grassland HIGB 0.88 1.35 53.7 901 74.8

Acid grassland LIGB 0.12 1.18 1.94 1620 72.2

Arable cropland LIGB 7.59 1.38 39.6 353 31

Broadleaved woodland LIGB 5.27 1.20 10.6 385 66.2

Calcareous grassland LIGB 0.93 1.56 180 671 65.6

Coniferous woodland LIGB 1.65 1.29 7.70 601 61.6

Fen, marsh, swamp LIGB 0.22 1.24 1.46 676 83.7

Heathland LIGB 1.26 1.34 20.7 481 67.0

Improved grassland LIGB 9.47 1.47 75.6 287 47.0

Neutral grassland LIGB 0.64 1.30 25.1 856 70.6

Abbreviations: ED, Edge Density; MSI, Mean Shape Index; MCA, Mean Core Area; NN, Euclidean Nearest-Neighbour distance; IJI, Interspersion and Juxtaposition Index.

https://doi.org/10.1371/journal.pone.0247850.t002
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Fig 3. Ecosystem service (ES) provision summarized at the landscape scale, for each of the different scenarios, and
including values for the 1930s as a historic reference.Values for 2015 are equivalent to the BAU scenario. (3a) (a)
carbon sequestration and storage, (b) arable crop production, (c) nutrient (nitrogen) export, (d) nutrient retention, (e)
recreation value (assessed as visitation rate), (f) water yield, (3b) (a) habitat quality for pollinators, (b) biodiversity
value, using index for BAP species, (c) soil quality, (d) livestock production, (cows, poultry, sheep, pigs), (e) aesthetic
value (CPRE index), (f) timber production, (g) flood mitigation.

https://doi.org/10.1371/journal.pone.0247850.g003
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and 0.24% respectively, while LIGB and HIGB were associated with slight decreases of -0.28%

and -0.57% respectively. Conversely, when the input-output model was adjusted to take

account of ES flows, employment under the LIGB and HIGB increased by 3.7% and 6.7%

respectively, whereas under LIAB and HIAB employment was reduced by 1.1% and 5.6%

respectively.

Overall, for both GVA and employment, these results indicate that the ranking of

the scenarios was reversed when ES flows were factored in. The magnitude of forecast eco-

nomic impacts was also substantially higher when ES flows were included in the analysis

(Fig 4b).

Fig 4. Economic impacts (GVA) associated with the different scenarios, relative to the BAU value. (a) using the
unadjusted input—output model, (b) using the input-output model adjusted for ecosystem service flows.

https://doi.org/10.1371/journal.pone.0247850.g004
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4. Discussion

This research delivered two key insights. First, the contribution of rural land use to the econ-

omy is much larger than that provided by agriculture alone; patterns of land use affect the per-

formance of multiple economic sectors by influencing ES flows to a wide variety of different

businesses. This influence of agricultural land use on the wider economy is ignored by conven-

tional approaches to economic forecasting, which take no account of ES flows and their impor-

tance to business performance. Second, landscape-scale ecological restoration of agricultural

land can potentially increase the contribution of this land to economic development and

employment, by increasing flows of all ES other than those associated with agricultural pro-

duction. The evidence provided by this research therefore supports calls for investment in

natural capital, using approaches such as ecological restoration and rewilding, as a way of

strengthening economic performance while also providing benefits to human well-being

[47–50].

The fact that economic planning typically ignores the value of natural capital, and the

associated flows of ES, has long been recognised. Indeed, the original development of ES as a

concept was stimulated by this problem. In response, recent global initiatives such as the Mil-

lennium Ecosystem Assessment [51], The Economics of Ecosystems and Biodiversity [52] and

the International Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES)

[53] have developed conceptual frameworks to support the valuation of nature and to better

capture these values in decision-making. As a result of such initiatives, the concepts of natural

capital and ecosystem services are now broadly accepted, as is their potential contribution to

improving environmental management [27]. However, despite growing awareness of these

concepts, their practical application is still limited, and the core problem has not been fully

addressed. Economic objectives continue to be of overriding importance for land-use deci-

sion-making, regardless of the type of decision-maker involved [54].

The widespread failure of land-use decision makers to recognise the value of natural capital

may partly reflect the type of evidence that is available. Although an immense body of research

has been conducted into natural capital and ES over the past 20 years, most of this has focused

only on the supply side of the economy, and not on demand [28]. Consequently, there is still

very little understanding of how land-use decisions taken at the local scale influence economic

performance at regional or national scales. In their review of recent progress in ES research,

Costanza et al. [27] highlight the need for integration of information across scales, and note

the importance of developing full cost accounting in business and governmental sectors,

which would enable the positive contributions of ES to businesses and households to be identi-

fied. Yet progress in this area has been very limited to date. As a consequence, little evidence

regarding natural capital and ES is available in a form that can directly influence land-use

decision making. This is illustrated by the information needs of stakeholders in the study

area that we examined here, namely Dorset. The strategic economic plan for this region

focuses primarily on only two goals: strengthening economic growth (as indicated by GVA)

and employment; no consideration is given to the need to invest in natural capital or to main-

tain ES flows [55]. This is despite the fact that 8–10% of Dorset’s economy, and some 30,000

jobs, are directly dependent on the state of the local environment; employment in agriculture,

forestry and fisheries accounts for about a quarter of this total [56]. Information on trends in

ES values has little traction with such decision-makers; rather, an explicit linkage needs to be

made between the state of natural capital and both economic development and employment.

As we demonstrate here, models describing the dynamics of natural capital and ES flows

can potentially be linked with conventional economic models through the use of shared

parameters. These can then be used to support the development of scenarios of future land

PLOS ONE Ecological restoration of agricultural land

PLOSONE | https://doi.org/10.1371/journal.pone.0247850 March 5, 2021 14 / 21

https://doi.org/10.1371/journal.pone.0247850


use, which can inform decision-making. This approach represents a form of loose coupling

between models, where the output from one model is used as input to another. Such an

approach has previously been identified as a useful way of developing modelling ‘toolkits’,

enabling information to be integrated across a range of scales, and used to support strategic

landscape planning [57,58]. Clearly, this form of loose coupling could potentially be achieved

with a wide variety of different modelling approaches. For example, a number of alternative

methods for mapping ES are available other than those employed here, including MIMES,

LUCI and ARIES [40]. Similarly, a range of different approaches are available for modelling

the economy, including Computable General Equilibrium (CGE), Dynamic Stochastic General

Equilibrium, and system dynamics models [59]. Although an input-output economic model

was employed here, to be consistent with current economic planning in the study area, this

approach does not fully capture the complexity of the linkages between human society and the

natural environment. As noted by Costanza et al. [27], more integrated, dynamic, non-linear

systems models are needed to achieve this, but their use in supporting land use planning has

been very limited to date.

Few researchers have examined how ES models might best be linked with economic mod-

els. Recent reviews of ES modelling and mapping approaches (e.g. [60–62]) fail to give any

consideration to the issue. Conversely, Drechsler [63] reviews recent progress in developing

mechanistic models that integrate ecological and socio-economic knowledge, including agent-

based models, bio-economic models, ecological-economic models, social-ecological models

and system-dynamic models, but does not consider how these might best be linked with spa-

tially explicit ES models. The most detailed examination is provided by Anger et al. [59], who

note that while some studies have assessed the macroeconomic performance of certain envi-

ronment-related sectors (especially agriculture, forestry and fisheries), they have generally not

considered the impact of changes in multiple ES on measures of macroeconomic performance,

such as GVA and employment. Examples of relevant studies include the preliminary CGE

analysis presented by Bosello et al. [64] on the macroeconomic effects of changes of selected

ES provided by European forest, cropland and grassland ecosystems, but focusing primarily

on carbon sequestration. Further, Ukidwe and Bakshi [65] explored the contribution of eco-

systems to energy flows in 91 sectors of the US economy, but did not include impacts on mac-

roeconomic indicators. Building on the National Ecosystem Assessment undertaken in the

UK, Bateman et al. [66] used a combination of process-based and econometric regression

models to estimate the value of ES provision under different land use scenarios at the national

scale. However, no attempt was made to evaluate the demand for ES flows from different sec-

tors of the economy, or the impact on economic growth. These examples illustrate the scope

for linking ES and economic models, but also highlight the need for further research in this

area, building on the approach outlined here.

As noted by Rieb et al. [60], another key knowledge gap relates to identifying the beneficia-

ries of ES. Few ES models identify the beneficiaries of a given ES in a spatially explicit way, or

map the connections between supply and demand. Understanding how ES supply, which is

spatially explicit, relates to demand, which is often spatially disaggregated, has been identified

as a research priority in order to better meet stakeholder needs [67,68]. In the study area exam-

ined here, results indicated that the economy is geographically structured: most businesses are

located in urban areas, which are concentrated in the south-east part of the county. Yet most

ES are produced in rural areas. Economic performance of the county is therefore at least partly

dependent on ES flows from rural to urban areas, a process that has been little examined. This

highlights the need to understand the urban-rural interface in relation to natural capital and

ES flows, to ensure that approaches to regional development planning are sustainable. In par-

ticular, there is a need to ensure that urban development does not negatively affect the supply
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of rural ES, and that the natural capital of rural areas is adequately protected to ensure sustain-

able provision of ES to urban areas [69,70].

In common with all other exploratory scenario-based analyses, those presented here are

based on a number of assumptions. The most important of these is the assumption that busi-

ness performance is linearly related to ES flows, as captured by the ES dependency values

obtained from a questionnaire survey. The potential limitations of the questionnaire data are

explored by Watson and Newton [45]. Chief among these is the issue of sampling; it is con-

ceivable that a different set of dependency values would have been obtained from a different

set of respondents. Although the response rate to the survey was evenly distributed across

the different economic sectors, and stratified sampling approaches were adopted, the sample

may have been biased in different ways. This limitation could potentially be addressed by

more comprehensive business surveys, including more detailed assessment of how business

performance is linked to ES flow [45]. Analysis of variation in dependency values would

enable sensitivity analyses to be performed, allowing the impact of this variation on eco-

nomic forecasts to be explored. A further assumption is that the ES flows used by businesses

were derived only from the study area; although many businesses were found to place a high

importance on using locally produced resources [45], it is possible that ES flows from other

areas might have influenced business performance. Although issues such as inter-regional ES

flows and telecoupling [71] were not examined here, they could influence the extent to

which business performance is linked with local natural capital. Furthermore, the flows of

different ES were combined additively, and weighted by the dependency values; in reality,

business performance might display non-linear relationships with ES flows, and conceivably

different ES flows might interact. For example, problems with low water quality are likely to

be more intense when water flows are low, owing to drought [72]. In addition, no consider-

ation was given here to potential changes over time in the condition of natural capital, which

could be caused by factors such as climate change. Finally, it should be noted that the case

study area selected here, namely Dorset, may not be representative of all lowland agricultural

landscapes in the region; this might limit the generality of the conclusions drawn. Given

these limitations, the analyses presented here should clearly be viewed as preliminary, and

the results viewed with caution.

Despite these caveats, these results suggest that ecological restoration or rewilding of agri-

cultural land could benefit the economy through increased provision of ES flows, with GVA

increases of up to around 5% projected in the scenarios explored. We did not differentiate

here between ecological restoration and rewilding as approaches to expand the area of semi-

natural habitats; potentially, either could be implemented. Large-scale rewilding is often con-

sidered to be more applicable to relatively marginal areas, where the economic value of land is

low, such as uplands or mountainous areas [12,14,18]. However, initiatives such as the Knepp

Estate in the UK demonstrate that rewilding is also an economically viable land use option in

lowland agricultural landscapes [73]. Analyses presented by Loth and Newton [74] demon-

strate strong interest among stakeholders for rewilding in Dorset, with naturalistic grazing and

farmland abandonment emerging as the most suitable rewilding options following spatial

multi-criteria analysis. However, it is important to note that rewilding could lead to very differ-

ent outcomes than other ecological restoration approaches, even if their broad goals are similar

[75]. For example, rewilding might result in woodland expansion on successional habitats,

such as heathland and calcareous grassland, which are currently deemed to be of high biodi-

versity value. It should also be recognised that increases in flows of some ES from agricultural

land can be achieved through means other than restoration or rewilding, for example by

improved husbandry of crops and livestock, as advocated in approaches such as “regenerative

agriculture” and “sustainable intensification” [76,77].
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Whichever approach is implemented, the large-scale expansion of semi-natural habitats is

consistent with the vision described in a number of policy initiatives in the UK, including the

development of a resilient ecological network [78] and the UK Government’s 25 Year Environ-

ment Plan, which aims to restore 500,000 ha of wildlife-rich habitat throughout the territory,

and to achieve a 12% increase in woodland cover in England by 2060 [79]. In particular, the

current results support suggestions that following Brexit, the UK should develop new land use

policies that enable landowners to receive government funds for the provision of ES [29,80].

Specifically, in a review of post-Brexit land use policy options, Helm [80] has identified the

payment of public monies for the provision of public goods as the preferred approach, as it

would enable the production of a wide range of public benefits. Our results indicate that the

provision of financial incentives to landowners to implement ecological restoration or rewild-

ing approaches could not only provide benefits to wildlife and people, but could strengthen

the contribution of rural land to economic development and employment. As noted by Helm

[80], if this policy option is pursued, it will need to be supported by a comprehensive evalua-

tion of land use and its impact on the provision of benefits to the public. Potentially the

approaches outlined here could contribute to achievement of this goal.
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9. Rey Benayas JM, Martı́nez-Baroja L, Pérez-Camacho L, Villar-Salvador P, Holl KD. Predation and arid-
ity slow down the spread of 21-year-old planted woodland islets in restored Mediterranean farmland.
New Forests. 2015; 46(5–6): 841–853.

10. SutherlandWJ. Restoring a sustainable countryside. Trends in Ecology and Evolution. 2002; 17(3):
148–150.

11. Zingg S, Grenz J, Humbert J-Y. Landscape-scale effects of land use intensity on birds and butterflies.
Agriculture, Ecosystems and the Environment. 2018; 267: 119–128.

12. MacDonald D, Crabtree J, Wiesinger G, Dax T, Stamou N, Fleury P. et al. Agricultural abandonment in
mountain areas of Europe: Environmental consequences and policy response. Journal of Environmen-
tal Management. 2000; 59(1): 47–69.

13. Queiroz C, Beilin R, Folke C, Lindborg R. Farmland abandonment: threat or opportunity for biodiversity
conservation? A global review. Frontiers in Ecology and the Environment. 2014; 12(5): 288–296.

14. Pereira HM, Navarro LM. (eds.) Rewilding European landscapes. Springer, Heidelberg, 2015.

15. Navarro LM and Pereira HM. Rewilding abandoned landscapes in Europe. Ecosystems. 2012; 15:
900–12.

16. Lorimer J, SandomC, Jepson P, Doughty C, Barua M, Kirby KJ. Rewilding: science, practice, and poli-
tics. Annual Review of Environment and Resources. 2015; 40(40): 39–62.

17. Pettorelli N, Barlow J, Stephens PA, Durant SM, Connor B, Buhne HST, du Toit JT. Making rewilding fit
for policy. Journal of Applied Ecology. 2018; 55: 1114–1125.

18. SandomCJ, Dempsey B, Bullock D, Ely A, Jepson P, Jimenez-Wisler S, et al. Rewilding in the English
uplands: Policy and practice. Journal of Applied Ecology. 2019; 56: 266–273.

19. Rey Benayas JM, Newton AC, Diaz A, Bullock JM. Enhancement of biodiversity and ecosystem ser-
vices by ecological restoration: A meta-analysis. Science. 2009; 325(5944): 1121–1124. https://doi.
org/10.1126/science.1172460 PMID: 19644076

20. Crouzeilles R, Curran M, Ferreira MS, Lindenmayer DB, Grelle CEV, Rey Benayas JM. A global meta-
analysis on the ecological drivers of forest restoration success. Nature Communications. 2016: 7,
11666. https://doi.org/10.1038/ncomms11666 PMID: 27193756

PLOS ONE Ecological restoration of agricultural land

PLOSONE | https://doi.org/10.1371/journal.pone.0247850 March 5, 2021 18 / 21

http://www.ncbi.nlm.nih.gov/pubmed/30450426
https://doi.org/10.1126/science.1106049
http://www.ncbi.nlm.nih.gov/pubmed/15618485
https://doi.org/10.1098/rstb.2007.2186
https://doi.org/10.1098/rstb.2007.2186
http://www.ncbi.nlm.nih.gov/pubmed/17761469
https://doi.org/10.1126/science.1172460
https://doi.org/10.1126/science.1172460
http://www.ncbi.nlm.nih.gov/pubmed/19644076
https://doi.org/10.1038/ncomms11666
http://www.ncbi.nlm.nih.gov/pubmed/27193756
https://doi.org/10.1371/journal.pone.0247850


21. Crouzeilles R, Ferreira MS, Chazdon RL, et al. Ecological restoration success is higher for natural
regeneration than for active restoration in tropical forests. Science Advances. 2017: 3(11), e1701345.
https://doi.org/10.1126/sciadv.1701345 PMID: 29134195

22. Barral MP, Rey Benayas JM, Meli P, Maceira NO. Quantifying the impacts of ecological restoration on
biodiversity and ecosystem services in agroecosystems: A global meta-analysis. Agriculture, Ecosys-
tems and the Environment. 2015; 202: 223–231.

23. Mace GM, Hails RS, Cryle P, Harlow J, Clarke SJ. Towards a risk register for natural capital. Journal of
Applied Ecology. 2015; 52(3): 641–653. https://doi.org/10.1111/1365-2664.12431 PMID: 27563153

24. Newton AC, Hodder K, Cantarello E, Perrella L, Birch JC, Robins J, et al. Cost-benefit analysis of eco-
logical networks assessed through spatial analysis of ecosystem services. Journal of Applied Ecology.
2012; 49(3): 571–580.

25. Hodder KH, Newton AC, Cantarello E, Perrella L. Does landscape-scale conservation management
enhance the provision of ecosystem services? International Journal of Biodiversity Science, Ecosystem
Services and Management. 2014; 10(1): 71–83.

26. Cerqueira Y, Navarro LM, Maes J, Marta-Pedroso C, Pradinho Honrado J, Pereira HM. Ecosystem ser-
vices: the opportunities of rewilding in Europe. In: Pereira HM, Navarro LM. (eds.). Rewilding European
Landscapes. Springer, Heidelberg, pp. 47–64. 2015.

27. Costanza R, de Groot R, Braat L, Kubiszewski I, Fioramonti L, Sutton P, et al. Twenty years of ecosys-
tem services: How far have we come and how far do we still need to go? Ecosystem Services. 2017;
28: 1–16.

28. Lautenbach S, Mupepele A-C, Dormann CF, Lee H, Schmidt S, Scholte SSK, et al. Blind spots in eco-
system services research and challenges for implementation. Regional Environmental Change 2019;
19: 2151–2172.

29. Bateman IJ, Balmford B. Public funding for public goods: A post-Brexit perspective on principles for agri-
cultural policy. Land use policy. 2018; 79: 293–300.

30. Miller RE, Blair PD. Input-output analysis. Cambridge University Press, Cambridge, UK, 2009.

31. Hooftman DAP, Bullock JM. Mapping to inform conservation: A case study of changes in semi-natural
habitats and their connectivity over 70 years. Biological Conservation. 2012; 145(1): 30–38.

32. Stamp D. The Land Utilisation Survey of Britain. The Geographical Journal. 1931; 78(1): 40–47.

33. Rowland CS, Morton R, Carrasco L, McShane G, O’Neil AW,Wood CM. Land Cover Map 2015 (vector,
GB). NERC Environmental Information Data Centre. https://www.ceh.ac.uk/services/land-cover-map-
2015 2017.

34. Ridding LE, Watson SCL, Newton AC, Rowland CS, Bullock JM. Ongoing, but slowing, habitat loss in a
rural landscape over 85 years. Landscape Ecology. 2020; 35: 257–273.

35. Ridding LE, Newton AC, Redhead JW,Watson SCL, Rowland CS, Bullock JM. Modelling historical
landscape changes. Landscape Ecology. 2020; https://doi.org/10.1007/s10980-020-01059-9

36. Ridding LE, Newton AC, Keith SA, Walls RM, Diaz A, Pywell RF, Bullock JM. Inconsistent detection of
extinction debts using different methods. Ecography. 2020; 44(1): 33–43.

37. Brenman S. Rebuilding biodiversity in the SouthWest. The SouthWest Wildlife Trusts, Bristol, 2005.

38. TheWildlife Trusts. A living landscape. A call to restore the UK’s battered ecosystems, for wildlife and
people. TheWildlife Trusts, Newark, UK, 2006.

39. McGarigal K, Cushman SA, Ene E. FRAGSTATS v4: Spatial pattern analysis program for categorical
and continuous maps. Computer software program produced by the authors at the University of Massa-
chusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html. 2012.

40. Bagstad KJ, Semmens DJ, Waage S, Winthrop R. A comparative assessment of decision-support tools
for ecosystem services quantification and valuation. Ecosystem Services. 2013; 5: 27–39.

41. Sharp R, Tallis HT, Ricketts T, Guerry AD,Wood SA, et al. InVESTUser’s Guide. Natural Capital Proj-
ect, Stanford University, California, USA. https://naturalcapitalproject.stanford.edu/software/invest.
2016.

42. Redhead JW, May L, Oliver TH, Hamel P, Sharp R, Bullock JM. National scale evaluation of the InVEST
nutrient retention model in the United Kingdom. Science of the Total Environment. 2018; 610: 666–677.
https://doi.org/10.1016/j.scitotenv.2017.08.092 PMID: 28826113

43. Redhead JW, Stratford C, Sharps K, Jones L, Ziv G, Clarke D, et al. Empirical validation of the InVEST
water yield ecosystem service model at a national scale. Science of the Total Environment. 2016; 569:
1418–1426.

44. Cambridge Econometrics. The Local Economy Forecasting Model: Capability/LEFM/LEFMOverview.
aspx. 2015; accessed: [26/07/2018].

PLOS ONE Ecological restoration of agricultural land

PLOSONE | https://doi.org/10.1371/journal.pone.0247850 March 5, 2021 19 / 21

https://doi.org/10.1126/sciadv.1701345
http://www.ncbi.nlm.nih.gov/pubmed/29134195
https://doi.org/10.1111/1365-2664.12431
http://www.ncbi.nlm.nih.gov/pubmed/27563153
https://www.ceh.ac.uk/services/land-cover-map-2015
https://www.ceh.ac.uk/services/land-cover-map-2015
https://doi.org/10.1007/s10980-020-01059-9
http://www.umass.edu/landeco/research/fragstats/fragstats.html
https://naturalcapitalproject.stanford.edu/software/invest
https://doi.org/10.1016/j.scitotenv.2017.08.092
http://www.ncbi.nlm.nih.gov/pubmed/28826113
https://doi.org/10.1371/journal.pone.0247850


45. Watson SCL, Newton AC. Dependency of businesses on flows of ecosystem services: a case study
from the county of Dorset, UK. Sustainability. 2018; 10(5): 1368 https://doi.org/10.3390/su10051368.

46. Wilensky U. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Com-
puter-BasedModeling, Northwestern University, Evanston, IL. 1999.

47. Bateman IJ, Mace GM. The natural capital framework for sustainably efficient and equitable decision
making. Nature Sustainability. 2020; https://doi.org/10.1038/s41893-020-0552-3

48. Ouyang Z, Zheng H, Xiao Y, Polasky S, Liu J, XuW. et al. Improvements in ecosystem services from
investments in natural capital. Science. 2016; 352(6292): 1455–1459. https://doi.org/10.1126/science.
aaf2295 PMID: 27313045

49. Maseyk FJF, Mackay AD, Possingham HP, Dominati EJ, Buckley YM. Managing natural capital stocks
for the provision of ecosystem services. Conservation Letters. 2016; 10(2): 211–220.

50. Strassburg BBN, IribarremA, Beyer HL, Cordeiro CL, Crouzeilles R, Jakovac CC et al. Global priority areas
for ecosystem restoration. Nature. 2020; https://doi.org/10.1038/s41586-020-2784-9. PMID: 33057198

51. Millennium Ecosystem Assessment. Ecosystems and human well-being: Synthesis. Island Press,
Washington, D.C., 2005.

52. Kumar P. editor. The economics of ecosystems and biodiversity: ecological and economic foundations.
2010; Earthscan, London, UK.

53. Diaz S, Demissew S, Carabias J, Joly C, Lonsdale M, Ash N, et al. The IPBES Conceptual Framework
—connecting nature and people. Current Opinion in Environmental Sustainability. 2015; 14: 1–16.
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