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Roughly 10% of the Earth’s surface is permanently covered by glaciers and ice sheets

and in mountain ecosystems, this proportion of ice cover is often even higher. From an

ecological perspective, ice-dominated ecosystems place harsh controls on life including

cold temperature, limited nutrient availability, and often prolonged darkness due to

snow cover for much of the year. Despite these limitations, glaciers, and perennial

snowfields support diverse, primarily microbial communities, though macroinvertebrates

and vertebrates are also present. The availability and mass balance of key elements

[(carbon (C), nitrogen (N), phosphorous (P)] are known to influence the population

dynamics of organisms, and ultimately shape the structure and function of ecosystems

worldwide. While considerable attention has been devoted to patterns of biodiversity

in mountain cryosphere-influenced ecosystems, the ecological stoichiometry of these

habitats has received much less attention. Understanding this emerging research

arena is particularly pressing in light of the rapid recession of glaciers and perennial

snowfields worldwide. In this review, we synthesize existing knowledge of ecological

stoichiometry, nutrient availability, and food webs in the mountain cryosphere (specifically

glaciers and perennial snowfields). We use this synthesis to develop more general

understanding of nutrient origins, distributions, and trophic interactions in these imperiled

ecosystems. We focus our efforts on three major habitats: glacier surfaces (supraglacial),

the area beneath glaciers (subglacial), and adjacent downstream habitats (i.e., glacier-

fed streams and lakes). We compare nutrient availability in these habitats to comparable

habitats on continental ice sheets (e.g., Greenland and Antarctica) and show that, in

general, nutrient levels are substantially different between the two. We also discuss

how ongoing climate warming will alter nutrient and trophic dynamics in mountain

glacier-influenced ecosystems. We conclude by highlighting the pressing need for

studies to understand spatial and temporal stoichiometric variation in the mountain

cryosphere, ideally with direct comparisons to continental ice sheets, before these

imperiled habitats vanish completely.
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INTRODUCTION

Approximately 75% of the freshwater on Earth is frozen at
any given time (Jain, 2014; Talalay et al., 2014). This global
“cryosphere” includes continental ice sheets, mountain glaciers,
snowfields, permafrost, and sea ice. Beyond extreme cold
and frequent subzero temperatures, frozen environments place
additional harsh controls on life including a lack of available
water, high ultraviolet radiation, and highly dynamic, but
generally limited, nutrient supplies (Anesio and Laybourn-Parry,
2012). Nevertheless, the cryosphere supports diverse biological
communities on the surface of glaciers and continental ice
sheets (Anesio et al., 2009; Hotaling et al., 2017a), beneath
them (Hamilton et al., 2013), in their meltwater (Hotaling
et al., 2019a), in permafrost (Jansson and Tas, 2014), and
in sea ice (Boetius et al., 2015). Even though these biotic
communities are dominated by unicellular microbial life (e.g.,
bacteria and algae: Boetius et al., 2015; Anesio et al., 2017;
Hotaling et al., 2017a), macroinvertebrates (e.g., ice worms
and rotifers; Shain et al., 2016; Hotaling et al., 2019b) and
vertebrates (e.g., gray-crowned rosy finches; Rosvold, 2016)
are also represented. However, rising global temperatures are
driving widespread recession of the cryosphere (Lyon et al.,
2009; Notz and Stroeve, 2016; Roe et al., 2017) with profound
implications for biodiversity (Hotaling et al., 2017b), human
populations (Pritchard, 2017), and ecological feedbacks (e.g.,
trophic interactions and biogeochemical cycles, Hood et al.,
2009; Sommaruga, 2015; Milner et al., 2017). Therefore,
understanding the interplay between resource availability and
biological communities across cryosphere-associated habitats,
as well as how climate change may alter them, is a pressing
research need.

The field of ecological stoichiometry, which seeks to
understand the balance of energy and chemical elements
in ecological interactions and processes (Sterner and Elser,
2002), provides a valuable framework for understanding how
ecosystems function. The availability and mass balance of key
elements [carbon (C), nitrogen (N), and phosphorous (P)]
place crucial controls on the population dynamics of organisms
(Cross et al., 2005), ultimately regulating the structure, function,
and processes of ecosystems (Sterner and Elser, 2002; Elser
et al., 2007). On mountain glaciers and snowfields, solar
radiation, atmospheric CO2, allochthonous (e.g., arthropod
fallout, Edwards, 1987; black carbon, Skiles et al., 2018), and
autochthonous (e.g., cryoconite hole metabolism, Anesio et al.,
2009; snow algae primary productivity, Hamilton and Havig,
2018) inputs all interact to shape elemental balances and the
structure of food webs. Furthermore, glacier environments
support higher trophic levels (Tynen, 1970; Kohshima, 1984;
De Smet and Van Rompu, 1994; Kikuchi, 1994), highlighting
the key role that stoichiometric dynamics likely play in
shaping ice-associated food webs. Spatial links also exist among
cryospheric habitats; for instance, primary production and
atmospheric deposition occuring on the surface of glaciers
(supraglacial zone) influences stoichiometric processes beneath
them in the subglacial zone. Glacier-associated biological
and biogeochemical processes ultimately affect downstream

lakes and streams as far as the world’s oceans (Hotaling et al.,
2017a). Thus, ecological stoichiometry can provide mechanistic
insight into connections among different environments,
interactions between trophic levels, and can act as a means
to link the influences of glacier melt dynamics on ecosystem
structure and function in cryosphere-associated environments
and beyond.

In this review, we provide the first synthesis of ecological
stoichiometry in the mountain cryosphere. We identify
mountains (and by proxy, mountain ecosystems) in the same
way as a related review (Moser et al., 2019), which used the
definition provided by Körner et al. (2017): mountainous areas
exhibit more than 200m of elevation difference within a 2.5′

grid cell, irrespective of elevation. Our motivation for focusing
on the mountain cryosphere was 3-fold. First, much is known
of the general stoichiometry of continental ice sheets (i.e.,
Greenland and Antarctica), however there has been considerably
less focus on similar mountain ecosystems and thus, it is unclear
how comparable the two environments are. Second, mountain
glaciers and snowfields harbor extensive biological diversity,
including multiple trophic levels from microbes to birds (e.g.,
Anesio and Laybourn-Parry, 2012; Hotaling et al., 2019a).
Third, many human populations rely on mountain glacier
meltwater for agriculture, hydropower, and drinking water
(Milner et al., 2017), highlighting the potential relevance of
ecological processes occurring in headwaters beyond adjacent
biotic communities.

Within the mountain cryosphere, we focus on three distinct,
but interconnected, habitats: the supraglacial zone, subglacial
zone, and downstream glacier-fed streams and lakes (Figure 1).
The supraglacial zone encompasses the interface between surface
ice/snow and atmospheric conditions. The subglacial zone
comprises the area where glacier ice interacts directly with
bedrock and meltwater. And, glacier-fed streams and lakes
include the downstream habitats which are directly adjacent to
glaciers (Figure 1). By considering the mountain cryosphere in a
stoichiometric framework, we clarify key environment-organism
interactions, including the effects of nutrients on psychrophiles
(organisms capable of living in extremely low temperatures)
and their reciprocal effects on biogeochemical processes (e.g.,
respiration, nitrification) and habitat characteristics (e.g., snow
albedo, light attenuation). For each habitat, we address two
stoichiometric questions: (1) What is the origin, availability,
and variation (spatial and temporal) of C, N, and P? What
dynamics of stoichiometric ratios exist? (2) To what extent
are complex food webs (i.e., multiple trophic levels) present?
What does stoichiometry mean for their trophic interactions
and biogeochemical cycling? As part of this, we explicitly test
the degree to which nutrient concentrations in the mountain
cryosphere are comparable to those measured for continental
ice sheets to better understand how insight gained from ice
sheets can be translated to mountain systems. We conclude by
discussing how contemporary climate change, and particularly
rapid glacier decline, will impact these ecosystems. As the
cryosphere continues to change, a stoichiometric understanding
will allow for refined ecological predictions of nutrient dynamics
and consequences for trophic interactions.
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FIGURE 1 | A conceptual diagram of habitats and nutrient dynamics in mountain glacier ecosystems. Major (A–C) and minor (1, 2, 3, 4) components of the mountain

cryosphere discussed in this review are shown. Arrows indicate nutrient flow paths, plus signs (+) indicate sources, while red text and minus signs “–” indicate sinks.

Yellow boxes with green text represent organisms. Abbreviations include: allo, allochthonous; aut, autochthonous; DOM, dissolved organic matter; PO3−
4 , phosphate;

NH+

4 , ammonium; CH4, methane; NO−

3 , nitrate. Figure is not drawn to scale.

LIVING ON ICE: THE SUPRAGLACIAL
ZONE

During melt, considerable primary production occurs in the
supraglacial zone, primarily due to snow algal blooms (e.g.,
Chlamydomonas nivalis and cyanobacteria, Anesio et al., 2017),
in spite of high levels of ultraviolet radiation (Morgan-Kiss
et al., 2006; Yallop et al., 2012) and often limited nutrient
availability (Hawkings et al., 2016; Wadham et al., 2016). This
biomass production has key implications for local biota (e.g.,
heterotrophs), hydrologically connected habitats downstream,
and even glacier albedo (Ganey et al., 2017; Figure 1). While
surface ice and snow represent the bulk of available habitat
in the supraglacial zone, and thus are where most of the
biomass on mountain glaciers resides, the supraglacial zone is
highly heterogeneous (e.g., with respect to debris cover) and
habitat types within it (e.g., cryoconite holes) must also be
considered (Figure 1).

Nutrients
Supraglacial environments are typically nutrient poor (Figure 2;
Table S1) and available nutrients are often present in organic
forms (e.g., residues of microbial and/or plant cells, decayed
organic matter, microbial exudates; Antony et al., 2017). For

reference eutrophic lakes typically have total N concentrations
of 650–1,200 µg L−1 and total P concentrations of 30–
100 µg L−1 (Dodds and Whiles, 2010). Mountain glaciers
typically only contain a fraction of that level of nutrient
concentrations (Figure 2). Surface ice and snow in particular
exhibit low nutrient concentrations when compared to other
microhabitats (e.g., cryoconite holes; Figure 2). Through
C fixation, supraglacial primary production promotes the
accumulation of autochthonous organic C (Musilova et al.,
2017; Williamson et al., 2019), thereby driving C and N cycling
(Stibal et al., 2012; Havig and Hamilton, 2019). Due to near
constant melt during periods of warm temperature and/or high
solar radiation, any C that is fixed on the supraglacial surface
and not consumed by local heterotrophs (e.g., bacteria, fungi,
ice worms) is exported to subglacial and downstream habitats.
Thus, metabolic activity of supraglacial organisms may alter
the environmental availability of nutrients and shape trophic
relationships in hydrologically connected habitats.

The presence and growth of supraglacial microbes, and in
particular snow algae (Figure 1), can reduce local albedo and
induce additional melting (Ganey et al., 2017). Since meltwater
itself is often a limited resource in the supraglacial zone, the
release of additional water can locally stimulate further microbial
growth, which drives more melt in a bio-albedo feedback loop
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FIGURE 2 | Nutrient comparisons between mountain glaciers and continental ice sheets for: (A) dissolved organic carbon (DOC), (B) nitrate, (C) ammonium, and (D)

phosphate. Data were log-transformed for ease of visualization. Numbers in red along the x-axis indicate sample sizes for each group. Pairwise comparisons were

made between mountain glaciers and continental ice sheets for each nutrient using Mann-Whitney or t-tests (see Table S2). Single asterisks denote significance at p

< 0.02 and double asterisks denote significance at p < 0.001. Analyses were performed from data summarized in Table S1. Table S2 includes detailed information

of the statistical analyses. Abbreviations include: GrIS, Greenland Ice Sheet; cryo hole (w), cryoconite hole water.

(Anesio et al., 2017). Melting can also promote the formation
of cryoconite holes in the supraglacial zone. Cryoconite holes
form when particles with a lower albedo than the surrounding
area induce locally elevated melt rates which in turn form small
melt depressions (< 10 cm deep and < 1m wide)—“cryoconite
holes”—on the glacier surface (Fountain et al., 2004; Figure 1).
These unique microhabitats are hotspots of microbial activity
(Anesio and Laybourn-Parry, 2012) but also typically harbor
larger organisms (e.g., De Smet and Van Rompu, 1994).

Overall, average dissolved organic carbon (DOC)
concentrations are significantly higher in mountain glacier
ice and snow than the same habitats on continental ice sheets
(Figure 2; Table S2). While the mechanism(s) underlying
this pattern remain unclear, it likely exists because mountain
glaciers are generally closer to terrestrial sources of C vs.
continental ice sheets. Related factors may also include higher
ambient temperatures (and thus more meltwater) as well as
more primary production on mountain glaciers. In general,
supraglacial ecosystems accumulate organic matter through

in situ primary production as well as deposition from terrestrial
and anthropogenic sources (Hood et al., 2009; Singer et al.,
2012; Stibal et al., 2012; Figure 2). Both autochthonous and
allochthonous dissolved organic matter (DOM) are actively
transformed by microbial communities through degradation
and synthesis (Antony et al., 2017). Through this microbial
processing, low quality DOM (i.e., high C:N, C:P) can be
processed and “upgraded” (converted to lower C:N and/or
C:P), thereby becoming more bioavailable to heterotrophs both
within and downstream of the supraglacial zone (Musilova et al.,
2017). Due to the tight recycling of DOM in the supraglacial
zone, DOM in downstream systems can still be dominated by
allochthonous C sources derived from aerial and terrestrial
deposition (Stubbins et al., 2012). However, recent work from the
outflow of surface and rock glaciers in the western United States
demonstrated that exported DOM is still readily consumed
by bacteria (Fegel et al., 2019). This suggests that even among
mountain glacier ecosystems, there is substantial variation in
exported DOC quality and quantity.
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The diversity and activity of supraglacial microorganisms also
exert a major influence on the cycling of N and P (Tranter et al.,
2004; Hodson et al., 2005). Supraglacial meltwaters are low in
nutrients (Säwström et al., 2007a; Grzesiak et al., 2015; Figure 2)
and bacterial activity on glaciers is largely P-limited (Mindl et al.,
2007; Säwström et al., 2007b; Stibal et al., 2008). This is reasonable
given that P concentrations in snow, ice, and supraglacial streams
are typically very low with an average of 0.005, 0.043, and
0.002mg L−1, respectively (Figure 2). Cryoconite holes are an
exception and exhibit higher P concentrations (0.31mg L−1),
likely due to leakage of nutrients from algal cells, cell lysis,
and general breakdown of organic matter (Figure 2). Thus, P
demand likely exceeds supply in the supraglacial zone (except in
cryoconite holes) because atmospheric deposition and microbial
rock weathering alone cannot support existing needs (Mueller
et al., 2001; Stibal et al., 2009). However, in addition to
terrestrial inputs, debris cover on glaciers, and weathering from
atmospheric deposition or rock fall can also supply P (Modenutti
et al., 2018). These additional P sources can greatly alter nutrient
dynamics in glaciers, and therefore productivity. However, since
concentrations of P are much less frequently reported, spatial
variation in P and the degree to which additional P inputs alter
supraglacial productivity on local, regional, and global scales
remains unclear.

Supraglacial microbial communities cycle N through the
oxidation of ammonium to nitrate, chemical decomposition of
organic matter (Hodson et al., 2005; Wynn et al., 2007), and
nitrogen fixation (Telling et al., 2011). Terrestrial debris and
anthropogenic N deposition are significant sources of reactive
N to glacier surfaces worldwide (Anderson et al., 2017; Havig
and Hamilton, 2019); this is particularly true in mountainous
areas located near centers of industrial and/or agricultural
activity and may partially explain the large differences in
nitrate (NO−

3 ) and ammonium (NH+

4 ) concentrations between
mountain glaciers and continental ice sheets (Figure 2B). For
example, rates of total N deposition in the Rocky Mountains
(∼3–5 kg N ha−1 yr−1; NRSP-3, 2019) and the southern
Andes (∼8.2 kg N ha−1 yr−1; Godoy et al., 2003) are nearly
an order of magnitude higher than Greenland (∼0.5–1 kg
N ha−1 yr−1; AMAP, 2006). Since deposition is the most
important factor influencing supraglacial N (Tranter et al.,
1993; Hodson et al., 2005), the highest N concentrations
are typically observed in snow and ice (Figure 2). Most N
fixation occurs in the ablation zone of glaciers, where more
ice mass is lost due to melting, evaporation, and related
processes than accumulates via new snowfall. The zone of N
fixation progressively migrates upslope during melt seasons
as temperatures rise, solar radiation increases, and lower
elevation N reserves are taken up (Telling et al., 2011). Due
to high microbial metabolism, cryoconite holes act as sinks
for dissolved inorganic N, and typically exhibit the lowest
levels of dissolved inorganic N (i.e., ammonium and nitrate)
in the supraglacial zone (Figure 2). Breakdown of organic
matter, either from allochthonous deposition or historical
autochthonous production, within cryoconite holes is likely
an important additional source of recycled N to microbial
communities (Stibal et al., 2012).

Trophic Interactions
To a greater extent than continental ice sheets, mountain
glaciers support multi-trophic food webs which often include
microbial diversity, macroinvertebrates, and, in some instances,
vertebrates. The structure of supraglacial food webs varies
geographically and the reason for this remains largely unknown
(Zawierucha et al., 2015; Hotaling et al., 2019a). Recently, the
gut microbiome of the Patagonian dragon (Andiperla willinki),
a ∼2.5 cm stonefly which lives on the surface of Patagonian
glaciers, revealed glacier-specific community modifications
(Murakami et al., 2018). Indeed, bacterial taxa associated with
glacier ice (e.g., Polaromonas and Rhodoferax) were present and
are speculated to contribute to both host nutrition as well as the
recycling and breakdown of organic matter where A. willinki is
present. The gut bacteria-host relationship between A. willinki
and glacier microbiota highlights the potential for direct trophic
relationships between glacier-endemic bacteria and eukaryotes
(Murakami et al., 2018).

In North America, millions of glacier ice worms
(Mesenchytraeus solifugus) inhabit coastal glaciers from
Oregon to Alaska, USA (Hotaling et al., 2019a). Ice worms
feed on glacier bacteria and snow algae (Murakami et al., 2015)
and are, in turn, heavily predated upon by a variety of high-
elevation nesting birds, including Gray-crowned Rosy finches
(Leucosticte tephrocotis, Hotaling et al., 2019a). Thus, nutrient
limitations occurring at lower trophic levels have the potential
to be transferred from microbial communities to vertebrates.
This could be particularly true on mountain glaciers because
stoichiometric flexibility may be reduced at low temperatures
(Godwin and Cotner, 2015). The potential for nutrient variation
at the base of the food web to alter higher level trophic ecology,
however, is not specific to glaciers in North or South America.
In addition to A. willinki and M. solifugus, at least three other
species of macroinvertebrates live on glaciers, including another
ice worm in Tibet (Sinenchytraeus glacialis, Liang, 1979) and two
chironomid midges, one in the Himalayas (Diamesa kohshima,
Kohshima, 1984) and another in New Zealand (Zealandochlus
latipalpis, Boothroyd and Cranston, 1999). Vertebrates feeding
on glacier-endemic invertebrates may provide nutrient subsidies
to supraglacial zones, potentially driving ecological stoichiometry
and food web structure in a manner similar to the role of bird
guano on remote islands (e.g., Anderson and Polis, 1999;
Vizzini et al., 2016). Collectively, the presence of these unique,
understudied organisms highlights the need for global, multi-
trophic studies of ecological stoichiometry in mountain glacier
ecosystems to better understand how nutrient inputs (and
limitations) flow through these vanishing habitats.

LIVING BELOW ICE: THE SUBGLACIAL
ZONE

Though perpetually dark and long assumed to contain little to
no life, an extensive microbial community has been documented
below mountain glaciers and continental ice sheets around the
world (Hamilton et al., 2013; Anesio et al., 2017; Hotaling et al.,
2017a; Figure 1). The subglacial zone exists at the ice-bedrock
interface and includes any habitat that is perpetually covered
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by glacier ice. However, current understanding of biodiversity,
nutrient availability, and associated stoichiometric composition
of life in these habitats remains limited compared to supraglacial
and downstream environments. This lack of understanding is
likely due in large part to the extreme challenges associated with
sampling habitats below tens to hundreds of meters of ice in
rugged terrain (Anesio et al., 2017). To our knowledge, all studies
of microbial ecology and ecological stoichiometry in mountain
subglacial environments have only included samples collected
near glacier snouts where subglacial runoff and sediments (e.g.,
within ice caves) are accessible rather than coring through ice to
the bedrock itself.

Nutrients
During the melt season, water flows over and within the surface
of glaciers, inducing a dynamic drainage network that moves
water from the glacier surface to the base where much of it flows
into the subglacial zone, and eventually into headwater streams
and lakes (Fountain et al., 2005). The subglacial zone is rich in
biogeochemical activity (Hamilton et al., 2013) that mobilizes
nutrients and organic matter of both supraglacial and subglacial
origin. Through this processing, microbially produced DOC is
exported downstream, ultimately contributing to cycling of C
in downstream and adjacent ecosystems (e.g., glacier forefields
and headwater streams; Anesio et al., 2009, 2010; Edwards
et al., 2014). Unlike continental ice sheets, the steep gradients
of mountain systems generally preclude the development of
subglacial lakes (though they can occur, e.g., Capps et al., 2010).
However, substantial water is still present at the bedrock-ice
interface which provides key habitat and resources for an active,
diverse subglacial microbiome (Hamilton et al., 2013). Indeed,
flowing water is the primary driver of nutrient movement both
within glaciers (e.g., from the surface to subglacial habitats,
Hotaling et al., 2017a) and into glacier outflows (e.g., delivery
of labile C to glacier-influenced streams, Hood et al., 2009).
Subglacial microbial communities may have even acted as
refugia for microbial biodiversity during glacial periods due to
the relative stability of subglacial habitats compared to their
surface counterparts paired with a continual exposure to fresh
mineral surfaces due to the grinding of bedrock by glaciers
(Hodson et al., 2008).

An array of energy sources sustain life beneath glaciers
(Hotaling et al., 2017a) including the aforementioned bedrock
grinding and supraglacial inputs (e.g., primary productivity)
flowing to the subsurface, as well as in some instances,
geothermal energy (Hodson et al., 2008; Boyd et al., 2014;
Telling et al., 2015). There is also considerable evidence for
chemolithoautotrophic primary productivity (e.g., via methane
production pathways; Boyd et al., 2010; Hamilton et al., 2013).
In polar and subpolar regions, chemolithoautotrophs can fix
several micrograms of C per square meter per day (Christner
et al., 2014). Though C fixation by chemolithoautotrophs has
not been estimated for any mountain glacier ecosystem, their
abundance below mountain glaciers (e.g., Hamilton et al.,
2013) suggests this activity likely rises to non-negligible levels
with direct implications for food webs both near and far. In
the Canadian Rockies, subglacial primary production is likely

sustained in large part by the oxidation of pyrite and nitrification
(Boyd et al., 2011, 2014). However, the full scope of bedrock
lithologies in mountain ecosystems remains unsampled, making
it difficult to generalize beyond specific study regions and local
geology (Hotaling et al., 2017a). For N, microbially mediated
nitrification and denitrification occur in subglacial environments
(e.g., Boyd et al., 2010) and similar to C, its export during
times of glacial melt affects downstream communities (see
below; Hodson et al., 2010).

Trophic Interactions
Subglacial food webs appear to generally be sustained by
microbially-mediated chemical weathering of bedrock through
sulfide oxidation (e.g., Wadham et al., 2010; Boyd et al., 2014)
or carbonic acid weathering (e.g., Havig and Hamilton, 2019).
This chemical weathering releases organic C (Wadham et al.,
2004) as well as N and P (Hodson et al., 2005) from the bedrock,
thereby providing crucial nutrients. However, the degree to
which nutrient limitations affect subglacial food webs, whether
chronically or seasonally, remains largely unknown. For instance,
bacterial and archaeal sediment communities beneath a mid-
latitude, temperate Canadian glacier, with a ∼210:1 C:N of
dissolved organic matter, appear N limited (Boyd et al., 2011).
A particulate organic C:N of ∼137:1 beneath the same Canadian
glacier is elevated relative to comparable geologies (Ingall et al.,
1993), whether or not this elevated C:N ratio is the product of
contemporary or historical processes is not known (Boyd et al.,
2011). Furthermore, the degree to which nutrients influence
higher trophic levels (e.g., fungi, the likely largest organisms in
subglacial ecosystems; Hotaling et al., 2017a) below glaciers has
not been investigated.

LIVING DOWNSTREAM OF ICE:
GLACIER-FED STREAMS AND LAKES

Glacier-fed streams and lakes reflect the integration of both
upstream and in situ processes (Figure 1; Brittain and Milner,
2001; Mindl et al., 2007; Robinson et al., 2016; Hotaling et al.,
2017b; Ren and Gao, 2019). Melting glaciers supply key water,
sediment, and nutrients to aquatic ecosystems, determining their
optical properties, resource availability, and the structure and
composition of biological communities (Laspoumaderes et al.,
2013; Martyniuk et al., 2014; Rose et al., 2014; Hotaling et al.,
2017b; Ren et al., 2017a; Figures 4, 5). In general, glacier-fed
streams and lakes are characterized by considerable sediment
input from upstream grinding of bedrock, cold temperatures
(e.g., < 10◦ even in summer), and dynamic water levels. Climate
change is accelerating glacier retreat (Masiokas et al., 2008;
Zemp et al., 2015) and will alter downstream ecosystems from
biogeochemical cycling to elemental flow through food webs
(Baron et al., 2009; Slemmons and Saros, 2012; Fell et al.,
2017; Figures 4, 5).

Glacier-Fed Streams
Nutrients

Glaciers export organic C, inorganic and organic N, and soluble
P to adjacent stream environments (Fegel et al., 2016; Milner
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et al., 2017; Colombo et al., 2019). In headwaters, glaciers are
a major source of DOC (Hood et al., 2009; Milner et al., 2017;
Hemingway et al., 2019), which is assimilated into multiple levels
of stream food webs (Fellman et al., 2015). Concentrations of
DOC in glacier-fed streams vary widely from near zero to more
than 3mg L−1 (Zah et al., 2001; Hood et al., 2009; Wilhelm et al.,
2013; Martyniuk et al., 2014; Robinson et al., 2016; Hemingway
et al., 2019) and are generally comparable to values observed
for snow and ice (Figures 2, 3). Previously ice-locked DOC is
particularly valuable to glacier-fed stream food webs as it is highly
bioavailable for heterotrophic consumption (i.e., composed of >

50% bioavailable DOM; Hood et al., 2009, 2015; Singer et al.,
2012; Fegel et al., 2019).

Three substantial pools of N exist near glacier-fed streams and
lakes: glacier ice, subglacial sediment, and nearby soils (Malard
et al., 2000; Hood and Scott, 2008; Robinson et al., 2016). In
glacier-fed streams, nitrate concentrations range from 0.08 to
0.22mg L−1, which is lower than supraglacial concentrations,
potentially reflecting uptake upon export (Rinke et al., 2001;
Robinson et al., 2016; Figure 3). While soluble reactive P is often
below the detection limit in glacier-fed streams (i.e., < 2 µg
L−1; Rinke et al., 2001; Robinson et al., 2016), depending on
the underlying geology, dissolved and particulate P can be quite
high. For example, Patagonian glacier-fed streams, with basaltic,
granitic, pyritisic, and silicic metamorphic bedrock, have up to
∼40 µg of dissolved P L−1 (Martyniuk et al., 2014; Miserendino
et al., 2018). It is not clear, however, how bioavailable particulate
P released from bedrock weathering is though very small grain
sizes of P can be readily consumed by microbial life (Smith et al.,
1977; Brahney et al., 2015a). Generally, high concentrations of

DOC and N but limited P drive correspondingly high ratios of
C:P and N:P in glacier-fed streams (Rinke et al., 2001; Robinson
et al., 2016; Figure 4).

Trophic Interactions

Glacier-fed stream biofilms are generally limited by both N and
P (Figure 4), but they exhibit stoichiometric flexibility and are
capable of producing biomass with high C:P and N:P, which can
in turn drive P limitation of consumers (e.g., macroinvertebrates,
fish; Figure 4). Experimental addition of P increases microbial
richness in glacier-fed streams (Kohler et al., 2016). Combined
N and P additions stimulate biofilm primary production and shift
microbial community composition (Robinson et al., 2003; Kohler
et al., 2016; Figure 4). However, hydrological characteristics (e.g.,
flow and proportion of glacier influence) may override the
influence of nutrient additions in some areas, such as the Swiss
Alps (Rinke et al., 2001) and the Tian Shan Mountains of central
Asia (Ren et al., 2017b). Other physical factors (e.g., suspended
solids) can enhance C fixation by algae, thereby increasing C:P
and lowering food quality (Martyniuk et al., 2014). In light-
limited streams with high suspended solids, this reduction in
food quality (e.g., higher biofilm C:nutrient) may consequently
lead to elemental imbalances between primary producers and
invertebrate consumers (Martyniuk et al., 2019).

Glacier-Fed Lakes
Nutrients

In glacierized regions, mountain lakes are typically fed either
directly by glacier meltwater or indirectly by glacier-fed streams.
Either way, glaciers drive lake ecosystem processes through the

FIGURE 3 | Comparisons of nutrient concentrations for subglacial water from mountain glaciers (light blue) and the Greenland Ice Sheet (GrIS) and Antarctica (dark

blue), as well as water from mountain glacier-fed streams and lakes. No data were available for phosphate in subglacial systems. Numbers in red along the x-axis

indicate sample sizes for each group. The data for this figure, including details of the studies represented, are provided in Table S1.
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FIGURE 4 | Predicted consequences of glacier retreat for ecological

stoichiometry in glacier-fed streams: (A) nutrient availability (modified from

Milner et al., 2017), (B) biofilms (predicted following Sterner and Elser, 2002;

Frost et al., 2005; Kohler et al., 2011), and (C) macroinvertebrates (predicted

following Jacobsen et al., 2014). DOC, dissolved organic carbon.

regulation of nutrients, temperature, and contaminant inputs
(Saros et al., 2010; Slemmons and Saros, 2012; Rose et al.,
2014). However, unlike nearby streams, mountain lakes are more
likely to be fed by multiple hydrological sources than streams.
To this end, an important distinction must be made between
meltwater from glaciers and perennial snowfields. Glacier-
derived meltwater stems from a permanent, moving body of ice
(i.e., the glacier) and is often rich with suspended sediments
and may reflect longer term accumulation of nutrients (e.g., N
from atmospheric deposition). Perennial snowfields encompass
any other permanent bodies of snow. In general, glacier-derived
meltwater exhibits higher nitrate concentrations than snowmelt
(Hodson, 2006; Wynn et al., 2007; Saros et al., 2010), which in
turn leads to more nitrate in primarily glacier-fed vs. snow-fed
lakes (Saros et al., 2010; Slemmons and Saros, 2012; Williams
et al., 2016; Warner et al., 2017). For example, Williams et al.

FIGURE 5 | Predicted consequences of glacier retreat for ecological

stoichiometry in glacier-fed lakes: (A) nutrient availability and PAR

(photosynthetically active radiation; synthesized from Modenutti et al., 2000;

Hodson et al., 2004, 2005; Piwosz et al., 2009; Saros et al., 2010; Slemmons

and Saros, 2012; Rose et al., 2014; Salerno et al., 2016), (B) phytoplankton

(synthesized from Sterner et al., 1997; Huisman et al., 2004; Mindl et al.,

2007; Lami et al., 2010; Slemmons and Saros, 2012; Laspoumaderes et al.,

2013, 2017), and (C) zooplankton (synthesized from Elser et al., 1996; Sterner

and Elser, 2002; Urabe et al., 2002; Laspoumaderes et al., 2013, 2017;

Sommaruga, 2015).

(2016) reported average nitrate concentrations of 13 µg L−1 in
glacier-fed lakes vs. 5 µg L−1 in snow-fed lakes of the northern
Rocky Mountains, USA. In the southern Rocky Mountains,
nitrate concentrations are remarkably higher in glacier-fed lakes
(> 50 µg L−1) compared to nearby snow-fed lakes (< 15 µg L−1;
Saros et al., 2010; Slemmons and Saros, 2012). In western North
America, rock and debris-covered glaciers are an additional,
generally overlooked, resource subsidy to headwater aquatic
ecosystems. In addition to providing another source ofmeltwater,
rock glacier outflows are substantially higher in total N and other
solutes vs. surface glaciers (Fegel et al., 2016).

In the absence of significant anthropogenic N inputs
(pollution and atmospheric deposition) and meltwater input
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from glaciers, mountain lakes are typically low in N (Bergstrom
and Jansson, 2006; Elser et al., 2009). Phytoplankton in mountain
lakes are thus generally N-limited and increased N input can
stimulate their growth and easily shift them to P-limitation
(Elser et al., 2009, 2010). Meltwater from glaciers and snowfields
provide additional N to mountain lakes, alleviating N-limitation
and escalating P-limitation of phytoplankton. In addition to
providing a source of N (Saros et al., 2010; Slemmons and
Saros, 2012; Williams et al., 2016), glacier meltwater carries large
amounts of suspended P-rich silt and clay, which is mainly
generated by comminution (i.e., grinding) of the underlying
bedrock, and supplies important, albeit less bioavailable, P to
glacier-fed lakes (Hodson et al., 2004, 2005). In practice, nutrient
limitation experiments have demonstrated that phytoplankton
communities are limited by P in glacier-fed lakes while co-
limitation of P and N occurs in snow-fed lakes (Slemmons
and Saros, 2012). While total phytoplankton biomass is not
consistently higher in glacier- vs. snow-fed lakes (Saros et al.,
2010; Slemmons and Saros, 2012), phytoplankton communities
in glacier-fed lakes tend to be more similar to one another
than their snow-fed counterparts (Warner et al., 2017). At
higher trophic levels, heterotrophic production appears primarily
limited by P in glacier-fed lakes (Mindl et al., 2007).

Suspended sediments in glacial meltwater affect the optical
properties of the lake water column by intensifying light
attenuation via absorption and reflectance (Gallegos et al., 2008;
Laspoumaderes et al., 2013; Sommaruga, 2015), inducing a
shallower photosynthetic zone, reduced photosynthetically active
radiation (PAR), and ultimately reduced photosynthetic rates
(Modenutti et al., 2000; Rose et al., 2014; Figure 5). According
to the light:nutrient hypothesis, the variation of PAR intensity
and phosphorus availability (light:P) determine phytoplankton
stoichiometry (Sterner et al., 1997; Huisman et al., 2004). Under
high light:P, phytoplankton are severely P-limited and exhibit
high biomass C:P, while low light:P results in low biomass C:P.
The light:nutrient hypothesis is supported in glacier-fed lakes.
Phytoplankton tend to have low C:P in turbid water (higher
contribution of glacier meltwater) while high C:P ratios are
associated with clearer water (i.e., less contribution of glacier
meltwater; Laspoumaderes et al., 2013, 2017; Figure 5).

Trophic Interactions

Both nutrient availability and physical characteristics of
glacier-fed lakes drive trophic interactions (Figure 5). Nutrient
availability ultimately governs phytoplankton C:P (an indicator
of food quality for zooplankton) and zooplankton taxonomic
groups differ significantly in their energetic P-demand which
results in decoupled community responses to altered food quality
(Elser et al., 1996; Elser and Urabe, 1999; Sterner and Elser, 2002;
Urabe et al., 2002). For example, Daphnia require relatively high
P food sources and exhibit consistent, low C:P body content. In
contrast, some copepods exhibit more variable, but generally
high C:P ratios. Thus, with declining food quality (high C:P),
P-rich species are less competitive than P-poor species (Sterner
and Elser, 2002). Consequently, as glaciers recede, increasing
phytoplankton C:P could alter grazer communities by increasing
the abundance of P-poor copepods (e.g., Boeckella gracillipes,

Sommaruga, 2015; Laspoumaderes et al., 2017) but decreasing
P-rich Daphnia (e.g., Daphia commutate; Laspoumaderes et al.,
2013, 2017). Temperature also affects food quality and may
intensify P limitation in P-rich consumers of glacier-fed lakes
(Laspoumaderes et al., 2013). According to the stoichiometric
growth rate hypothesis, high temperature accelerates consumer
growth rates, leading to elevated demand for P in ribosomal
RNA to support rapid growth (Main et al., 1997; Acharya et al.,
2004). However, the growth rate hypothesis has not been tested
in glacier-fed lakes. Although an important component of lake
ecosystems (Vadeboncoeur et al., 2002), sediment stoichiometry
and benthic communities are also largely overlooked (but
see Lepori and Robin, 2014; Oleksy, 2019). The framework
of ecological stoichiometry provides a means for testing
these hypotheses to develop new understanding of how nutrient
availability, elemental ratios, and light availability alter ecosystem
structure and function in glacier-fed lakes (e.g., the predictions
shown in Figure 5).

CLIMATE CHANGE IMPLICATIONS

Climate change is dramatically altering mountain landscapes.
At high elevations, atmospheric temperatures are rising up to
three times more quickly than the global average (Nogués-
Bravo et al., 2007). Rapid warming is driving the most obvious
physical change in mountain ecosystems worldwide: the ongoing
recession of glaciers and perennial snowfields (e.g., Zemp et al.,
2015). Considerable attention has been devoted to understanding
the effects of cryosphere decline on the ecology of mountain
ecosystems, and this work has been summarized in recent
syntheses and reviews, focused on streams (Hotaling et al.,
2017b), lakes (Moser et al., 2019), and terrestrial plants (Vitasse
et al., 2018). Generally, the story is clear; climate-induced
recession of the mountain cryosphere will alter hydrological
regimes, nutrient fluxes, and aquatic biogeochemistry (Huss
et al., 2017) and induce global biodiversity loss across taxonomic
scales from genetic diversity (e.g., Finn et al., 2013; Jordan et al.,
2016) to species (e.g., Giersch et al., 2017) and communities
(e.g., Fell et al., 2018; Hotaling et al., 2019a). Efforts to predict
biodiversity loss in response to a fading cryosphere, while
valuable, represent an end-member focus (e.g., the loss of a
species) which overlooks an intermediary discussion of how
factors that underlie biotic responses (e.g., nutrient limitations)
may be affected.

As we seek to predict how the ecological stoichiometry
of cryosphere-influenced headwater lakes and streams will
change, additional factors must be considered. First, even though
atmospheric temperatures are rising more quickly at high
elevations than almost anywhere on Earth (Nogués-Bravo et al.,
2007), mountain lakes may actually be warming more slowly
than those in low elevations (Christianson et al., 2019). The same
is likely also true for headwater streams. This lag in aquatic
temperature change as they relate to atmospheric temperatures
is likely due to buffering from dwindling glaciers and perennial
snowfields (Zhang et al., 2014; Zemp et al., 2015). However,
this buffering effect may soon be lost, and in combination
with earlier melting of snowpack and longer ice-free stretches
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in headwaters (Preston et al., 2016), increased productivity in
glacier-influenced lakes and streams is almost sure to follow.
Second, nutrient deposition legacies and spatial variation in
deposition rates matter. Globally, deposition rates of N, P, and
dust are geographically variable (Mahowald et al., 2008) and are
known to alter aquatic stoichiometry even in remote locations
(Mladenov et al., 2011; Brahney et al., 2015b). For instance,
historical N deposition leads to P limitation in lakes (Elser et al.,
2009), thus N deposition legacies must be considered when trying
to anticipate how N:P stoichiometry might change.

Nutrients
Warming temperatures, and altered precipitation regimes (e.g.,
more winter precipitation falling as rain rather than snow,
Knowles et al., 2006), will directly influence the supraglacial
zone and lead to declines in glacier volume, shorter periods of
seasonal snow cover, and increased outflows in the near-term
that will dwindle as ice sources fade (Huss and Hock, 2018).
A longer “growing season” for microbial communities in the
supraglacial zone paired with rising atmospheric CO2, which
will stimulate snow algae growth (Hamilton and Havig, 2018;
Figure 1), may yield a concurrent increase in autochthonous
organic C production by primary producers (e.g., algae and
cyanobacteria). Such a rise in primary production is likely to
escalate existing glacial-melt feedback loop by decreasing surface
ice albedo (e.g., Ganey et al., 2017). While N deposition rates are
decreasing or stabilizing in some regions (Engardt et al., 2017;
Yu et al., 2019), N emissions are rising globally and resulting
deposition will increase N subsidies in remotemountainous areas
with reactive N (Holtgrieve et al., 2011; Battye et al., 2017; Milner
et al., 2017). In general, DOC and N concentrations will increase
in downstream environments as glaciers recede due to ice-locked
pools of both nutrients being released while P concentrations will
decline as the loss of ice mass reduces the erosive power of the
glacier (Hood and Scott, 2008; Hood and Berner, 2009; Hood
et al., 2015; Figure 4).

In the short term, increased N and DOC inputs from glacial
meltwaters may alleviate N limitation of primary producers
and heterotrophic microorganisms in biofilms, increasing gross
primary production and ecosystem respiration in glacier-fed
streams (Uehlinger et al., 2010; Cauvy-Fraunié et al., 2016; Kohler
et al., 2016; Figure 4). However, while DOC in glacier-fed streams
may initially increase due to accelerated glacier melting, the
lability (i.e., potential rate of turnover) will substantially decrease
as the proportion of ice-lockedDOCdeclines relative to less labile
terrestrially derived DOC (Singer et al., 2012; Milner et al., 2017;
Hemingway et al., 2019). Glacier-fed lakes and streams should
continue to be P-limited in the near term (Figures 4, 5); however,
as glaciers completely recede, downstream environments may
become co-limited by both N and P (Saros et al., 2010; Slemmons
and Saros, 2012; Figures 4, 5). Ultimately, it is clear that future
climate conditions will favor increased in situ C fixation in the
mountain cryosphere. Assuming no corresponding increases in
N or P, via atmospheric deposition or otherwise, supraglacial
communities will become increasingly N- and P-limited as
climate change proceeds. However, heterogeneity in N and P
deposition rates make general predictions difficult.

Changes in downstream ecosystems induced by atmospheric
warming will not be solely dependent on upstream deglaciation.
Indeed, warmer temperatures will increase chemical weathering
of bedrock minerals (e.g., calcite and apatite) which will
subsequently alter water chemistry, particularly via increased
N and P (Heath and Baron, 2014; Price et al., 2017). Rock
glaciers, which are likely to be less affected by atmospheric
warming and will therefore persist on the landscape longer
than their surface counterparts (Knight et al., 2019), release
solute-rich outflows into headwaters and labile C that can fuel
heterotrophic production (Fegel et al., 2016, 2019). Thus, the
ratio of surface:rock glacier meltwater in headwaters is likely
to decline with solute concentrations in available water shifting
toward levels typical of rock glaciers occurring simultaneously.

As climate change proceeds, treeline dynamics will also alter
ecological stoichiometry in mountain headwaters (Martyniuk
et al., 2016). Generally speaking, lakes and streams surrounded
by terrestrial vegetation have higher water column C:P than
those above treeline (Stenzel et al., 2017). In addition to
changing quality and quantity of C melting from glaciers,
lakes above treeline are typically net autotrophic, however, as
treelines advance, they will becomemore influenced by terrestrial
allochthonous inputs (Rose et al., 2015). This will fundamentally
alter how C is cycled, since presently DOM is mainly of
autochthonous origin, which drives a greater proportion of
highly labile, easily respired organic C (Kortelainen et al., 2013).
Shifts in DOC quality coupled with climate-driven warming may
therefore alter algal-bacterial interactions, which will ultimately
cascade through the trophic food web and shift community
compositions (González-Olalla et al., 2018). Thus, as treeline
encroachment occurs, C and P inputs will increase for lakes and
streams (Kopàček et al., 2011), however, a corresponding increase
in N uptake potential will occur in the surrounding landscape
which will influence the amount of N export.

Trophic Interactions
Changing nutrient dynamics in the supraglacial zone under
climate warming have the potential to alter linked habitats
through changes in the amount and quality of nutrients being
exported. Through the biology-albedo feedback loop described
earlier, an increase in microbial growth may induce both
elevated C fixation on the glacier surface and greater export
of nutrients to the subglacial zone as well as glacier-fed
streams and lakes. However, temporal dynamics of microbial
communities on glaciers and snowfields—and particularly the
interplay between primary producers (e.g., cyanobacteria) and
consumers (e.g., fungi, invertebrates)—are largely unknown.
Evidence from cryoconite hole bacterial communities of the
Italian Alps suggests that early season melting gives rise to a
wave of primary productivity (e.g., cyanobacteria) which seeds
a later season heterotrophic community (Pittino et al., 2018).
The ratio of producers to consumers throughout the melt season,
and specifically that of resource production and consumption,
paired with potential albedo variation among groups (e.g., if
snow algae reduce albedo to a greater degree than fungi), are
important avenues for future study. This is particularly true as we
seek tomove from observational studies of supraglacial biological
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activity to a more predictive framework that also includes the
ecological stoichiometry of adjacent downstream habitats.

With limited knowledge of biological and chemical diversity of
subglacial habitats on global scales, including the degree to which
they are nutrient-limited in space and time, it is difficult to make
stoichiometric predictions of their future. As discussed above,
climate change will drive an increase in meltwater flowing from
the surface to the subglacial zone with a concomitant increase
in nutrients (particularly organic C) in tow. However, given that
subglacial communities appear N-limited (Boyd et al., 2011),
an increase in available C may not dramatically alter existing
stoichiometric ratios in these habitats. Furthermore, in the short-
term, glacial sediment loads will increase, leading to increases in
algal biomass and trends toward increased C:P ratios and thus
lower food quality for higher trophic levels (Martyniuk et al.,
2014). From a hydrological perspective, extended melt seasons
at the glacier surface may translate to more stable, and open, flow
paths within the glacier, perhaps including a reduction in anoxic
conditions at the glacier-bedrock interface and elevated potential
for direct nutrient transport. Because so little is known of trophic
ecology at higher levels (e.g., ice worms, birds) on mountain
glaciers, it is also difficult to predict how their interactions will
be altered in the future. However, for high-elevation birds (e.g.,
Gray-crowned Rosy finches) which appear to derive substantial
food resources from ice worms (S.H., pers. obs.), loss of glacier
habitat may induce a major diet shift across portions of their
range, fundamentally altering their present-day stoichiometry.

CONCLUSIONS AND FUTURE
DIRECTIONS

Although frozen environments place severe constraints on life,
the mountain cryosphere harbors complex, dynamic biological
communities which often experience some degree of nutrient
limitation. In this review, we synthesized the ecological
stoichiometry of three major components of the mountain
cryosphere—supraglacial, subglacial, and adjacent downstream
habitats—which vary in their nutrient inputs and availability.
These habitats have received varying levels of research attention
to date.

Habitats
Supraglacial environments are generally nutrient-limited
however the vast majority of our understanding of these habitats
stems from continental ice sheets (e.g., Greenland, Antarctica),
which differ from mountain glaciers in many ways, including
geomorphology, nutrient availability (Figure 2), and biological
diversity (e.g., presence of higher trophic levels). Chemical
and biological differences between mountain glaciers and
continental ice sheets may be due in large part to differing
proximity to terrestrial and anthropogenic nutrient sources
(e.g., N deposition). Moreover, chemical contrasts between
mountain glaciers and continental ice sheets suggest that the
former cannot simply serve as an analog for the latter, and that
mountain glaciers must be treated as unique components of
the global cryosphere. However, given the spatial variation of
samples included in our analysis, we consider our conclusions to

be intriguing but largely preliminary as unforeseen biases (e.g.,
in sampling locations) may exist in the data being compared.

Below mountain glaciers in the subglacial zone, much less
is known of ecological stoichiometry beyond a handful of
studies (e.g., Boyd et al., 2011) which point to high water C:N
driving N limitation in sediment communities. However, due to
sampling challenges (i.e., extremely difficult access), the nature
of biogeochemical cycling, the general rules governing subglacial
life, and the nutrient limitations on subglacial food webs are
largely unknown. Similarly, the englacial environment—i.e.,
the portion of the glacier below the supraglacial but above
the subglacial—remains a black box with presumably little
to no biodiversity present (Hotaling et al., 2017a). However,
future efforts to generate ice cores in mountain glaciers from
the supraglacial zone to bedrock would provide an excellent
opportunity to explore patterns of diversity, nutrient availability,
and stoichiometry along a spatial continuum in these enigmatic
habitats. This type of effort may also provide new insights on a
challenge that has long puzzled glacier biogeochemists: why is N
export from glaciers high even in regions with relatively low rates
of N deposition (Slemmons et al., 2013)?

Like supraglacial environments, the ecological stoichiometry
of glacier-fed lakes and streams has received relatively intense
study. As the most influential factor mediating biological
processes in these habitats, it is perhaps unsurprising that
glacier coverage largely drives nutrient availability, elemental
ratios, and light availability. However, the biological and
biogeochemical connections between upstream (supraglacial and
subglacial) and downstream environments remain unclear, with
an overwhelming stoichiometric focus on the effects of N
loads and turbidity. To this end, future efforts should focus
on the relative ratios of N:P, overall ecosystem function, and
temperature-nutrient interactions, as these avenues are likely
to be particularly important to understanding algal community
structure and productivity (Oleksy, 2019).

Looking Ahead
Glaciers and perennial snowfields will continue to disappear in
the decades to come (Zemp et al., 2015), particularly at low
latitudes (Hall and Fagre, 2003). As the mountain cryosphere
fades, the entire biome they support including most, if not all, of
the existing genetic, species, and stoichiometric diversity will also
be lost. However, while some habitats will be lost entirely (e.g.,
supraglacial and subglacial), others will persist in fundamentally
altered form (e.g., high-elevation lakes). In the short-term, glacier
recession will generally lead to elevated levels of C and N,
and reduced P, in headwaters. Eventually, however, downstream
environments will likely transition to co-limitation by N and P
as the large store of N currently present in mountain glaciers
is depleted.

In this review, we identified gaps in stoichiometric knowledge
of the mountain cryosphere, as well as what appear to be
key, systemic differences in nutrient concentrations between
mountain glaciers and continental ice sheets (Figure 2). These
differences are important because they highlight the need
for targeted studies of mountain glacier ecosystems since
for the most part, they indicate that patterns of ecological
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stoichiometry in mountains cannot be inferred from existing
ice sheet-focused research efforts. Furthermore, given the
potential for substantial variation in nutrient concentrations
in mountain cryosphere-influenced habitats (Figure 3), more
comparative studies that explicitly integrate spatial and
temporal sampling will shed light on this variation and refine
understanding of the mechanism(s) underlying it. Multi-trophic
stoichiometric perspectives are also needed. For instance, in
North America, it is currently unknown how nutrient dynamics
that shape elemental ratios at the microbial scale translate to
heterotrophic fungi, macroinvertebrate consumers (e.g., ice
worms), and ultimately birds. Finally, refined understanding of
ecological stoichiometry in the mountain cryosphere can also
improve general understanding of stoichiometric principles.
Indeed, with nutrient limitations that vary in space and
time paired with dramatic differences in turbidity and light
availability across aquatic habitats, the mountain cryosphere
and the habitats it directly influences provide a natural
laboratory for testing fundamental stoichiometric hypotheses at
environmental extremes.
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