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Contribution to the Themed Section: ‘The Value of Coastal Habitats for Exploited Species’
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4IMARES - Institute for Marine Resources and Ecosystem Studies, PO Box 77, 4400 AB Yerseke, The Netherlands
5Netherlands Institute for Sea Research (NIOZ), PO Box 140, 4400 AC Yerseke, The Netherlands

*Corresponding author: tel: +1 804 684 7698; fax: +1 804 684 7399; e-mail: seitz@vims.edu

Seitz, R. D., Wennhage, H., Bergström, U., Lipcius, R. N., and Ysebaert, T. 2014. Ecological value of coastal habitats for commercially and ecologically
important species. – ICES Journal of Marine Science, 71: 648–665.

Received 7 June 2013; accepted 20 August 2013; advance access publication 14 October 2013.

Many exploited fish and macroinvertebrates that utilize the coastal zone have declined, and the causes of these declines, apart from over-
fishing, remain largely unresolved. Degradation of essential habitats has resulted in habitats that are no longer adequate to fulfil nursery,
feeding, or reproductive functions, yet the degree to which coastal habitats are important for exploited species has not been quantified.
Thus, we reviewed and synthesized literature on the ecological value of coastal habitats (i.e. seagrass beds, shallow subtidal and intertidal
habitats, kelp beds, shallow open water habitats, saltmarshes, mussel beds, macroalgal beds, rocky bottom, and mariculture beds) as feeding
grounds, nursery areas, spawning areas, and migration routes of 59 taxa, for which the International Council for the Exploration of the Sea
(ICES) gives management advice, and another 12 commercially or ecologically important species. In addition, we provide detailed infor-
mation on coastal habitat use for plaice (Pleuronectes platessa), cod (Gadus morhua), brown shrimp (Crangon crangon), and European
lobster (Homarus gammarus). Collectively, 44% of all ICES species utilized coastal habitats, and these stocks contributed 77% of the com-
mercial landings of ICES-advice species, indicating that coastal habitats are critical to population persistence and fishery yield of ICES
species. These findings will aid in defining key habitats for protection and restoration and provide baseline information needed to
define knowledge gaps for quantifying the habitat value for exploited fish and invertebrates.

Keywords: feeding, fisheries, migration, nursery, reproduction, spawning.

Introduction
Habitat and exploited species
Many exploited species are experiencing population declines. In
addition to overfishing, habitat changes may potentially be involved
to a large extent in these declines (Worm et al., 2006). Consequently,
a major effort is underway globally to adopt an ecosystem-based ap-
proach to fishery management, which includes the effects of fishing
on habitat quality (e.g. Hollowed et al., 2011), the use of marine pro-
tected areas (MPAs) based on habitat characteristics (e.g. Link et al.,
2011) and the effects of habitat availability on fishery yield
(McClanahan et al., 2011).

Coastal habitats are threatened by anthropogenic stressors, in-
cluding coastal development and habitat degradation (Kennesh,

2002; Kemp et al., 2005; Lotze et al., 2006; Airoldi and Beck,

2007), such that 86% of the European coast is at high or moderate

risk for unsustainable coastal construction and development

(Bryant et al., 1995; EEA, 1999). An established EU Natura2000

network of protected areas is aimed at conservation of the most

threatened species and habitats, yet many of these species and habi-

tats are still in jeopardy (Sundblad et al., 2011). Often, degradation

has modified coastal habitats to the degree that they no longer fulfil

nursery, feeding, or reproductive functions (Beck et al., 2001; Worm
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et al., 2006). This has consequences for several ecosystem services
provided by these coastal habitats. It has even been estimated that
the ecosystem goods and services provided by coastal habitats,
such as seagrass beds, intertidal habitats, and saltmarshes, are appre-
ciably higher per unit area than those provided by terrestrial habitats
(Costanza et al., 1997).

Although the influence of coastal habitats on particular demo-
graphic rates such as survival, growth, and reproduction has been
demonstrated (Chı́charo et al., 1998; Allain et al., 2003; Kostecki
et al., 2011; Martin et al., 2011; Vasconcelos et al., 2013), the
degree to which coastal habitats are important for exploited
species at the population level has not been quantified. Many
species rely on different coastal habitats to fulfil their life cycle; there-
fore, habitat quality and connectivity are considered essential char-
acteristics of coastal ecosystems (Lipcius et al., 2008). Thus, there is a
critical need to define the integrated value of coastal habitats to
population abundance, and ultimately fishery yield of exploited
species (ICES, 2008). We reviewed the literature, examining links
between coastal habitats and exploited species or species important
in the foodweb of exploited species, to provide the foundation and
justification for quantifying the production value of coastal habitats
for exploited species and subsequently to integrate habitat quality in
stock assessment and ecosystem-based fishery management.

Coastal habitats
Coastal habitats are defined in various ways by EU countries; we
used several sources of information regarding coastal habitats to
guide our definition. A general definition outlined in the ICES
Science Plan states: “Coastal-zone habitat includes highly product-
ive estuaries and bays, which are essential nursery grounds for a
number of commercial and recreational fish species and home to
a number of invertebrates (e.g. clams, crabs). As well, this habitat
is critical to successful mariculture operations” (ICES, 2008). This
definition was amended using the following sources to derive classi-
fications of various habitats included in our review: the Habitats
Directive (92/43/EEC), Marine Strategy Framework Directive
(2008/56/EC) (MSFD), Water Framework Directive (2000/60/
EC), a report of the ICES Working Group on Marine Habitat
Mapping (ICES, 2010), and a recent scientific review (Airoldi and
Beck, 2007; Table 1). For further details and for additional

information regarding threats to the various habitats, consult
Airoldi and Beck (2007), whose habitat descriptions we have
adapted below.

Coastal tidal wetlands and saltmarshes
The coastline of Europe is characterized by estuaries, lagoons,
and intertidal bays intertwined with saltmarshes and irregularly
flooded wetlands (Airoldi and Beck, 2007). Coastal wetlands are
highly productive and provide nursery, feeding, and spawning
grounds for commercially and ecologically important fish, shellfish,
and birds. Coastal wetlands are patchworks of sand flats, mud flats,
tidal creeks, and saltmarshes. Saltmarshes are low coastal grasslands
with structurally complex vegetation and distinctive patches that are
regularly flooded by tidal flow and which replace mangroves in tem-
perate and Arctic regions.

Shallow vegetated habitats
The key vegetated habitats in shallow water include seagrass
meadows and macroalgal beds. Seagrasses are rhizomatous, clonal,
marine plants forming beds that provide food and refuge for many
commercial species and which enhance nutrient cycling, water
quality, and sediment dynamics (Duarte, 2002; Airoldi and Beck,
2007). Seagrasses can colonize a variety of coastal habitats from estu-
arine to marine, subtidal to intertidal, and sedimentary to rocky.
Several seagrass species occur along the European coastline, includ-
ing the natives Zostera marina, Z. noltii, Ruppia maritima, R. cirrhosa,
and Cymodocea nodosa.

Macroalgal beds are made up of erect brown and red macroalgae,
such as kelps and fucoids, which are ecosystem engineers by forming
complex, productive habitats utilized by various commercially and
recreationally exploited species. Macroalgae colonize shallow hard
substrates such as rock, boulders, cobble, and artificial structures
from intertidal to subtidal habitats as deep as 30 m (Airoldi and
Beck, 2007). The dominant macroalgae of the northwestern
European coastline include Laminaria hyperborea, L. digitata,
Saccharina latissima, Fucus serratus, and Alaria esculenta.

Biogenic reefs and beds
Biogenic reefs and beds are three-dimensional structures created by
oysters, mussels, or polychaete worms. Subsequent generations
often attach to older individuals, forming distinct clusters. Oyster
species include the native European flat oyster (Ostrea edulis) and

Table 1. Classification of coastal habitats of importance to exploited species in the eastern North Atlantic Ocean and Mediterranean Sea.

Class Habitat Description

Coastal wetlands/marshes Coastal wetlands Patchwork of sand flats, mud flats, and saltmarshes
Saltmarshes Low coastal grassland frequently flooded by tidal flow

Shallow vegetated Seagrass beds Beds of rooted, flowering plants (four species)
Kelp beds Kelps, fucoids, and other complex, erect macroalgae
Benthic algae Bushy, flat, or crustose algae

Biogenic reefs and beds Oyster reefs Three-dimensional structures created by oysters, mussels, or marine
polychaete worms spanning intertidal to subtidal areasMussel beds

Worm reefs
Cockle beds Aggregations of buried cockles in shallow sand/mud flats
Maerl Coralline algae growing in beds in the sublittoral habitats

Mariculture beds Oyster beds As above, three-dimensional structures of oysters and mussels formed
by aquaculture operations in intertidal and subtidal areas near the coastMussel beds

Soft bottom Intertidal flats Intertidal mud and sand flats
Subtidal soft bottom Subtidal mud, sand, and mixed sediments

Hard structure Rocky shore Intertidal and subtidal rock, boulders, and cobble
Artificial substrates Manmade structures constructed of hard substrates

Open water Shallow open water Water depths shallower than 30 m but not directly next to the coast

Ecological value of coastal habitats 649
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the introduced Pacific oyster (Crassostreagigas), which is easier tocul-
tivate than the native oyster. Blue mussel (Mytilus edulis) beds are also
common along the Northeast Atlantic coast. Generally, the mussel
bed community is more species rich and contains different species
than the surrounding soft sediment habitat (Commito et al., 2008;
Buschbaum et al., 2009; Ysebaert et al., 2009). Three-dimensional
structures are also constructed by marine polychaete worms in the
family Sabellariidae, primarily Sabellaria alveolata and Lanice conchi-
lega in European waters. These structures consist of sediments conso-
lidated by a mucoprotein cement produced by the worms. Biogenic
reefs occur in the intertidal to subtidal zones.

Cockle beds are composed of aggregations of cockles buried a few
centimetres below the surface in shallow sand, mud, and gravelly
flats from the intertidal to subtidal zones. The most widespread is
the edible, common cockle (Cerastoderma edule), though another
cockle (C. glaucum) can also be locally abundant. Cockles can occur
in extremely dense aggregations reaching more than 1000 ind. m–2.

Maerl (a rhodolith bed) encompasses various species of un-
attached, crust-forming, calcareous red algae that can form substan-
tial beds of live and dead material, not unlike coral reefs and oyster
reefs, and which can serve as nursery habitat (Steller and
Cáceres-Martı́nez, 2009). The main maerl-forming European
species are Phymatolithon calcareum, Lithothamnion corallioides,
and L. glaciale. Maerl beds occur from the surface to 100 m in
depth, though most are at 20–30-m depths. Phymatolithon calcar-
eum forms brittle, purple-pink, branched structures that look
more like small corals than algae, and which grow as spherical
nodules at sheltered sites or as twigs or flattened medallions at
more exposed sites. Maerl is an important habitat for many
species and is vulnerable to damage from trawling and dredging.

Mariculture beds and aggregations
Aquaculture represents a growing contributor to the production of
aquatic food worldwide (www.fao.org). In the EU, aquaculture pro-
duction is an important economic activity in many coastal and es-
tuarine areas. In terms of production, shellfish farming represents
the most important sector (Bostock et al., 2010). Shellfish farming
is primarily based on bivalves that are born in the wild (i.e.
natural spatfall) and rely on food (e.g. phytoplankton) provided
by the natural environment in which they are cultured. Two main
categories of farming are practiced in the EU: suspended or off-
bottom culture and bottom culture (McKindsey et al., 2011).
Suspended culture is used in deeper, subtidal waters and includes
suspended ropes and longlines from floating rafts for mussel and
other shellfish species. This technique was developed to take advan-
tage of spatfall locations as well as areas of good water quality and
food availability. Off-bottom culture is mainly carried out in inter-
tidal areas with macrotidal regimes, with off-bottom trays for
oysters and poles or stakes (bouchots) for mussels. Bottom shellfish
culture is a type of culture where juvenile or adult animals are placed
or relayed on the bottom for on-growing. This type of culture is
mainly conducted in shallow coastal and estuarine areas, both inter-
tidal and shallow subtidal.

Mussels are the main shellfish species produced in Europe
(Smaal, 2002). Two species are being cultured: the blue mussel
(M. edulis) and the Mediterranean mussel (M. galloprovincialis).
European aquaculture of mussels relies almost entirely on natural
spatfall. Besides mussels, two species of oysters are cultured: the
Pacific oyster (C. gigas) and the native European flat oyster (O.
edulis). Of the two oyster species, the Pacific oyster dominates in

mariculture operations. Other shellfish cultured in Europe
include a number of species of clams, scallops, and abalones.

Unvegetated soft bottom, hard structure, and open water
These habitats are widespread in western European waters and
include intertidal and shallow subtidal mud flats, sand flats (exclu-
sive of coastal tidal wetlands), bottoms of mixed sediments, and
hard-bottom habitats such as rock, boulders, and cobble.
Manmade hard structures include those used as artificial reefs and
erosion-control structures that can also provide valuable habitat.
Open waters in the coastal zone are defined as those shallower
than 30-m depth, but are not directly next to the coast.

Exploited species
Commercial species from the Northeast Atlantic are poorly repre-
sented in the literature covering quantitative habitat assessments or
habitat-specific demographic rates in coastal areas (Vasconcelos
et al., 2013). It was, therefore, of interest to establish to what degree
commercial species use coastal habitats. The present review was
focused on the species for which ICES gives advice (hereafter
“ICES-advice species”), directing this summary compilation to im-
portant stocks for ICES Member Countries (i.e. Belgium, Denmark,
Estonia, Finland, France, Germany, Iceland, Ireland, Latvia,
Lithuania, the Netherlands, Norway, Poland, Portugal, Russia, Spain,
Sweden, and the UK; US and Canadian fish stocks are not included
in the advice, though these are ICES Member Countries) and to taxa
for which information on the influence of coastal habitats could be
incorporated in future ecosystem-based advice.

ICES gave advice for 59 taxa in 2012 (ICES, 2012; Table 2). Stocks
with full analytical assessment were included together with data-
poor stocks or species for which only precautionary advice is
given. To increase the cover of invertebrate species, we investigated
a number of molluscs and crustaceans that are important econom-
ically or ecologically, specifically for ICES Member Countries.

Methods
Literature review
We compiled relevant scientific literature on habitat use of the
ICES-relevant species and of a number of additional invertebrates
with high landings in the ICES Area or that are of ecological import-
ance. The searches were made using Google Scholar, primarily by
combining species name + habitat function (spawning, nursery,
feeding, migration). In cases where no matches were found, we
made searches by species name + habitat name and finally by
habitat name + “fish” or “invertebrates” for habitats poorly repre-
sented in the original search. Depth ranges for various species were
obtained from FishBase (Froese and Pauly, 2013). We also recognize
that shellfish aquaculture is gaining importance and has the poten-
tial to greatly influence coastal benthic habitats; thus, we examined
the influence of shellfish aquaculture on these habitats.

Habitats and habitat function
Coastal habitats were as defined above, but modifications had to be
made to this classification to accommodate the lack of detailed
habitat descriptions in the literature and the poor representation
of some habitats in fish studies. We evaluated habitat use of com-
mercially important fish species and invertebrates by examining
four different ecological habitat functions: spawning, nursery,
feeding, and migration. The categorization was mainly based on
papers referring to these functions, but also, in some instances, on
our conclusions referring to the definitions of functions in Table 1.

650 R. D. Seitz et al.
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Table 2. Coastal habitat use of commercially important fish species for which ICES gave advice in 2012.

Species Common name

Coastal habitat type

Coastal
Depth range

(m) ReferencesSeagrass
Intertidal soft

bottom
Subtidal soft

bottom Kelp
Shallow

open water Saltmarsh
Mussel

beds Macroalgae
Rocky
shore

Ammodytes marinus Sandeel S, N, F F Yes 10 –150 Holland et al. (2005)
Anguilla anguilla Eel N, F N N, F M N, F N, F N, F Yes 0–700 Moriarty and Dekker

(1997); Pihl and
Wennhage (2002);
Cattrijsse and Hampel
(2006); Pihl et al.
(2006); Bergström et al.
(2011)

Aphanopus carbo Black scabbard
fish

200–1 700 Swan et al. (2003)

Argentina silus Greater silver
smelt

140–1 440 Magnússon (1996)

Beryx spp. Alfonsinos/
Golden eye
perch

100–1 000 Anibal et al. (1998)

Brosme brosme Tusk 18 –1 000 FAO (1990)
Capros aper Boarfish 40 –700 Blanchard and

Vandermeirsch (2005)
Centrophorus

squamosus
Leafscale gulper

shark
145–2 400 Verı́ssimo et al. (2012)

Centroscymnus
coelolepis

Portuguese
dogfish

150–3 700 Verı́ssimo et al. (2011)

Cetorhinus maximus Basking shark F Yes 0–2 000 Sims (2008)
Chelidonichthys

cuculus
Red gurnard 15 –400 Lopez-Lopez et al. (2011)

Chelidonichthys
spinosus

Spiny red gurnard 25 –615

Clupea harengus Herring S N, F S S S Yes 0–364 Rajasilta et al. (1989);
Nøttestad et al. (1996);
Pihl and Wennhage
(2002); Polte and
Asmus (2006); Jensen
et al. (2011)

Coryphaenoides
rupestris

Roundnose
grenadier

180–2 600

Dalatias licha Kitefin shark 37 –1 800
Dicentrarchus labrax European sea bass N N Yes 10 –100 Jennings and Pawson

(1992); Laffaille et al.
(2001)

Engraulis
encrasicolus

Anchovy N Yes 0–400 Motos et al. (1996); Drake
et al. (2007)

Eutrigla gurnardus Grey gurnard 10 –340
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Table 2. Continued

Species Common name

Coastal habitat type

Coastal
Depth range

(m) ReferencesSeagrass
Intertidal soft

bottom
Subtidal soft

bottom Kelp
Shallow

open water Saltmarsh
Mussel

beds Macroalgae
Rocky
shore

Gadus morhua Cod N N N, F N N Yes 0–600 Uzars and Plikshs (2000);
Pihl and Wennhage
(2002); Norderhaug
et al. (2005)

Glyptocephalus
cynoglossus

Witch 18 –1 570

Hoplostethus
atlanticus

Orange roughy 180–1 809

Lamna nasus Porbeagle 0–715
Lepidorhombus

boscii
Fourspot megrim 7–800

Lepidorhombus
whiffiagonis

Megrim 100–700

Limanda limanda Dab N N Yes 0–100 Bolle et al. (1994); Gibson
et al. (2002)

Lophius budegassa Black-bellied
anglerfish

20 –1 000

Lophius piscatorus Anglerfish 20 –1 000
Mallotus villosus Capelin S S Yes 0–700 Penton et al. (2012)
Melanogrammus

aeglefinus
Haddock 10 –200

Merlangius
merlangus

Whiting N N N Yes 0–100 Pihl and Wennhage
(2002)

Merluccius
merluccius

Hake 30 –1 000 Santos and Monteiro
(1997)

Micromesistius
poutassou

Blue whiting 150–1 000

Microstomus kitt Lemon sole 10 –200
Molva dypterygia Blue ling 150–1 000
Molva molva Ling 100–1 000
Mullus surmuletus Striped red mullet N N Yes 5–100 Santos and Monteiro

(1997); Rogers et al.
(1998); Mathieson
et al. (2000)

Nephrops norvegicus Norway lobster 20 –800
Pagellus bogaraveo Red sea bream ,700
Pandalus borealis Northern prawn 20 –1 000
Phycis blennoides Greater forkbeard 10 –800
Platichthys flesus Flounder N N, F N Yes 0–100 Cattrijsse and Hampel

(2006); Florin et al.
(2009)

Pleuronectes platessa Plaice N N, F N Yes 0–100 Gibson (1999); Cattrijsse
and Hampel (2006)
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Pollachius pollachius Pollack N N N N Yes 0–200 Pihl et al. (1994);
Norderhaug et al.
(2005)

Pollachius virens Saithe N N N N Yes 0–300 Pihl and Wennhage
(2002); Norderhaug
et al. (2005)

Reinhardtius
hippoglossoides

Greenland halibut 1–2 000 Godø and Haug (1989)

Salmo salar Salmon M M M M M M M Yes 0–30 McCormick et al. (1998)
Salmo trutta Sea trout F F F F F, M F F Yes 0–10 Pihl and Wennhage

(2002)
Sardina pilchardus Sardine F Yes 10 –100 Elliott and DeWailly

(1995)
Scomber scombrus Mackerel N, M Yes 0–100 Eltink (1987); Jamieson

and Smith (1987)
Scophthalmus

maximus
Turbot N S, N Yes ,70 Gibson (1973); Øie et al.

(1997); Iglesias et al.
(2003)

Scophthalmus
rhombus

Brill N S, N Yes 5–50 Gibson (1973, 1994);
Chanet (2003)

Sebastes marinus Golden redfish 50 –300 Pikanwski et al. (1999)
Sebastes mentella Beaked redfish 300–1 400 Pikanwski et al. (1999);

Roques et al. (2002)
Solea solea Sole N, F S, M Yes ,60 Dorel et al. (1991);

Koutsikopoulos et al.
(1991); Cabral (2000);
Grioche et al. (2000);
Laffaille et al. (2000)

Sprattus sprattus Sprat N, N, F N Yes ,150 Elliott et al. (1990);
Laffaille et al. (2000);
Voss et al. (2003);
Gorokhova et al.
(2004); Baumann et al.
(2006)

Squalus acanthias Spurdog ,200
Trachurus picturatus Blue jack

mackerel
,300

Trachurus trachurus Horse mackerel 100–1 000
Trisopterus esmarkii Norway pout F Yes 50 –300 Pihl et al. (2006)

The function of coastal habitats for species was divided into (S) spawning area, (N) nursery ground, (F) feeding area, and (M) migration route. Coastal habitat types constitute a subset of the habitats in Vasconcelos et al.
(2013) for which there was information on species habitat use. Depth ranges were collated from FishBase.
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(i) Spawning: records of ripe adults, observation of spawning, or
the presence of newly spawned eggs;

(ii) Nursery: reference to the concentration of juvenile stages or at
least the presence of juveniles;

(iii) Feeding: the use of habitats by adults as feeding grounds or at
least the presence of adults not related to spawning; and

(iv) Migration: mainly refers to the directional movement of dia-
dromous species.

Catches of species using coastal habitats and ICES-advice species
were then related to the total catch in the Northeast Atlantic using
data from ICES catch statistics for 2010 (http://www.ices.dk/
fish/CATCHSTATISTICS.asp).

Results
Coastal habitat use by ICES-advice species
Out of the 59 ICES species investigated, 26 species (44%) were consid-
ered to use coastal habitats. None of these 59 species seemed to be resi-
dent in a single coastal habitat, and for the large majority of species,
the life cycle also had a non-coastal component (Table 2). In addition,
a number of species used more than one type of coastal habitat.
Overall, the nursery function was the most prevalent function, occur-
ring in 30% of the ICES species, followed by feeding grounds for 20%,
spawning areas for 10%, and migration routes for 8% (Figure 1).

In our review, representatives of ICES-advice species utilized
most habitats that we investigated, and all habitats except kelp, salt-
marshes, and mussel beds supported all the four functions for at
least one species (Figure 2). Subtidal soft bottom was the habitat
used as spawning and nursery areas by the largest proportion of
species, and intertidal soft bottom was also used heavily as nursery
grounds. The most prevalent habitat for feeding and migration
among the ICES species was shallow open water, though subtidal
soft bottom was also used by many species for feeding (Figure 2).
In addition, our literature review showed that there is a specific
lack of information on fish from complex hard bottom habitat
types, including kelps and macroalgae, particularly in Europe.

Coastal habitat use by invertebrates
A considerable number of commercial invertebrates use coastal habi-
tats. ICES gives advice for only two invertebrate species—Norway

lobster (Nephrops norvegicus) and northern shrimp (Pandalus bor-
ealis). One reason for this may be that many commercially import-
ant invertebrates are less mobile than fish, such that the local
populations are, therefore, managed nationally. We chose to do a
close examination of coastal habitat use for commercially important
invertebrates that had a substantial percentage of fishery landings in
the ICES Area, as well as for a number of species of particular interest
due to their major contribution to other fishery landings in the
Atlantic (e.g. Callinectes sapidus) or as important prey species (e.g.
Macoma balthica) for other commercially important species
(Table 3).

Of the 12 invertebrate species examined, all used coastal habitat
during some phase of their life history (Table 3). All habitats except
kelp and saltmarsh were used by several of the invertebrate species
we examined. Shallow open water was the habitat most commonly
used by invertebrates for spawning, whereas intertidal and subtidal
soft-bottom habitats were used by the largest proportion of inverte-
brates as nurseries. Subtidal soft-bottom habitats were used most
commonly for feeding. Most of the coastal habitats investigated,
except kelp, were used by invertebrates for the nursery function
(Figure 3).

Of the coastal habitats investigated, shallow subtidal and inter-
tidal habitats were the most commonly used by invertebrates, with
16–25% of the invertebrate species we investigated using these
two habitats for spawning, 50% of species using these habitats for
nursery grounds, and 25–58% of species using these habitats for
feeding (Figure 3). Shallow open water habitats were used not
only for invertebrate spawning, but also for nursery grounds and
feeding. Rocky shores were also commonly used for feeding (16%
of species) or as nursery grounds.

Catches of ICES-advice species using coastal habitats
Total landings of fish and invertebrates reported within the ICES
Area were estimated to be 8 514 820 t for 2010. Herring (Clupea har-
engus) comprised the highest tonnage of catch and the largest per-
centage of total catch in the Northeast Atlantic (�23%); this
species utilized coastal habitats for nursery grounds, spawning,
and feeding (Tables 2 and 4). Cod (Gadus morhua) and mackerel
(Scomber scombrus) represented the next highest tonnages and per-
centages, together accounting for over 20% of total catch (Table 4).
They utilized coastal habitats for nursery, feeding, and migration
areas (Table 2). Blue whiting (Micromesistius poutassou), sprat
(Sprattus sprattus), capelin (Mallotus villosus), sandeel (Ammodytes
marinus), haddock (Melanogrammus aeglefinus), saithe (Pollachius
virens), and blue jack/horse mackerel (Trachurus spp.) rounded out
the top ten species in terms of tonnage, with seven of these ten
species utilizing coastal habitats (Table 4).

The species associated with coastal habitats made up 71% of the
total landings and 77% of the cumulative landings of ICES-advice
species in the Northeast Atlantic (Table 4). Although the Norway
lobster is a commercially important invertebrate species in Europe
and represented the largest percentage of total ICES catch of any in-
vertebrate, it accounted for less than 1% of the total fishery catch in
the Northeast Atlantic (Table 4).

Influence of shellfish aquaculture on benthic habitats
Although there are many anthropogenic influences on coastal habi-
tats, shellfish aquaculture is a major one of increasing concern.
Potential positive and negative environmental effects of different
shellfish aquaculture practices are widely described in the scientific
and technical literature (e.g. Kaiser et al., 1998; Newell, 2004; Borja

Figure 1. Percentage (%) of ICES-advice fish species using coastal
habitats for spawning, as nursery grounds, for feeding, and for
migration.
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et al., 2009; Forrest et al., 2009; Ysebaert et al., 2009; McKindsey et al.,
2011; Shumway, 2011; Cranford et al., 2012). Environmental con-
cerns are related to how shellfish culture interacts with or controls
basic ecosystem processes (Cranford et al., 2012). The effects of dif-
ferent aquaculture systems depend on various factors, such as the
local hydrographic conditions, the sedimentary habitat in which
aquaculture occurs, the type of cultured organisms, the culture
and production methods, and management practices (Henderson
et al., 2001). The effects are also site-specific and depend largely
on the local environmental conditions (Read and Fernandes,
2003). The sensitivity of the ecosystem, the habitats in which
culture practices occur, and the assimilative capacity of the sur-
rounding environment are key to determining the magnitude and
significance of the impact (Cranford et al., 2012; Bunting, 2013).

Shellfish populations rely on the natural availability of nutrients
and algae for their growth (Smaal and Van Stralen, 1990; Dame,
1996). Highly productive areas are preferred, such as shallow bays
and estuaries (Nunes et al., 2003). A healthy ecosystem is, therefore,
of utmost importance for shellfish aquaculture. These areas are also
often rich in biodiversity and act as important nursery grounds for

fish and crustaceans and feeding areas for birds (Sequeira et al.,
2008). Because of this, many of these areas are internationally pro-
tected and are part of the European Natura2000 network. This can
lead to conflicts with shellfish operations, as was the case in the
Netherlands. Proper planning and location of activities should
proceed in a sustainable manner and at sustainable levels, according
to the carrying capacity of particular areas. Recently, focus is not
solely on carrying capacity in terms of the maximum sustainable
yield (MSY) of the bivalve culture, but also on potential changes
in ecosystem structure and functioning and ecological variability
over different spatial and temporal scales (Cranford et al., 2012).
An ecosystem-based management policy that balances the different
needs is in the long-term interest of coastal communities and sus-
tainable development of coastal resources.

Coastal habitat use by individual species
To provide concrete examples of the ecological value of coastal habi-
tats for fish and invertebrates, we highlight a selection of commer-
cially important species from the ICES Area and describe their

Figure 2. Relative contribution (%) of the different coastal habitats for the main functions (spawning, nursery, feeding, migration) identified among
the ICES-advice fish species that use coastal habitats (26 species).
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Table 3. Coastal habitat use by selected commercially or ecologically important invertebrates.

Species
Common

name

Coastal habitat type

ReferencesSeagrass

Intertidal
soft

bottom

Subtidal
soft

bottom Kelp

Shallow
open
water Saltmarsh

Oyster
Reef

Mussel
beds Macroalgae

Rocky
shore Coastal

Crangon
crangon

Common
shrimp

N,F N, F F S, M N Pandian (1970); Nichols and Lawton
(1978); Howard and Bennett (1979);
Tully and Céidigh (1987); Wahle and
Steneck (1991); Jensen et al. (1994);
Cattrijsse et al. (1997); Polte et al.
(2005)

Ostrea edulis Oyster S, N, F Launey et al. (2002)
Callinectes

sapidus
Blue crab N N N S N N N N Lipcius et al. (2008)

Homarus
gammarus

European
lobster

N, F S N, F Pandian (1970); Nichols and Lawton
(1978); Howard and Bennett (1979);
Tully and Céidigh (1987); Jensen et al.
(1994); Wahle and Steneck (1991)

Macoma
balthica

Baltic clam S, N, F S, N, F S Bachelet (1980); Olafsson (1986);
Beukema and de Vlas (1989);
Armonies and Hellwig-Armonies
(1992); Hiddink (2002)

Cancer pagurus Edible crab N F M N S Brown and Bennett (1980); Bennett and
Brown (1983); Hall et al. (1993);
Sheehy and Prior (2008)

Palaemon
serratus

Common
prawn

N N, F N N Berglund (1982); Guerao and Ribera
(1996, 2000)

Placopecten
magellanicus

Atlantic
sea
scallop

F S, N, F MacDonald and Thompson (1985);
Packer et al. (1999); Hart (2006)

Arctica
islandica

Ocean
quahog

F S,N, F Thompson et al. (1980)

Mytilus edulis Blue
mussel

S, N, F S, N, F S, N, F S, N, F S, N, F Lintas and Seed (1994); Prins and Smaal
(1994); Hilgerloh (1997); Walter and
Liebezeit (2003)

Cerastoderma
edule

Common
cockle

S, N, F S, N, F Boyden and Russell (1972); Seed and
Brown (1978)

Buccinum
undatum

Whelk S, N, F Himmelman and Hamel (1993)

The function of coastal habitats for species was divided into (S) spawning area, (N) nursery ground, (F) feeding area, and (M) migration route. Coastal habitat types constitute a subset of the habitats in Vasconcelos et al.
(2013) for which there was information on species habitat use.
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specific use of coastal habitats. Other coastal species may also use
coastal habitats similarly.

Plaice (Pleuronectes platessa)
Plaice occur on sandy and muddy substrata of the European shelf
from the Barents Sea to the Mediterranean including most of the

Figure 3. Relative contribution (%) of the different coastal habitats for
the main functions (spawning, nursery, feeding) identified among the
invertebrate species investigated. Few invertebrate species used coastal
habitats for migration, so these are not depicted.

Table 4. Catches of ICES species with coastal habitat use (Yes, or
No ¼ left blank) according to Table 2 and related to the total catch
in the Northeast Atlantic (0% catch means , 0.01%).

Species
Catch

(t)
% of

catch
Coastal

habitat use

Herring 1 986 630 23.33 Yes
Cod 909 008 10.68 Yes
Mackerel 831 878 9.77 Yes
Blue whiting 546 026 6.41
Sprat 538 105 6.32 Yes
Capelin 477 679 5.61 Yes
Sandeel 422 422 4.96 Yes
Haddock 364 082 4.28
Saithe 336 504 3.95 Yes
Blue jack mackerel + horse

mackerel
236 745 2.78

Golden redfish + beaked
redfish

138 300 1.62

Boarfish 137 678 1.62
Norway pout 137 079 1.61 Yes
Sardine 125 997 1.48 Yes
Plaice 83 967 0.99 Yes
Pollack 63 743 0.75 Yes
Norway lobster 59 010 0.69
Hake 58 957 0.69
Anglerfish + black-bellied

anglerfish
55 141 0.65

Northern prawn 43 537 0.51
Greenland halibut 41 171 0.48
Ling 33 858 0.4
Whiting 31 430 0.37 Yes
Tusk 30 372 0.36
Flounder 26 438 0.31 Yes
Sole 25 020 0.29 Yes
Megrim + fourspot megrim 17 201 0.2
Anchovy 15 365 0.18 Yes
Blue ling 12 639 0.15
Dab 11 165 0.13
Lemon sole 11 066 0.13
Witch 10 206 0.12
European sea bass 8 263 0.1 Yes
Greater forkbeard 7 191 0.08
Roundnose grenadier 7 094 0.08
Black scabbard fish 6 892 0.08
Striped red mullet 5 396 0.06 Yes
Turbot 4 731 0.06 Yes
Great silver smelt 4 593 0.05
Red gurnard + spiny red

gurnard
4 405 0.05

Brill 2 958 0.03 Yes
Red sea bream 1 172 0.01
Eel 1 152 0.01 Yes
Salmon 784 0.01 Yes
Grey gurnard 634 0.01
Alfonsinos 575 0.01
Sea trout 490 0.01 Yes
Leafscale gulper shark 149 0
Portuguese dogfish 118 0
Porbeagle 97 0
Orange roughy 88 0
Kitefin shark 6 0
Basking shark 0 0 Yes
Spurdog 0 0

Catches from ICES catch statistics for 2010.
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Northeast Atlantic to a depth of 100 m (Kottelat and Freyhof, 2007;
Froese and Pauly, 2013). Plaice are dependent on shallow (0–5 m)
sediment substratum as nursery grounds during their early juvenile
stage, which is only a small fraction of the species’ distribution range
(Gibson, 1994). Variation in year-class strength is generated during
the pelagic stages and subsequently dampened during the early ju-
venile stage (van der Veer, 1986; Beverton, 1995). Growth rate is
negatively correlated and mortality positively correlated with settle-
ment density, indicating that density-dependent processes are
acting in the nursery grounds (Pihl et al., 2000). These nurseries
are important for stock dynamics, since a relationship between
nursery size and population abundance exists, a relationship that
has been conveyed as the “nursery size hypothesis” (Rijnsdorp
et al., 1992; van der Veer et al., 2000).

The Wadden Sea is considered the largest and most important
nursery ground in the North Sea. Spawning grounds are located such
that eggs and larvae are transported with prevailing currents towards
the nursery grounds, then they use selective tidal-stream transport to
reach the shallow productive areas (Rijnsdorp et al., 1985). Plaice
leave their nursery grounds at the end of their first summer then grad-
ually move towards deeper waters with increasing size.

There is a targeted fishery for plaice using beam trawls, Danish
seines, and gillnets, especially in the North Sea and the Irish Sea.
The North Sea stock has increased recently and is currently fished
at MSY. In the Western Channel, spawning-stock biomass (SSB) is
above BMSY, but fishing pressure (F) is above target. For the other
stocks, there is insufficient information, and precautionary advice
is given (ICES, 2012).

Cod (G. morhua)
Cod is widely distributed in the North Atlantic and Arctic (Froese
and Pauly, 2013) and is found in a variety of habitats, from the shore-
line down to the continental shelf. When maturing, the optimum
temperature for cod decreases, and the larger fish are mainly
found in deeper, colder waters.

Cod spawn in pelagic habitats usually offshore, and eggs and
larvae drift with currents for months before settling to the seabed
(Juanes, 2007). As juveniles, they are mainly found in complex habi-
tats, such as seagrass beds, kelps, rocky shores, and gravel bottoms
with cobble and attached fauna, which provide shelter from preda-
tion (Pihl and Wennhage, 2002; Lindholm et al., 2004; Norderhaug
et al., 2005; Juanes, 2007). Mortality risk of 0-group cod is lower in
complex habitat types than in simple habitats, suggesting that cod
recruitment may be a function of habitat availability (Juanes,
2007). Older life stages of cod are less dependent on specific
habitat types, probably as a consequence of a lower vulnerability
to predation.

Cod has historically been by far the most important demersal
species of North Atlantic fisheries, and it continues to be so although
many cod stocks have been severely depleted. Most catches are taken
in trawls, but they are also taken in seines, gillnets, and hook and line
gear. Landings of cod within the ICES Area peaked in 1956; in 2010,
they were down to 909 000 t, which is 40% of the maximum histor-
ical catch (Table 4). After a few years of lowered total allowable catch
in combination with other management measures, several stocks
have now started to increase, whereas others remain at a low level
(Cardinale et al., 2013).

Brown shrimp (Crangon crangon)
An abundant species in European waters, the brown shrimp, also
known as the common shrimp, is important ecologically and as a

fishery species, especially in the North Sea. This species tolerates
diverse environmental conditions, and its distribution ranges
along the European coast from the White Sea to Morocco, including
the Mediterranean and Black Seas.

Aside from the pelagic larval stage, this species is resident in
shallow coastal areas of 1–20 m in sand or muddy sand habitats, al-
though there have been records of this species found in depths of
130 m (FAO, 1999). In the Wadden Sea, shallow intertidal habitats
are nurseries for C. crangon from February through June, dependent
on temperature. Brown shrimp can be found in high densities in tide
pools at low tide (Cattrijsse and Hampel, 2006). They leave the tidal
zone at �30 mm in carapace length from July through September,
when there is a large recruitment to the adult stock. In winter, adults
spawn again, and in spring, larvae migrate inshore and settle in the
intertidal zone (Kuipers and Dapper, 1984). In the UK, there are sea-
sonal migrations between Severn Estuary and Bristol Channel
(Henderson and Holmes, 1987). Ecologically, there is evidence
that C. crangon is a major structuring force for shallow, soft-bottom
communities, where they are a dominant predatory species.

Crangon crangon is fished in Germany, the Netherlands,
Denmark, UK, Belgium, and France. For this species, there is no of-
ficial ICES advice given, but it is of prime concern, and there has
been an ICES Working Group for this species. In 2010, in the
North Sea, there were 36 000 t landed, dominated by Germany
and the Netherlands, and the stock is stable (ICES, 2011). There is
no management plan for the fishery, although there are some mesh-
size regulations (Innes and Pascoe, 2007), and the ICES Working
Group on Crangon fisheries and life history has suggested that
further management should be implemented. The fishery currently
uses unselective gear in shallow coastal nursery areas, which results
in excessive discards and damage to the environment (ICES, 2011);
thus, the fishery could be made more efficient.

European lobster (Homarus gammarus)
The European lobster has a broad geographic distribution in the
eastern Atlantic from northwestern Norway (Lofoten Islands) to
southeastern Sweden and Denmark, but possibly because of low sal-
inity and temperature extremes, it is absent from the Baltic Sea
(Charmantier et al., 2001; FAO, 2012). Its distribution southward
extends along the mainland European coast around Britain and
Ireland, to a southern limit of �308N latitude on the Atlantic
coast of Morocco (Prodöhl et al., 2006).

There is little information on the juvenile phases of H. gammarus.
In England, habitats with suitable crevices are sought out, and in lab
experiments, juveniles also can bury in fine, cohesive mud. Early ju-
venile stages of their close relative H. americanus use cobble as their
main habitat, and this habitat is thought to be a demographic bottle-
neck to those populations (Wahle and Steneck, 1991). Given their
similar life cycles, it is reasonable to believe that the same might
be true for the European lobster. Adult H. gammarus live on the con-
tinental shelf and use a rock crevice habitat (Howard and Bennett,
1979). Gravel and cobble are thought to be the prime nursery habi-
tats. Moreover, adults colonized artificial reefs in the UK. In
England, areas with habitats that include less structure and fewer
large-scale outcrops for adults produce lobsters of smaller size
than other areas, indicating the importance of the habitat for
growth (Howard, 1980). Larvae are spawned in shallow bays in
Ireland and display diel vertical migration with high densities in
the neuston (i.e. surface waters) at dawn and dusk (Tully and
Céidigh, 1987). Spawning begins in July, and a spawning peak
occurs in August (Pandian, 1970).
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There is little information on the H. gammarus fishery, and a lack
of official registration of catches, which may mean that population
size is underestimated. Because of this, management is difficult, and
stock status is not well known (Galparsoro et al., 2009). Total annual
European landings have varied between 1600 and 5000 t in the
recent past (Holthuis, 1991; Prodöhl et al., 2006), with a slow in-
crease since the 1970s. Moreover, lobster catches vary considerably
between countries (FAO, 2006; Prodöhl et al., 2006). Lobster aqua-
culture is also developing, based on some local declines and
increases in demand, but production rates are low. Local popula-
tions should be managed separately as self-recruiting stocks, as
local stocks vary among countries. In some areas, stocks have
locally collapsed. For example, the Norwegian stock collapsed
between 1960 and 1980 (Agnalt et al., 2007).

We have some detailed information on coastal habitat use for a
few important species, as discussed above. However, in general,
there is poor knowledge regarding habitat dependence even for
many common species.

Discussion
The present assessment demonstrates clearly the use of coastal habi-
tats by commercially and ecologically important species and thus
suggests the importance of those habitats to population dynamics
and fishery yield. Of all ICES-advice species, a large percentage
(44%) utilizes coastal habitats during some portion of their life
history, indicating the ecological value of coastal habitats.
Moreover, those advice species using coastal habitats were respon-
sible for a majority (71%) of the fishery landings in ICES Member
Countries, demonstrating the economic value of coastal habitats.
Unfortunately, for most species, there was inadequate information
to judge the degree to which these coastal habitats limit population
growth and fishery production. There is an obvious lack of informa-
tion on how fish utilize some habitat types in the ICES Area, particu-
larly complex hard-bottom habitats such as kelp forests, rocky
shores, and macroalgae, where many census techniques are inad-
equate. The collective information suggests that these habitats
may be essential for many species. One recommendation is to
focus future studies on these habitat types to attain quantitative
data on fish (both population- and individual-level data) and
their dependence on these habitats.

Human population numbers have been increasing substantially
in coastal habitats (Airoldi and Beck, 2007). Factors associated with
natural and anthropogenic global change, including rising tempera-
ture and sea levels, changes in the magnitude of nutrient and sedi-
ment run-off, overfishing, dredging, and sand mining, and habitat
loss, present increased threats to coastal habitats worldwide
(Kennesh, 2002; Kemp et al., 2005; Lotze et al., 2006). Although
management has attempted to ameliorate adverse effects of
habitat degradation, to some extent, many management efforts do
not go far enough in protecting these delicate habitats and the
species that rely on them. It is estimated that 85% of European coast-
lines are degraded (EEA, 1999), and public awareness of prolonged
habitat losses is limited (Lotze, 2004).

In our assessment, seagrass, shallow intertidal and subtidal soft
bottoms, shallow open water, macroalgae, and rocky-shore habitats
supported all four major ecological functions—nursery provision,
spawning area, migration, and reproductive areas—among the
species investigated. These habitats are threatened by anthropogenic
disturbance and stress due to pollution, eutrophication, and
increased turbidity leading to reduced water clarity, important for

seagrass and macroalgae (Orth et al., 2006), as well as direct
habitat destruction from dredging, sand mining, and destructive
fishing practices, such as trawling and dredging (Turner et al.,
1999; Jackson et al., 2001). A synthesis of the interaction of
human activities with marine ecosystems indicated that “no area
is unaffected by human impact” (Halpern et al., 2008), and other
studies show coastal habitats are threatened by multiple anthropo-
genic impacts (Lotze et al., 2006; Halpern et al., 2007). Various
threats may affect different coastal habitats differentially, as pollu-
tion and turbidity are important for vegetated habitats (Duarte,
2002), while destructive fishing practices are most damaging to bio-
genic habitats, such as oyster reefs and maerl beds (Barbera et al.,
2003). Gear effects from fishery activities have detrimental effects
on coastal habitats in many areas (Thrush and Dayton, 2002;
Chuenpagdee et al., 2003; Hixon and Tissot, 2007; Hobday et al.,
2011). Moreover, the current distribution of key habitats still
needs to be quantified, and recent efforts to do so are making pro-
gress in the right direction (Agardy and Alder, 2005), such as
habitat classifications through the European Union Nature
Information System (EUNIS) programme (Davies et al., 2004),
and through modelling techniques (Bekkby et al., 2008; Sundblad
et al., 2011; Gorman et al., 2013). Only when we have quantitative
knowledge on both the spatial distribution of habitats (e.g. total
area through mapping and remote sensing; quality through produc-
tion per unit area) and on population fitness in different habitat
types (i.e. secondary production per unit area in each habitat
type) can we estimate the contribution of different habitat types
to fish or invertebrate production and fisheries.

Many of the threats to coastal habitats can adversely affect specif-
ic important fish and invertebrate species. As one example, since
plaice use shallow soft-bottom areas as nursery grounds, the early
juvenile stage is vulnerable to new construction and infrastructural
works, such as harbours and road banks, and to land reclamation
(Rönnbäck et al., 2007). Another threat to plaice nursery grounds
is the reduction in habitat quality and quantity caused by the prolif-
eration of macroalgae (Pihl et al., 2005), which may be a sign of both
eutrophication and a trophic cascade releasing predation pressure
on grazers (Svensson et al., 2012).

In another species-specific example, since cod depend on
complex coastal habitats during early demersal life stages, loss of
these habitat types may be detrimental to cod population recovery.
A continuous loss of large, complex vegetation due to overgrowth by
filamentous algae caused by eutrophication and excess sedimenta-
tion, augmented by coastal construction, is a serious threat to cod
nursery grounds (Pihl et al., 2006; Airoldi and Beck, 2007).
Degradation of these habitats may also be triggered by a weakened
trophic control, stemming from decreases in large predatory fish,
as well as direct losses due to harvesting of algae (Tegner and
Dayton, 2000). Thus, overfishing may indirectly cause degradation
of coastal habitats, which may give rise to a feedback mechanism as
recruitment of large predatory fish is impaired (Eriksson et al.,
2011). Further, loss of biogenic structures in gravel habitats due to
bottom trawling may pose a threat to cod nursery habitats in areas
with an intense demersal fishery (Lindholm et al., 2004). In addition
to these, other anthropogenic effects such as ocean acidification and
climate warming also likely have negative effects on fish species, al-
though the magnitude and direction of such effects depend on loca-
tion and are difficult to predict (Jones, 2014).

Exemplifying the case of invertebrates, coastal habitats are very
important for brown shrimp, and non-selective gear used in
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shallow habitats can destroy these fragile areas. Therefore, the major
ecological threats to C. crangon are thought to involve habitat deg-
radation (Broadhurst et al., 2006; ICES, 2011). Towed or dragged
commercial fishing gear (benthic trawls or dredges) are responsible
for over 50% of total fishery landings (Kelleher, 2005), and the
habitat destruction and bycatch loss by such gear is substantial
and alarming (Broadhurst et al., 2006).

The threats to nearshore coastal and estuarine ecosystems today
arise from a vast range of human activities, including coastal devel-
opment, industrial fishing, aquaculture, upstream dams, and water
diversions. The impacts are manifold, including habitat loss and
degradation, pollution, eutrophication, harmful algal blooms,
changes in freshwater inflows or tidal patterns, loss of fish and shell-
fish populations, diseases, and invasive species. All these can have
impacts on natural populations and also upon coastal shellfish
aquaculture operations.

It is clear from our analysis that many commercially important
species in the ICES Area utilize coastal habitats. For most species,
however, there is insufficient information to judge whether these
coastal habitats (or non-coastal habitats used during other parts
of the life cycle) are actually essential and limiting to population
growth and fishery production.

Since many species use coastal habitats as spawning, feeding, and
nursery areas, and these life stages usually have very specific habitat
demands, habitat availability may be a bottleneck for many popula-
tions (Fodrie and Levin, 2008; Sundblad et al., 2014). Further studies
are needed to attain quantitative data on coastal habitat use by fish
and invertebrates to aid the definition of key habitats for protection
and restoration efforts and to integrate habitat quality in stock as-
sessment and ecosystem-based fishery management.

Potential consequences of further degradation of coastal habitats
could include decreased fishery landings, since such a large percent-
age of important fishery species depends on those habitats. Given
the likelihood for strong dependence upon specific coastal habitats
during juvenile stages in marine fish (Juanes, 2007), further reviews
quantifying detailed use of habitats by exploited species are antici-
pated to give additional weight to arguments for habitat preserva-
tion through MPAs and other means (Agardy, 2000). There have
been efforts and policies directed towards coastal and marine habi-
tats of Europe that are threatened (Airoldi and Beck, 2007) and
efforts to develop efficient networks of MPAs to protect such ecosys-
tems (Sala et al., 2002; Fenberg et al., 2012). However, MPAs alone
cannot protect habitats from all anthropogenic threats, such as pol-
lution (Airoldi and Beck, 2007), aquaculture, and cross-ecosystem
effects of fishing (Eriksson et al., 2011). Future fishery management
efforts need to be directed not only at maintaining fish stocks, but
also at preserving and restoring the habitats that are essential for
fish and invertebrate populations, which is a major thrust of
ecosystem-based management.
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