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Ecologists should not use statistical significance tests to interpret 
simulation model results

J. Wilson White, Andrew Rassweiler, Jameal F. Samhouri, Adrian C. Stier and Crow White

J. W. White (whitejw@uncw.edu), Dept of Biology and Marine Biology, Univ. of North Carolina Wilmington, Wilmington, NC 28403,  
USA. – A. Rassweiler, Marine Science Inst., Univ. of California Santa Barbara, Santa Barbara, CA 93106, USA. – J. F. Samhouri, 
Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric 
Administration, Seattle, WA 98112, USA. – A. C. Stier, Dept of Zoology, Univ. of British Columbia, Vancouver, BC, V6T 1Z4,  
Canada. – C. White, Dept of Biological Sciences, California Polytechnic State Univ., San Luis Obispo, CA 93407, USA.

Simulation models are widely used to represent the dynamics of ecological systems. A common question with such models 
is how changes to a parameter value or functional form in the model alter the results. Some authors have chosen to 
answer that question using frequentist statistical hypothesis tests (e.g. ANOVA). This is inappropriate for two reasons. 
First, p-values are determined by statistical power (i.e. replication), which can be arbitrarily high in a simulation context, 
producing minuscule p-values regardless of the effect size. Second, the null hypothesis of no difference between treatments 
(e.g. parameter values) is known a priori to be false, invalidating the premise of the test. Use of p-values is troublesome 
(rather than simply irrelevant) because small p-values lend a false sense of importance to observed differences. We argue 
that modelers should abandon this practice and focus on evaluating the magnitude of differences between simulations.

A growing number of authors in the ecological literature  
use statistical methods common to experimental ecology to 
analyze the output of ecological simulation models. For 
example, authors may use analysis of variance (ANOVA) to 
test whether model runs with different parameter values  
or different functional forms produce statistically different 
outputs. We view significance testing applied to simulation 
model output as a misuse of statistical theory. In this article 
we explain our reasoning with the goals of discouraging  
the practice, encouraging instead a focus on the magnitude 
of differences between simulations (i.e. effect sizes), and 
sparking discussion regarding when – if ever – statistical sig-
nificance tests could be appropriate.

The perils of placing too much emphasis on statistical 
tests are well known in ecology. The past few decades  
have seen several essays reminding ecologists not to con-
flate statistical with biological significance, that p-values 
are essentially arbitrary thresholds, and that p-values are 
meaningless unless accompanied by measures of effect  
size and statistical power (Yoccoz 1991, Johnson 1999, 

Hurlbert and Lombardi 2009, Beninger et al. 2012). The 
use of frequentist statistical tests in a simulation model set-
ting presents two additional issues, the first practical and 
the second philosophical:

1) Statistical power is determined by replication (Berkson  
1938), which is a trivial notion in the era of modern 
computing. Therefore power, and thus p-values, are  
determined only by the number of simulations one 
chooses to run.

2) The ‘truth’ of a testable null hypothesis is assumed to be 
unknown. In a model context, the programmer knows 
the ‘truth’ (because they know the model parameters) 
and testing a known-to-be-false null hypothesis does not 
provide useful information (Savage 1957, Johnson 1999, 
Anderson et al. 2000).

While we contend that a focus on statistical significance is 
inappropriate, we also argue that quantitative evaluation of 
differences in effect size among model scenarios is entirely 
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Researchers analyzing field or lab data often test ecological hypotheses using frequentist statistics (t-tests,  
ANOVA, etc.) that focus on p-values. Field and lab data usually have limited sample sizes, and p-values are 
valuable for quantifying the probability of making incorrect inferences in that situation.  However, modern 
ecologists increasingly rely on simulation models to address complex questions, and those who were trained in 
frequentist statistics often apply the hypothesis-testing approach inappropriately to their simulation results. Our 
paper explains why p-values are not informative for interpreting simulation models, and suggests better ways to 
evaluate the ecological significance of model results.
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appropriate. Moreover, in some cases frequentist statistical 
models (e.g. regression, ANOVA) may provide accessible 
and simple methods for quantifying effect sizes. Though  
the distinction between statistical and biological significance 
(Yoccoz 1991) may at first appear subtle, it is critical.  
Below we use a few recent examples from the ecological lit-
erature to illustrate the context in which these issues arise, 
highlight potential pitfalls in the analysis and interpretation 
of simulation model output, and offer ways forward for  
the specific examples mentioned here and for analysis and 
interpretation of simulation model output in general.

MANOVA with n  24 000

Marzloff et al. (2013) present a validation and sensitivity 
analysis of TRITON, a simulation model of alternative-state 
dynamics in temperate rocky reef communities that centers 
on trophic interactions between lobsters Jasus edwardsii, sea 
urchins Centrostephanus rodgersii and seaweeds Ecklonia  
radiata and Phyllospora comosa. As part of their sensitivity 
analysis they compared the effects of alternative formulations 
of the lobster predatory functional response (Holling type I, 
II or III). To do so they performed 8000 simulations with 
random initial conditions and used MANOVA to compare 
the effects of functional response (the fixed effect) on a  
multivariate index of community state. They found that the 
form of the functional response had a highly significant effect 
in the MANOVA (p  10 15, F2,23997  67.5), but conceded 
that of course this significance was due to having nearly  
24 000 denominator degrees of freedom in the F-test. They 
therefore ignored the MANOVA results and simply com-
pared model results visually, concluding that the predator 
functional response had little effect on community state 
despite the exceedingly low p-value.

This example nicely illustrates the two key problems we 
have identified. The question Marzloff et al. (2013) were 
attempting to answer (does the lobster functional response 
affect the predictions of their model regarding community 
state?) was not suited for null hypothesis testing. We know 
a priori from analytical models that different forms of the 
predator functional response produce distinct dynamics 
(Oaten and Murdoch 1975a, b), so the question is not 
whether the model outcomes will be different, but rather 
how different they will be. Even if we did not have the 
advantage of prior knowledge about the dynamical conse-
quences of differences between functional responses, it 
would still be redundant to test for those differences using 
a null hypothesis framework. The null hypothesis is implic-
itly posed as follows: ‘model results using each of the three 
functional responses are drawn from populations with 
identical distributions’. Because we know the model was 
programmed with different functions and parameters in 
each case, we also know a priori that the null hypothesis is 
false. Thus any failure to reject the null hypothesis is by 
definition a type-II error, and the test merely needs suffi-
cient power to detect an effect and avoid that error.

The second problem with hypothesis tests like the one 
Marzloff et al. (2013) perform is the arbitrariness of statisti-
cal power itself in this setting. A sample size of 24,000 will 
generally produce a significant result (p  0.05, or even 
much lower) regardless of the magnitude of the biological 

effect size. Indeed, when dealing with this type of model, 
one can literally choose the desired p-value by setting the 
number of runs. With sufficient computer time, there is no 
limit to how small a value can be obtained. This sample size 
influence occurs, of course, in empirical experiments, not 
just computer simulations: any effect size, no matter how 
small, can be found significant if one is able to obtain 
enough replicates (Berkson 1938). However the ease and 
extremely low cost of replication in a simulation model set-
ting represents an absurd extreme for this general principle.

Marzloff et al. (2013) were correct to disregard the low 
p-values in their MANOVA, although we disagree with their 
choice to fall back on a qualitative visual inspection of the 
model output. A better alternative would have been to directly 
quantify the effect size in the MANOVA (or simply compare 
the distributions of community states; in their case a geomet-
ric comparison of the positions of model solutions in principal 
components space), having determined beforehand what 
magnitude of difference (perhaps a percentage difference from 
some baseline) would constitute a significant ecological effect 
in the study system. This is analogous to the argument that 
ecologists should focus on ‘biological significance’ rather than 
statistical significance (Berkson 1942, Yoccoz 1991).

Ecological simulation models are not the only context 
in which one could argue that the null hypothesis is known 
to be false a priori. Johnson (1999) catalogues several trivial 
null hypotheses that were rejected in empirical field studies 
(e.g. that logged and unlogged forests have the same den-
sity of trees). Johnson (1999) and others have argued that 
null hypotheses are usually false in observational studies, 
such as when comparing some variable (e.g. fish abun-
dance) among two locations; it is unthinkable that the two 
locations would have precisely identical population statis-
tics. This situation stands in contrast to the case of a con-
trolled ecological experiment, in which experimental 
replicates are randomly assigned to treatments, and a null 
hypothesis of no difference among the treatment popula-
tions is actually a reasonable expectation (Johnson 1999). 
Because simulation models are in a sense controlled numer-
ical experiments it is tempting to analyze their output as 
one would an empirical experiment. However, in simula-
tion models the relationship between treatment (parameter 
value, functional form) and some dependent response 
(model output) is explicit (mechanistic) and known (or at 
least understood to exist); the question is simply how many 
replicates are needed to detect that relationship statistically. 
In empirical ecology, we accept that there is usually some 
correspondence between statistical significance and bio-
logical significance (i.e. effect size); replication is difficult 
and costly to obtain, so power is a limiting factor and if a 
statistically significant signal is detected, it is likely to be 
biologically meaningful as well. That correspondence breaks 
down with the immense replication and power available in 
a simulation model setting. Indeed, it is these features of 
models that enable their analysis to bypass significance-
tests and focus on the key result of interest, effect size.

Are peer reviewers the problem?

We used Marzloff et al. (2013) as an instructive example of 
the folly of null hypothesis tests in part because the authors 
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themselves admitted that the p-values they report are essen-
tially meaningless. Indeed, the halfhearted use of MANOVA 
in their paper gives the sense of a test that was demanded 
by a reviewer during the peer review process (after all, if the 
test results are meaningless, why bother conducting the test 
at all, or taking up space in the paper to report it?). We 
have encountered similar pressure from reviewers in our 
own work, and worry that it may be a common occurrence. 
A non-systematic search quickly revealed many recent 
examples spanning the breadth of the ecological literature, 
from terrestrial plant ecology to fisheries to life-history 
theory (Marshall et al. 2008, Dauphin et al. 2009, Esther 
et al. 2010, Makler-Pick et al. 2011, Tam and Ang 2012). 
We suspect that calculating p-values for simulation model 
results is actually more commonplace than a literature 
search would reveal, because doubtless there are many 
instances of authors attempting this practice, but having it 
stripped out in review (which all of the authors of this 
paper have done as reviewer). We have also experienced the 
opposite interaction, in which reviewer advocate for the 
necessity of p-values. For example, Samhouri et al. (2009) 
analyzed seven different Ecopath with Ecosim models of 
marine food web dynamics to identify system-specific indi-
cators (i.e. biomass of a particular functional group) that 
reveal changes to key ecosystem attributes (i.e. emergent 
properties such as diversity, net primary productivity, mean 
trophic level, etc.). For each model, they simulated a range 
of fishing perturbations to the model ecosystem, recorded 
the responses of a suite of indicators and attributes, and 
calculated the correlations between each indicator and 
attribute. In their paper, they reported only the magnitude 
of the correlation coefficients, not their statistical signifi-
cance, noting that because of their large sample size, even 
small, biologically unmeaningful correlations would be sta-
tistically significant (also see Fulton et al. 2005). This omis-
sion was a point of contention during review, as a reviewer 
focused on the potential for reporting spurious correlations 
in the absence of p-values. Indeed, there are plenty of 
examples in the literature in which p-values are reported to 
support or refute the use of indicators (Travers et al. 2006). 
Samhouri et al. (2009) won the argument with their 
reviewer, but we wonder how frequently well-intentioned 
reviewers – particularly those with more experience with 
empirical data than models – insist on inappropriate 
hypothesis tests for simulation data. The importance of 
p-values and rigorous hypothesis tests is drilled into bud-
ding ecologists early and often, so the mistake is under-
standable. We hope that this paper helps formalize the 
argument for modelers, and clarify the understanding  
of reviewers, of the use and misuse of statistical tests in 
modeling studies.

Is there any use for frequentist statistics in ecological 
simulation models?

We have argued that frequentists tests of null hypotheses are 
useless when comparing model simulation output with dif-
ferent parameter values or functional forms. However, there 
are situations in which statistical tools associated with fre-
quentist significance testing can be used productively in 
concert with simulation models. For example, methods 

such as ANOVA provide a useful and familiar framework 
for partitioning variance and calculating effect sizes in mul-
tifactorial simulations. It is appropriate to use ANOVA in 
that way, provided one ignores (and does not report) the 
p-values calculated along the way.

Corell et al. (2012) provide a representative example of 
this usage. They examined the factors affecting dispersal dis-
tances of planktonic marine larvae in the Baltic Sea. They 
used a numerical hydrodynamic circulation model to 
describe three-dimensional flow field of ocean currents in 
the study region, and conducted simulations in which they 
released simulated Lagrangian particles (virtual ‘larvae’) into 
the flow field and observed their trajectories. Larval trajecto-
ries were affected by random turbulence, so the dispersal 
model includes stochasticity. The authors examined the 
effects of multiple factors on dispersal trajectories (e.g. 
spawning season, larval depth, duration of the larval period, 
etc.) and created a factorial design to examine each of  
216 individual treatment combinations, with three replicate 
simulations per combination. They then analyzed their 
results using a five-way ANOVA. However, rather than use 
ANOVA to test the hypothesis that different parameter val-
ues produce different dispersal patterns (which is of  
course true), they focused on the variance components 
returned by ANOVA in order to determine which factor 
contributed to greater absolute variation in dispersal dis-
tance. This type of usage is perfectly reasonable (see also  
Legendre and De Cáceres 2013). Similar applications of  
statistical methods could be, for example, using a  
Komolgorov–Smirnov test to compare two distributions 
generated by data; again, however, one should focus on the 
effect size or test statistic itself, rather than the p-value.

Another context in which hypothesis testing is usefully 
applied to simulation results is when one desires to simu-
late the empirical measurement of a system. This might be 
done to test alternative statistical or experimental approaches 
in a system with known dynamics, or to determine how the 
output of a simulated process compares to observed data. 
In the first case, models are used to simulate both process 
and measurement error, and model analysis focuses on 
determining the level of empirical replication needed to 
detect a process (Hoban et al. 2012) or validating a new 
statistical method for detecting certain phenomena (Dakos 
et al. 2012). These studies are essentially statistical power 
analyses in which the known falsehood of the null hypoth-
esis is taken as a given.

An additional case where statistics could appropriately 
be applied to simulation outputs is when simulation results 
are being compared to observed empirical data. For exam-
ple, Walker and Cyr (2007) simulated neutral community 
dynamics and used statistics to determine whether those 
dynamics matched observed species abundance distribu-
tions. Similar comparisons are common in time series 
applications where model forecast skill is the statistic of 
interest (Sugihara 1994). Although the details of compar-
ing simulated results to real data is a separate topic that is 
beyond the scope of our commentary, we note that stan-
dard frequentist approaches are also perilous in that con-
text (Waller et al. 2003), and newer methods such as 
Approximate Bayesian Computation are more reliable 
(Hoban et al. 2012).
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response, and stability in predator–prey systems. – Am. Nat. 
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ecosystem indicator performance using food web models.  
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Sugihara, G. 1994. Nonlinear forecasting for the classification 
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143–155.
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Conclusion

Ecologists increasingly appreciate the importance of stochastic 
variability, spatiotemporal heterogeneity, and complex non-
linearities to the dynamics of natural systems (Comins et al. 
1992, Anderson et al. 2008, Berkley et al. 2010). This 
 realization – coupled with the availability of fast computers 
– is motivating increasing reliance upon large simulation 
models. Here we have explained why it is inappropriate to 
rely upon frequentist statistical hypothesis tests designed for 
low-replication empirical experiments when comparing 
highly replicated outputs of simulation models. We have also 
pointed out a few suitable applications of frequentist statis-
tics to simulation model output, and there are surely others. 
Nonetheless, we call upon authors (and reviewers) to avoid 
the temptation to analyze model output with a focus on 
 statistical significance. The key insights to be to gleaned from 
simulation models, as with empirical data, must come from 
interpretation of biological significance.
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