

eComP: an Architecture that Supports P2P Networking Among
Ubiquitous Computing Devices

Achilles Kameas1, Irene Mavrommati1, Dimitris Ringas1, Prashant Wason1, 2
1Computer Technology Institute

Research Unit 3
Ambient Information Systems Group

2Indian Institute of Technology
Guwahati

India
Email: {achilles.kameas, irene.mavrommati, riggas, prhwason}@cti.gr

Abstract
In the new paradigm of computer use, the computer

ceases to exist as an integrated multi-task device, but
disintegrates into a task-oriented collection of
networked devices. These devices do not resemble to
computers yet they have computational abilities. None
of these concepts will be realised without appropriate
support from communication technologies – P2P
networking being the primary candidate. This paper
describes part of the research being conducted in the
Extrovert Gadgets project geared towards applying
P2P computing solutions to the context of networked
everyday objects.

Keywords
Ubiquitous computing, middleware, P2P computing

1 Introduction

In the new paradigm of computer use, the computer
ceases to exist as an integrated multi-task device, but
disintegrates into a task-oriented collection of
networked devices. These devices do not resemble to
computers yet they have computational abilities. Thus,
the computer becomes ubiquitous as computing
services are made available to users throughout their
physical environment [1, 2]. EU recently set up the
Disappearing Computer IST research framework in
order to explore an extension of this concept, where
everyday objects are enhanced with computation and
communication abilities in order to allow people to
form new friendly everyday environments [8].

None of these concepts will be realised without
appropriate support from communication technologies,
which, more than any other contemporary commodity,
symbolize the growing availability and influence of
new research in everyday life. Today people work in

intensively distributed workspaces and need to
communicate via heterogeneous networks and assorted
devices. The information revolution has created a new
paradigm, transforming the way people work and live,
shifting the focus from traditional fixed wired
networking to mobile ubiquitous networks, ad hoc
networks and finally peer-to-peer computing.

Peer-to-peer networking (P2P) unleashes the power
of networks and computing machines through provision
of unimaginable diversity and flexibility via the
distributed computing paradigm. The history of P2P
does not go very far, but still there have already been
many innovative and successful demonstrations of its
power and abilities, from file sharing (Napster,
Gnutella), searching, collaborative projects
(Seti@home) to the recent application in building
intelligent environments. The advent of new
technology has brought a multitude of non-traditional
devices (PDA’s, mobile phones, embedded systems)
within the realm of P2P. The next step in this
evolutionary line seems to be the “peering” of everyday
artifacts from cups to watches to books, pens, desks,
etc. P2P networking emerges as a considerable
alternative for implementing networks of collaborating
ubiquitous devices.

This paper describes part of the research being
conducted in the Extrovert Gadgets (acronym: e-
Gadgets) project, which is geared towards applying
P2P computing to the context of everyday objects. E-
Gadgets is being funded under the IST/FET/
Disappearing Computer initiative and aims to develop
and validate GAS (Gadgetware Architectural Style), an
architectural style for tangible, communicating
artefacts. Also it designs and develops the
infrastructure required to deploy GAS and sample
artefacts enabling the evaluation of concepts.

The GAS compatible infrastructure is supposed to
serve as the required binding middleware between the

ubiquitous computing (possibly smart) devices. As a
consequence, part of the project-related research
focuses on designing P2P networks for everyday
objects, in order to arrive at new concepts, techniques
and a reference implementation. This research attempts
to answer the many confronted issues and to pave the
way for new ideas as already described in [4]. As
shown in [3] just the existence of smart devices does
not suffice to produce meaningful intelligent
environment enhancing the daily experience.

The rest of the paper is organized as follows.
Section 2 introduces the terminology of the e-Gadgets
project, relates it to the abstractions in the P2P domain
and defines the problem in both domains and describes
sample scenarios to help the reader understand the
concepts. Section 3 elaborates on the problem by
presenting the issues that arise when examining its
various aspects. Section 4 presents the proposed P2P
architecture developed in the project. Section 5 presents
several studied technologies and Section 6 concludes
the paper, while illustrating future work.

2 eGadgets, gadgetworlds and p2p
networks

GAS defines the concepts and mechanisms that will
allow people, the users of eGadgets, to define and
create Gadgetworlds out of eGadgets, and use them in a
consistent and intuitive way.

eGadgets (eGts) are everyday tangible objects
enhanced with sensing, acting, processing and
communication abilities (Figure 1). Each function or
service offered by an eGt is manifested as a Plug. Plugs
may be considered an extension of pipes in P2P
terminology. eGts exhibit a dual presence, both in the
real and cyber (digital) worlds. In the real world they
appear as “tangible” objects, occupying physical space
for a certain amount of time. In the cyber world, eGts
appear as “digital objects” or software entities, which
are instantiated and run on a processing unit. eGts are
functionally equivalent to peers in P2P computing.

Computational

Logic

Mechanical
unit

State

eGtID

Communication
unit

Plug

Memory
unit

Sensor Actuator

I/O
unit

Processing
unit

Processing
unit

Collaboration

Logic

Plug Plug

Figure 1: Anatomy of an eGadget (make it larger,

across columns)
A Gadgetworld (GW) is a specific configuration of

associated eGts, which collaborate in order to realize a
collective function. Two eGts can collaborate via their
Plugs; an association between two compatible Plugs is
called a Synapse. In that sense, a GW is a set of
Synapses. A GW is an enhancement over the group
of peers in P2P computing.

2.1 Sample scenarios

In order to demonstrate the concepts underlying the
eGadgets-related research, we attempt to implement
various everyday activities using eGadgets. As an
example, consider a student living in a dormitory,
which contains a study desk, a desk lamp, room lamp,
clock and a collection of books, some of them on the
desk and others on a self. When studying, the student
will use the desk as a convenient study place and will
use the available books, lights and other objects
manually based on his requirements, to make his study
experience comfortable.

Inside a GAS enabled student dormitory, the
collective functionality of these objects (which have to
be eGadgets) can be enhanced to serve the student
needs better. At first, the student has to establish a GW
among the books, desk lamp, room lamp and desk.
When the student opens a book on the desk (wanting to
start studying) and the ambient light is too low, then the
desk lamp lights up. If the book that is being read
moves away from the light source, the light becomes
brighter so that the student can still read. When the
student closes the book, the light goes off after a short
interval. If another book is used for study, the lamp still
lights up. In the case the lamp is broken or off the
power supply, an alternative light source like the room
lamp joins in the GW to provide the required service –
ambient light.

More simple or complex scenarios can be supported
by the concepts underlying eGadgets, all of which
include the intuitive association of eGadgets’ services
in order to perform a collective function. For example,
an alarm clock which gets the daily timetable from a
PDA and rings an hour before the lecture, water boiler
which starts as the student gets out of bed, lights which
adjust to the ambient levels and also to the comfort of
any partner who may be sleeping along, etc.

2.2 Definition of the problem

The central technical problem to be resolved in
order to have functional GWs relates to the
implementation of middleware that will support

eGadget association in an intuitive and robust way. An
important module of this middleware is the one that
supports networking among eGts. Several other issues,
addressed by our research (i.e. people’s usage of eGts
and GWs, eGt design, realization & packaging, the role
of intelligence, etc), are not very relevant to the context
of P2P computing and hence will not be discussed in
this paper.

3 Refinement of the problem

eGadgets are not used in isolation or for a simple
purpose. People associate them into Gadgetworlds, that
is, ad-hoc networked clusters that display a collective
function. Thus, combined in various ways, these
eGadgets collaborate and offer services that are of
higher value than the sum of primitive services offered
by each eGadget individually.

The factors that refine the problem and shape the
solution are both conceptual and technological. The
eGadgets project aims to deliver a solution that is
generic, modular, scalable, portable and extensible.

3.1 Conceptual factors

Modularity is a key requirement for the
infrastructure to be developed, because it enables the
improvement of separate modules of the system over
time, thus exploiting the advantages of component-
based systems. Available technologies and solutions
are expected to change over time; the targeted
middleware has to be able to encompass the more
suitable ones.

Scalability is a priority issue for the eGadgets
project. The main target of GAS is to support people in
making meaningful uses of eGadget-populated
environments, where large number of devices will co-
exist without introducing a GAS-imposed constraint on
the number of eGadgets that form a Gadgetworld. The
functionality of the infrastructure to be developed must
be able to scale smoothly from primitive eGadget
populated environments, with only a few devices, to
very dense ones, where tens of hundreds of devices will
share the same resources. The main bottleneck of the
system is the network through which the eGadgets
communicate. Thus, it is necessary to design a
networking module that will not stress the limits.

The large variety of daily life objects poses the
requirement for compatibility: how will compatibility
be maintained between implementations of the same
object as a different eGadget (for example cups by
different manufacturers or various models of same type
of lamp with progressively enhanced functionality). A

related issue is extensibility, which would ensure that
new devices could be designed offering new
capabilities that older devices could understand and
facilitate.

Finally, a generic solution is sought, which will not
be constrained to a particular platform. The targeted
devices vary vastly in size, computational power and
even expected usage in a variety of contexts. Therefore,
the system that is designed should not pose severe
restrictions, like the assumption of a specific platform.
Various manufacturers should be able to implement
their consumer solutions on a variety of platforms, not
predefined in advance. Thus, eGadgets can be delivered
in quite diverse platforms with quite diverse
capabilities. Furthermore, devices can be perceived as
eGadgets even if they where not designed from the
beginning as such. Typical example could be a mobile
phone that already has the computational power and
ability to communicate via wireless networking, which
can be, or can be transformed into, an eGadget if the
required software is downloaded to it.

3.2 Technological factors

The main concepts behind the e-Gadgets synapsing
concept resemble P2P networking. These have to do
with devices that need to communicate and form ad-
hoc networks possibly using wireless networking.
Moreover, devices need to change locations, while still
being able to participate in GWs. On top of these, GWs
need to operate in a totally decentralized and self-
organizing manner, possibly using a degree of
intelligence to enable the cognitive disappearance of
computing. The P2P architecture also needs to take into
account the hardware constraints of low processing
power, limited bandwidth, low memory resources etc.
Custom features like power awareness, routing, agents,
context awareness [7] etc. also need to be considered to
complete the picture. Thus, there exist a number of
special issues concerning the networking module that
will be selected to implement GAS.

The networking system should guarantee that
roaming of the eGadget device across different
domains or even networks is possible. Given the fact
that the eGadgets devices are indented to be the
everyday devices of people, they might be quite mobile
ones. Thus, for example, an eGadget must be able to
function both in its owner’s home and office
environment without requiring any configuration
procedure. Furthermore, since devices are mobile and
expected to function even on the absence of
infrastructure, resource discovery should be an
automatic procedure.

Connections between eGadgets cannot be
considered persistent in any case. The connected
devices can be on the verge of each other’s range and
thus the connection might be intermittent. Robustness
against such situations is essential.

The networking system that supports the eGadgets
communications is required to be totally decentralized.
No infrastructure can be expected to be present, since
for example the owner of the eGadgets will expect
them to function even when he/she takes them along in
an excursion, and even if one could be present, there is
no guarantee that all eGadgets could reach it at all
times. Thus, it is necessary that the networking module
can be self-organized in order to offer the required
services.

Finally, the networking module of a system that is
designed to be platform independent should allow
flexibility in the platform and programming
environment used.

4 The proposed architecture

The infrastructure developed to implement the GAS-
related concepts is a true P2P platform geared towards
enabling multitude of communication-enabled
eGadgets to indulge in peer-to-peer computing. This
platform contains the following modules (figure 2):
• Gadget Operating System (Gadget OS)
• GAS OS
• Networking module, named eComP: the extrovert

Computing Platform.
This abstraction makes the platform implementing

GAS independent of the internal working of the
artefact, the communication protocol and the service
implementation. In this section, the first two modules
are briefly presented, while the design and
implementation of the networking module is described
in detail.

4.1 The Gadget OS

The Gadget OS is the software layer that offers
abstraction from the custom underlying hardware. The
Gadget OS handles the resources of the device and
hides hardware complexity, by offering access to
hardware via standard drivers. At the lowest level every
eGadget is a computation-enabled device, thus it
requires a Gadget OS to function. Gadget OS makes
this P2P architecture generic and extensible since
provision of new hardware capabilities requires
changes only in the Gadget OS by the manufacturer.
The user or the GW designer has only to care about
advertising and connecting Plugs.

4.2 The GAS OS

The GAS OS is a software layer that enables
eGadgets to be perceived as peers in a P2P system.
eGadgets export the services they offer to other
eGadgets using Plugs. The GAS OS is responsible for
handling the Plugs, advertising them, and thus
advertising the capabilities of eGadgets, and forming
the connections between the Plugs, the Synapses. The
GAS OS layer is there to offer higher-level association
services to the eGadgets and to ensure compatibility
between solutions offered by different manufacturers.
Thus the GAS OS ensures that the eGadgets project
solution is an expandable one, since any type of new
devices can be introduced in the future and they will be
compatible with the existing ones.

Figure 2: eGadgets platform

4.3 eComP, The Networking Module

The extrovert-Computing Platform, eComP,
implements the networking side of the P2P architecture
for GAS. It is a decentralized (requiring no fixed
infrastructure or the support of any other entity except
computing peers) messaging based system abstracting
the underlying network and communication protocol
and providing services through a well-defined
interface. All communication between peers and even
within the platform layers takes place via asynchronous
XML based messages. The basic services to be
required of the module are eGadget and Plug discovery,
advertising of resources, message delivery and routing.
Towards that end, eComP provides functions for the
following:

o Advertise local resources and discover foreign
resources

o Listen and reply to resource discovery
messages

o Listen for messages addressed to some
resource on this eGadget

Gadget OS

In
te

rf

G
A

SO
S

GAS OS

eComP

Interf Gadget OS - eComP

o Deliver messages to appropriate resources as
required by the higher GAS layers via some
routing mechanism.

o Static or dynamic configuration via Policies
In the terminology of eComP a resource is any entity

that is distinguishable by a unique valid eComP ID.
Each eGadget is provided with a universally unique ID
that is hard coded in to the device (like the MAC
addresses). Resources generated by a peer are local
resources for that peer while all other resources are
referred to as foreign with respect to that peer. A
unique ID derived from the eGadget ID identifies local
resources like a plug, gadgetworld or a service.

A user cannot be required to remember this long
alphanumeric obscure ID. Hence the mapping of this
ID to some familiar, personal and rational identifier
(like a textual name for an eGadget) is deemed
necessary but has to be taken care of by the higher
layers in an application (in GAS this proposition is
attended to by the GAS OS). This namespace-based
identification scheme makes sure that all the IDs in the
platform are unique without the need for complex ID
generation algorithms. The eComP ID is central to the
working of this platform. All operations are performed
with IDs as references to real resources and only during
the routing stage the IDs are resolved against the actual
network address of that particular resource. Using an
ID based routing and naming system allows eGadget to
have unprecedented mobility by binding only the ID to
the eComP and dynamically resolving the current
network address when required. Such a system also
solves the configurational problems related to network
migration by the eGadget or interface migration (i.e.
shift from IEEE802.11 to Bluetooth etc.)

Resources are an integral part of GAS. An eGadget
offers some services, which are offered through Plugs
that work mainly as a special inter-gadget
communication channel. Many eGadgets may join to
provide a hybrid service through a new virtual Plug that
can be considered as a new resource of the
gadgetworld. Thus complex gadgetworlds can be built.
eComP has been designed to take care of this resource
discovery by advertising and discovering resources.

Another important addition is the concept of local
Policies. Policies are defined as an eGadget’s pre-
defined settings and responses to certain events like
advertisement caching, use of memory storage, power,
etc. For example a pen/key/wallet eGadget will be
supposed to have a scanty memory resource (due to the
inherent design constraint of size and negligible
requirement) while a book or desk can support
relatively large amount of memory. So for a pen
eGadget it is impossible to hold a large cache of

advertisements and routes other than those very
important or those that it frequently uses. On the other
hand, desk or book may “decide” to hold lots of
information within its cache to facilitate easy & fast
discovery of resources. The use of policies helps to
configure the “attitude” of the platform on a variety of
target gadgets while keeping the code changes to a
minimum. Policies can also be dynamic in nature
where the context determines the settings in force.

A message is basically an XML data object, which
has been optimised to a level more suitable for the case
at hand in P2P (or more specifically eComP) by
choosing an appropriately designed data structure with
negligible parsing overhead. Messages are used for all
kinds of communication in eComP from advertising,
discovery, routing to the actual data transfer. A
message may contain an arbitrary number of sub-
sections that are called Elements. In turn, each Element
is made up of arbitrary number of sub-sections called
Attributes. Messages are transmitted as binary streams
and hence can even be compressed or encrypted easily.
The ability to inter-convert XML to eComP and eComP
to XML messages keeps compatibility with other XML
based standards and protocols.

[full justification in the following paragraphs]
eComP abstracts the various functions into different

protocols. Since eComP was basically geared towards
very small and diverse computing devices, it was
required to keep the base set of required protocols and
their implementation lean and thin. Only a minimal set
of protocols is necessary to be implemented on each
peer. The modular architecture allows newer protocols
to be added by extending the eComP protocols, or by
porting the existing ones. The protocols as well as the
architecture within eComP are event based and
asynchronous which is a dire need of the ad-hoc and
unreliable (in terms of connectivity, QoS, bandwidth,
etc.) platforms for which it is envisioned to be
implemented. eComP ca be enhanced by add on
packages that will add more protocols and functionality
to the base set.

The eComP base set is made up of three abstracted
protocols. Discovery protocol involves sending of
discovery messages and receiving of resource
advertisements for discovery of anything from peers,
pipes, services, groups etc. Advertisement protocol is
used to advertise local and discover foreign resources.
Routing & Route Discovery Protocol is responsible for
finding a physical route to a resource and appending
the route information to the outgoing message. On an
intermediate peer, the routing information is updated
using this protocol.

eComP has a four-layered protocol stack (Figure 3).

The top layer is the Interface Layer that provides a
well-defined interface to the outside world to access the
networking services while abstracting the underlying
details. The second layer is the Resource Management
Layer (implements Discovery/Advertisement Protocol),
which is responsible for discovery and advertising of
resources. The third layer is the Routing Layer
(implements Routing and Route Discovery Protocol),
which is responsible for finding dynamic routes,
resource ID to network address resolution and finally
delivery of the messages through either one-to-one or
ad hoc multi hop delivery. As with any network
architecture the lowest layer is the Physical Layer and
is custom implemented for specific underlying network
architecture. Each layer provides functionality to the
parent layer through well-defined interfaces.

Interface Layer
Resource Management Layer

Routing Layer
Physical Layer

Figure 3: The eComP Protocol Stack

This four-layered protocol stack provides a very

efficient solution in a compact package. Between a
message delivery operation request at the Interface
Layer and the final transmission of message bytes via
the Physical Layer lay a number of sequential events.
Firstly, the destination resource’s advertisement needs
to be discovered. Since resources are expected and
designed to seldom change their ID (if at all), any
cached advertisements at the resource layer are usually
fresh. If no such advertisement is found a discovery
message is generated to initiate resource discovery.
Once successfully discovered the routing layer is
responsible for routing the message to destination by
dynamic routing.

Route discovery is a piggyback mechanism. A
message traversing between any two eComP modules
records the eComP ID of any intermediate eGadget it
visits along with the source and destination ID. So by
the time a resource discovery response i.e. a resource
advertisement arrives at the resource layer, the routing
layer already has a latest route to the destination. To
deliver the message first a direct end-to-end connection
is tried. This step is important since it is not required
that the resource advertisement is returned by the
resource itself. Hence a shorter or direct route might be
available. The eGadgets (? What eGadgets) may also
provide a discovery service for known resources by
acting as information storehouse. On failure of an end-
to-end connection attempt the message is transmitted to

the destination using the multi hop ad hoc route just
discovered. Since this route is made up of IDs and not
network addresses that are assumed to be dynamic, it is
more stable even if some intermediate node fails, drops
out or changes networks or interfaces. To deliver the
message to the next hop the routing layer needs to
resolve the current network address of the next eGadget
in the list. Since this eGadget is most probably in the
vicinity and maybe even in the same gadgetworld, this
information is usually present in the cache. Hence each
eComP needs to resolve only the next eGadget to send
the message to. Since the ID of each resource is fixed
and the network locations are resolved only at the
routing stage, advertisements never get stale only the
routes do.

 In case of some runtime failure like eGadgets
moving out of range the route can easily be updated
using local cache contents of that eGadget where the
failure occurs or again a route discovery takes place.
While making this design, the only assumption we have
made is that each eGadget will have knowledge of at
least its neighbours to which it can connect directly.
This piggyback routing scheme allows for low
overhead route discovery since intermediate eGadgets
may also refresh their routing cache while transmitting
a message, based on their Policy settings. We believe
the system is pretty robust to network failures and is
more suited to the project than any other architecture
researched. The routing scheme is not completely flat
since eGadgets cache routes and hence each
gadgetworld turn into a local databanks of routes, and
resource information in the form of advertisements.
Enhancements to the current system in form of some
context aware mechanism, see [7], or other intelligent
ideas like mobile agents will be a target of future
research.

A layered model helps in making this system
portable and can easily be implemented on various
wireless network architectures like Bluetooth, Infrared,
and IEEE 802.11 etc. We have presently implemented
and tested the current version using IEEE 802.11
standard.

4.4 System implementation

The implementation of our system has been done
using the Java Programming Language. The
implementation is compatible with the Java 2 Micro
Edition, CDC Profile, thus can execute on quite
resource constraint devices.

The base class of the eComP system is the Peer. It
implements all the functionality that is required in the
eGadget environment. The Peer is the representative of

the eGadget in the P2P world.
The Message class is the minimum message

exchanged in the eComP system. It is made up of a
collection of Elements. Elements have attributes and
data. This sets up a XML message without the need for
parser, respecting the limited computing power of the
devices in question. There are methods like
getElementByName() and
getAttributeByName() for convenient access to the
data. All data contained in the tags is binary. The
Element class corresponds to elements and is made up
of an array of elements itself, which are called
attributes.

The storage service required by the eComP platform
has been abstracted, since various gadgets will have
varying storage requirements. It provides the
functionality required in order to save, format and
retrieve data from the storage module in a manner that
is suitable to the file system of the constraint devices,
the eGadgets.

Different policies can be implemented on the
various devices according to their limitations. Thus a
device with low memory may have a policy to reject all
unnecessary caching and a device with low processing
power may reject all advertisements to other devices.

4.5 Scenario implementation

Coming back to the scenario describe earlier, it is
now possible to describe how this can be implemented
in a GAS enabled environment. Since the objects that
appear in the example are all GAS enabled, they offer
some services through Plugs. The books have light
sensitive surfaces that enable them to return the level of
luminosity on their surface. Also, they have sensors
that can detect whether they are open or closed. These
two services are exported via two Plugs. The student
desk has a Plug that can be connected to a number of
books and get event notification about the state of the
books. The desk lamp has a Plug that accepts data that
can control the light it emits. The desk Plug is
connected to this in order to inform the lamp about the

state of the books on it. Having the Synapses in place,
the user inhabits an environment that offers advanced
services to him/her, i.e. studying is concentrated on the
mental activity without the overhead of setting the
required conditions.

The implementation of the above scenario utilizing
the eComP features will be like this: Each object, like
the desk, the books, etc, will be perceived as an
eGadget in the student dormitory and each service
offered by an object will be exported though a Plug.
Each entity, eGadgets and Plugs, will have a unique
network ID and communication between them will be
based on the eComP. The eComP platform will provide
the necessary extensibility and scalability, since it
offers the ability to have a decentralized, ad-hoc
network of devices that can be added/removed, and yet
can still be discovered and utilized.

Also, forming the above Gadgetworld is quite
simple and fast. The produced outcome, on the other
hand, is advanced comfort for the user’s environment.
The intelligent aspect of the environment will be
perceived by the user both when the Gadgetworld is
serving him/her and when for some reason the
Gadgetworld appears to be out of order, for example if
the desk lamp is not able to provide enough light.
While the service is running smoothly, the user will
notice the improved conditions under which he/she
works. When the service offered to the user is on the
verge of failing due to some unexpected condition,
GAS OS will locate a device that can offer a
compatible service. Then, the room lamp will be the
device that will adjust the ambient light level to
become adequate.

5 Conventional systems studied

The solution that the eGadgets project is offering is
designed to be modular. Thus, for the networking
module a number of existing solutions might fit in and
hence where studied. A short analysis for each of them,
along with a suitability statement follows.

5.1 Java RMI

Java Remote Method Invocation, [11], allows the
creation of distributed objects using Java. [no new
paragraph here]Using RMI, eGadgets could export
their services as remotely accessible interfaces that
could be accessed by other eGadgets. RMI, however, is
centered on Java. A non-Java implementation is not
possible. Thus, portability and independence of
platform are sacrificed.

5.2 Jini

A Jini system [10] is a distributed system based on
the idea of federating groups of users and the resources
required by those users. [no new paragraph here]Jini-
based eGadgets can be perceived as resources that are
dynamically added and removed to the system without
any required administration and in the same time it is
possible to be located by both people and software. The
Jini system, though, is Java technology-centered -
assumes that Java is the implementation language for
all its components and the communication can only be
Java RMI. Also, it utilizes of a Lookup Registry in
order to enable discovery of the services, which sets the
necessity of having a central server somewhere in the
environment. Therefore, the Jini approach proves to be
unsuitable for the eGadgets environment, since
portability to any platform and independence of
programming environment is sacrificed and the
resulting system is no longer a decentralized one.

5.3 Jxta

Jxta is a set of open, generalized P2P protocols,
which allow any connected device on the network to
communicate and collaborate as a peer, [12]. Project
Jxta comes closest to be selected as the networking
module for the eGadget framework. Each eGadget can
function as a Jxta peer providing services through its
Plugs. The Gadgetworlds can be thought of as an
analogy to groups in the JXTA terminology.

But the currently available version of Jxta has been
developed with the Java Standard edition in mind.
Though ports to other Java editions and
implementations on other platforms are available, most
of them lose some functionality. Jxme, which is the
port of Jxta to Java Micro Edition, is a bare-naked
implementation and above that requires the services of
a Jxta relay to function as a P2P peer.

5.4 Justification

The amount of stability and dependability required
from the P2P architecture is beyond any of the P2P
implementations that were studied (it is acceptable to
have your PC hang once in a while but having your
everyday objects misbehaving due to an unavoidable
crash is certainly out of the question).

Also since there are numerous platforms and
hardware involved it isn’t very practical to rely on
porting a non-custom architecture. Some of the
functionality like the high level of security, logging,
caching is not very necessary at the present moment,

where it is more important to have a generic evaluation
of the system. So with the before–mentioned design
criteria in the mind we decided to have the best of
every world by implementing our own architecture
while adopting some of the excellent work done within
the Jxta and other project.

6 Conclusions and Future work

The eGadget project is also looking into the role of
intelligent agents, which give the eGadgets the
smartness to form gadgetworlds independent of human
control. For appreciating this idea, consider the
scenario again. For some reason let the desk lamp go
faulty resulting in no light for the student to study. The
desk eGadget need to locate some other eGadget,
which provides the same kind of service that is light
service. Hence somehow eGadgets need to understand
what a service is in terms of its utility and experience
for a human. This brings Artificial Intelligence or more
specifically machine understanding into the domain of
the project. In this new and smart GAS, Agents will
function as the brain of the eGadget. The networking
module can utilize the services of mobile agents for the
route discovery and resource location making it too
inherently intelligent. How and in what ways this can
be of any benefit to the GAS is a matter of future
research.

7 References

1. Weiser, Mark. Some Computer Science Issues in
Ubiquitous Computing. ACM, 36(7), July 1993, pp
75-84

2. Abowd, Grocery. Software Engineering Issues for
Ubiquitous Computing. ICSE99 pp 75-84

3. Callaghan, Colley, Clarke, Hagras. The Cognitive
Disappearance of the Computer: Intelligence
Artefacts and Embedded Agents. Workshop on
“Cognitive vs. Physical Disappearance of
Computers”, i3 Spring Days, Porto, 23-25 April 2001

4. Kameas, Mavrommati. Interacting with ubiquitous
computer applications: issues and methodology. 1st
Panhellinic HCI Conference, Patras, December 7-9,
2001

5. Shafer. Ten Dimensions of Ubiquitous Computing.
Keynote presentation at Conference on Managing
Interactions in Smart Environments, December 1999.

6. Kortuem, Schneider, Preuitt, Thomson, Fickas,
Segall. When Peer-to-Peer comes Face-to-Face:
Collaborative Peer-to-Peer Computing in Mobile Ad-
hoc Networks. 2001 International Conference on

Peer-to-Peer Computing (P2P2001), Sweden, 27-29
August 2001

7. Gold, Fokus, Tidhar. Towards a Content-based
Aggregation Network. 2001 International Conference
on Peer-to-Peer Computing (P2P2001), Sweden, 27-
29 August 2001

8. The Disappearing Computer initiative:
http://www.disappearing-computer.net/

9. e-Gadgets website
http://www.extrovert-gadgets.net

10. "Jini Architectural Overview", Technical White
Paper, Sun Microsystems.

http://wwws.sun.com/software/jini/
11. "Java remote method invocation - distributed

computing for java", White Paper, Sun Microsystems
http://java.sun.com/products/jdk/rmi/index.html

12. Project JXTA web site
http://www.jxta.org/

http://www.disappearing-computer.net/
http://www.extrovert-gadgets.net/
http://wwws.sun.com/software/jini/
http://java.sun.com/products/jdk/rmi/index.html
http://www.jxta.org/

	Keywords
	Introduction
	eGadgets, gadgetworlds and p2p networks
	Refinement of the problem
	The proposed architecture
	Conventional systems studied
	Also since there are numerous platforms and hardw

	Conclusions and Future work
	References

