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Abstract: The use of condition monitoring systems on wind turbines has increased dramatically in
recent times. However, their use is mostly restricted to vibration based monitoring systems for the
gearbox, generator and drive train. A survey of commercially available condition monitoring
systems and their associated costs has been undertaken and is presented for the blades, drive train,
tower and foundation.

This paper considers what value can be obtained from integrating these additional systems into the
maintenance plan. This is achieved by running simulations on an operations and maintenance model
for a wind farm over a 20 year life cycle. The model uses Hidden Markov Models to represent both
the actual system state and the observed condition monitoring state. The CM systems are modelled
to include reduced failure types, false alarms, detection rates and 6 month failure warnings.

The costs for system failures are derived, as are possible reductions in costs due to early detection.
The drive train has additional sensors to increase the overall CM system detection rate. The
detection capabilities of the CM systems installed on blades, tower and foundation is investigated
and the effects on operational costs are examined. Likewise, the number of failures detected 6
months in advance by the CM systems is modified and the costs reported.

Nomenclature

AE Acoustic emission

C Cost

CAPEX Capital expenditure

CBM Condition based maintenance
CM Condition monitoring

CMS Condition monitoring system
DT Downtime

f Number of failures

E Emission state matrix

HMM Hidden Markov model

LP Lost production

NPV Net present value

O&M Operations and maintenance
OPEX Operational expenditure

P State transition matrix

PM Preventative maintenance

r Discount rate

R Effectiveness of condition monitoring systems
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ROI Return on investment

SCADA Supervisory control and data acquisition
SHM Structural health monitoring

U Probability of failure

\Y Reliability of condition monitoring systems
t Time period under investigation

T Fixed period of time

A Failure rate

I Repair rate

Subscript

E Energy production

f Component failure

fa False alarm

I Installation

L Labour price

\Y Vessel

RP Replacement parts

Superscript

+ Condition monitoring equipment is used
k Number of components

y Number of years

1. Introduction
Wind energy has enjoyed a large growth in recent years as countries around the world seek to exploit

renewable resources. Offshore wind projects have been part of this expansion but access related issues
such as remote locations, specialist access equipment and extreme weather has led to operation and
maintenance (O&M) costs which are up to five times that of onshore [1]. O&M costs are a sizeable part of
the total costs associated with an offshore wind project - up to 30% of the energy generation cost [2].

As such, there have been many investigations to discover ways of reducing O&M costs. Increased
utilisation of SCADA data and condition monitoring (CM) systems have allowed for a shift in
maintenance pattern.

Maintenance plans can be divided generally into preventative and corrective maintenance.
Corrective maintenance occurs after a failure has occurred. Preventative maintenance (PM) is used to
minimise downtime by servicing or component replacement. This can be in the form of scheduled
maintenance, where servicing occurs based on calendar intervals, or condition based maintenance (CBM),
where maintenance actions are triggered by the actual condition of a component.

CBM theoretically allows for a reduction in both downtime and maintenance operations. The
majority of CM systems are vibration based and focused on the drive train of wind turbines - the generator,



gearbox and associated bearings - as these components historically have large amounts of downtime per
failure [3] and can be monitored effectively [4], [5].

Several studies examine the possible benefit of CM drive train systems and the majority of these
show a return on investment (ROI) of the monitoring equipment [6]-[8]. These studies utilise simplified
CM systems which show direct correlation between the system and output. The system will always inform
the user ahead of time of any impending failure mode.

Different types of imperfections have been introduced to CM systems and their effects on O&M
costs have been examined [2], [9]-[13]. Typically, the time until the CM system ROI becomes positive
increases in these studies and in some cases the use of CM systems isn’t economically valid. These studies
almost all exclusively use only a vibration based condition monitoring system.

Garcia Marquez et al. [14] shows some CM systems analysing parts of the wind turbine other than
the drive train are available commercially and some further experimental CM techniques show promise.
These include systems for monitoring foundations, offshore foundation areas (to examine scour) and
blades.

There has been limited work examining the economic benefit of Structural Health Monitoring (SHM)
systems. A work by Thons, Faber and Riicker [15] dedicated to quantifying the value of SHM for offshore
wind turbine structures shows expected benefits which could be associated to a positive ROI for the
majority of scenarios examined. Preliminary work has been completed investigating the use of multiple
monitoring systems. The work of Thons and McMillan [16] examines the use of CM systems and an SHM
system for offshore foundations. May and McMillan [17] take a broad approach to the use of CM systems
for all subsystems.

This paper will look at extending the studies of economic benefit currently conducted for vibration
drivetrain CM studies to other types and subsystems. These alternative commercially available CM
systems are introduced in Section 2 and in Section 4 a cost study of the capital expenditure (CAPEX) and
operational expenditure (OPEX) of these systems is shown. The remainder of the Section 4 introduces an
O&M cost model and the differences between how PM and CBM O&M costs are realised. The difference
between strategies includes possible reductions in component costs, downtime and access costs. Section 3
details how subsystems and CM systems are modelled. A wide range of factors are included in the CM
modelling: overall detection rate of failures; increase in failure detection rate with multiple CM systems;
fault class reduction due to advanced detection; advanced failure detection of 6 months or more; and false

alarms.



2. Condition Monitoring Systems
The condition monitoring systems described below have been selected due to the possibility of them

delivering real-time information to a turbine operator and being included in a regular SCADA or existing
CM system data stream. The majority of these technologies have been chosen from the studies of CM
systems by Ciang, Lee and Bang [18] and Crabtree [19].

2.1 Oil Analysis
Oil performs essential functions for gearbox, generator and bearings and is monitored with several

SCADA channels dealing with temperature, pressure and oil filter status [20]. By further analysing the
content, quality and the debris suspended within lubricating oil much can be learned about a component's
condition. There have been many approaches suggested for analysing oil. However, the majority of these
methods are offline and as such cannot be conducted in real time [21], [22].

Dielectric current sensors can monitor a change in the electromagnetic properties of oil and can
detect both types (ferrous and non-ferrous) and an estimation of the amount of debris. Another technique
uses magnets to attract ferrous particles onto a screen. Once the screen is full it is then flushed. The time
between flushes are recorded to give an indication of oil debris content.

2.2 Vibration
Vibration based CM systems have been widely adopted for monitoring wind turbine drive trains.

Accelerometers are used to measure the forces being applied to the component and these are trended over
time with frequency. Techniques on how to analyse this vibration data for wind turbines are given by
Hameed et al. [23].

However, vibration systems have also been utilised for other applications including blade and tower
monitoring. The monitoring techniques and methods are in some aspects similar to drive train CM systems
[24] but the data are sampled at lower frequencies. The vibration data can be utilized to calculate damage
indicators which can be based on the natural frequencies and mode shapes of the structure and foundation.
Such damage indicators facilitate the detection and the localization of structural damages.

2.3 Optical Fibre
Optical fibre systems have been demonstrated on wind turbine blades to measure strain using two

distinct methods. In one method, the attenuation of light as it travels through the fibre is measured. It is
from measuring this deviation that strain can be determined. The second method uses fibre Bragg gratings.
A Bragg grating is an etching in an optical fibre that reflects a certain wavelength of light. If the grating is
subject to strain then the wavelength returned to the measuring point alters. As multiple gratings can be

used on the same fibre and are highly sensitive, fibre Bragg grating allow for blade impacts to be detected.



Some optical systems are available for retrofitting onto existing turbines with minimal modification
to the turbine. However, some systems require that the fibres are impregnated into the blades during the
curing phase. This obviously requires special blades be manufactured. One study suggests that having
fibres impregnated may actually be advantageous to ensure that the curing of blades is completed properly
[25]. There is the possibility to realise time and energy savings in the manufacturing process using this
technique.

2.4 Acoustic Emission
Acoustic emission (AE) involves the use of piezoelectric sensors to record the release of stored

elastic energy during cracking and deformation. The energy released is in the form of high energy waves
which are outside the audible range. The signals can be categorised by their amplitude into the type of
damage occurring and when several sensors are used a location can be determined. AE events have been

shown to ‘cluster’ around the ultimate failure point.

3. Operation Modelling

3.1 Markov Processes
The wind is a stochastic process and complex loadings lead to complex component failure patterns.

Various methodologies have been implemented to examine the failure process and the effectiveness of
various O&M plans. Gamma processes [26], P-F Curves [12] and Markov chains have been widely used to
represent wind turbine failure patterns. Simulations are used instead of analytical expressions to account
for these wind complexities.

Failure rates, 4, are commonly used to express the number of failures, f, expected to occur over a
fixed time period, T, usually a year. These can be converted into a percentage chance of failure, U, for any
different given period of time, t. These are shown in Equations (1) and (2). Failure rates can be used to
populate a state transition matrix, P, used in Markov processes as in Equation (3). In this equation, the

ability of the system to transition from a failed state to a repaired one is given as a percentage, \.

1= (1)

Ut)=1— e M (2)
1-U U

P:[ uoo1—up ®)
Vo oo1-vV

E=[1—R R ] “)

3.2 Condition Monitoring System



Hidden Markov Models (HMM) show an observed state instead of the actual state of the system.
The observable state can be different to the actual condition of the system. This is shown graphically in
Figure 1. In HMM it is the emissions matrix, E, that contains the probabilities of what is observed by the
operator and is shown in Equation (4). The emissions matrix is used to define how accurately the condition
monitoring system reports failures and how frequently it returns false results.

Condition monitoring effectiveness is a concept used in several works [8], [9], [17]. The
effectiveness of the condition monitoring system to detect a failure before it occurs is stored as a
percentage, R, in the emissions matrix. As the value of R increases then there is an increased likelihood
that the system will detect a failure before a turbine shutdown occurs. The effectiveness is referred to in
this paper as CM detection rate. Weiss [27] gives detection rates for the GE Bentley Nevada ADAPT wind
system and these are shown in Table 1.

In this paper, multiple CM systems that observe different properties are added to the same sub-
system. For example, Nie [28] states that multiple oil sensors would provide greater accuracy of condition
for components. These have been modelled as parallel systems as shown in Tavner [29].

The reliability of the CM system is defined as V. This is the ability of the CM system to correctly
show that the system is operating while it is indeed operating correctly. The lower the percentage, the
greater chance of the system showing an erroneous failed state. The effects of CM system reliability have
been investigated by the authors in a previous study [17] and for this paper the reliability has been fixed at
99%. Takoutsing et al. [30] state that false warnings and alarms occur frequently and at 99% this equates
to 4 false alarms per turbine per year.

These two properties, V and R, allow for false positives, false negatives and CM system failures to

be accounted for.

Table 1 CM system detection rates

Subassembly Detection Rate
Gearbox 50%
Generator 80%
Drive Train (incl. Main Bearing and Coupling) 40%

3.3 Failure Analysis
A model has been constructed that represents turbines as structures with 13 sub-assemblies. This

follows the taxonomy as originally used in WMEP programme in Germany within the “250 MW Wind”



project covered in the annual Wind Energy Reports from ISET [31] and explored for possible offshore
developments by Faulstich, Hahn and Tavner [32]. A notable exception to this taxonomy is the addition of
a subsystem representing the offshore foundation. The layout of the O&M model and flow of data is
shown in Figure 2. This includes the turbine taxonomy and the required information for each subsystem.
For clarity, the “Support and Housing” subsystem has been renamed “Tower and Access”.

A wind farm is constructed from multiple independent turbine structures. Failure rates are taken
from operation reports from 2007-2009 for Egmond aan Zee offshore wind farm [33]. The farm consists of
36 Vestas V90 3 MW turbines which have the number of turbine stops (regardless of whether on site
intervention was required or not) and downtime per subsystem reported. The farm is located between 10
and 18 km from the coast of the Netherlands in the North Sea. These failure rates are modified as by
Dinwoodie, Quail and McMillan [34] which uses the number of recorded personnel visits to the wind farm
to modify the failure rate as a proportion of total stops. The failure rate and downtime are divided into
'‘Major' and 'Minor’ failures for each subsystem are based on the onshore ratio taken again from Faulstich,
Hahn and Tavner [32]. The work describes that the ‘Minor’ class of failures account for approximately 75%
of all failures but only 5% of the downtime. Conversely, the ‘“Major’ class is 25% of total failures and 95%
of the downtime. ‘Minor’ faults are described as those taking less than 24 hours to clear. A scheduled
maintenance service occurs at a rate of 1 visit per turbine per year.

During 2008 and 2009 all the gearboxes at Egmond aan Zee were replaced due to technical issues
[35] and to improve availability. This will have altered the failure rates and downtime of the gearbox to
make it unrepresentative of the current reliability. There are not many other sources available of actual
offshore operation data to directly compare this to. Besnard [36] shows a breakdown of the total downtime
for the Horns Rev for 2009-2010 which excludes its own serial failures and has approximately 5 failures
per year compared to 6 for Egmond aan Zee. Horns Rev consists of 80 Vestas V80 2 MW turbines located
approximately 18 km off the coast of Denmark. The two wind farms are compared in Table 2 excluding
ambient fault downtime. For use in the model the total hours of downtime assigned for gearboxes is

reduced by 50% so that the estimated downtime becomes 38.59% of total downtime.



Table 2 Comparison of Egmond aan Zee and Horns Rev Wind Farm

Estimated downtime per subsystem
Subassembly

Egmond aan Zee Horns Rev
Blade system 1.72% 8.00%
Brake system 0.17% 1.00%
Control system 9.56% 8.00%
Converter 3.67% 9.00%
Electrical 2.05% 12.00%
Gearbox 55.69% 33.00%
Generator 15.12% 9.00%
Pitch system 4.96% 6.00%
Scheduled service 5.34% 11.00%
Yaw system 0.88% 2.00%
Structure 0.44% 0.00%
Grid 0.40% 1.00%

Smith establishes that the majority of components experience periods of infant mortality, 72%, and
only a small amount show wear out at the end of their life [37]. The failure rates are used for the first 3
years before being reduced for a further 2 years using a Weibull function with a shape parameter of 0.8
[38].

3.4 Modelling Operations Strategies
The model is solved by simulation. The model generates an operational and observed state for every

turbine subsystem based on comparing a randomly generated uniformly distributed number to the
percentages contained in the P and E matrices. This is repeated for each turbine in the farm and for each
operational year on a monthly timescale. Each failure event type has associated repair, downtime and fault
class specifying the required vessels.

The PM strategy cost is based entirely on the modified data from Egmond aan Zee. It assumes an
annual service per turbine, that all failures are classified as CM system unobserved failures, and there are
no false alarms. The wind farm does have a SCADA system but these and weather based observations
aren’t included in the cost model as these variables are already a part of the annual downtime values in the
operation reports.

For the CBM strategy, an algorithm compares the operational and observed states and notes any
differences. These are then classified as CM observed failure events, CM unobserved failure events and
false alarms. CM observed failures in certain instances have reduced failure classifications and costs. An
annual service per turbine is also included.

O&M costs for both a PM and CBM strategies are calculated using this information and the cost

model outlined below. In the model, each turbine is simulated independently at least for 4000 Markov



years where convergence is observed. The resulting total failures are then averaged. This gives the costs
for that operational year.

4. Cost Modelling
The annual operating and maintenance costs are calculated from adding the costs incurred from 4

items: replacing parts; the lost energy production; the logistics costs including crew and vessel hire; and
the installation and use of CM systems.

The costs for each year are levelised to represent the Net Present Value (NPV) of the lifetime
operating costs. NPV is shown in Equation (6) where a discount rate, r, of 8.2% is used [39] and cost of
year i is defined by Cogm. Additionally, all costs were adjusted for inflation to 2015 — where other years

are quoted, a value of 2.2% has been used.

NPV = Zy Coam (@ (6)

=1 (147)}

4.1 Replacing Components
A failure in a subsystem will incur a cost for part replacement. The cost depends on the severity of

the failure and damage caused by the failure, C;. The cost of replacement parts, Cgp, is summed for each
subsystem, k, as seen in Equation (7).

If the failure is detected in advance by the CM system then in some cases the replacement costs, Cf+,

can be lowered if the damage isn't as severe. This alternate cost, C3p, is shown in Equation (8).

The costs for turbine replacement parts are compiled from the work of Martin-Tretton et al. [40].
This gave average 2010 list prices for 2.1 to 3 MW onshore turbines. The additional cost of marinisation
for offshore use was found using a factor of 1.27 [34]. The cost of the repairs for the tower and foundation
are taken from the work of Thons and McMillan [41].

A thorough FMEA of a wind turbine [42] was used to determine which corresponding components
from the parts list were replaced in relevant major and minor subsystem failures both with and without
CM detection. Due to the age of the previous study it was checked against a less complete but more
modern FMEA for a Repower 5SMW turbine [43]. There are few sources for the costs of components so
major failures were compared to the new price of subsystems from estimates by the Crown Estate [44] and
Williams, Crabtree and Hogg [11].

Crp = Zi‘(=1 Cf(i) (7)

Cio = 2l (G (D) + G () (8)



4.2 Lost Production
A turbine cannot produce energy while it is not operational or offline for maintenance. The longer

the downtime (DT) associated with a failure then the greater the lost production (LP). In the cost benefit
analysis the LP is used to represent income that would have been earned if the turbine was operating.

The cost of lost production, Cp, is the sum of the DT from all subsystem failures, T;, multiplied by
the energy production cost, Cg, shown in Equation (9). This is the cost of energy in the market (including
obligation tariffs prices per unit) multiplied by the capacity factor.

If a CM system can detect a failure in advance then the DT will be reduced as logistic operations can
be started in advance of the failure causing a shutdown. This reduced downtime value is indicated by Tf+.
As mentioned previously, there is the possibility of receiving false alarms. A critical subsystem alarm will
result in a turbine shut down until a trained technician can inspect the component or further analysis can be
performed on the data. The time taken to resolve false alarms, Ty, is added to the DT in Equation (10)
along with the alternative cost of lost production, C;», when using a CM system. No average downtime
associated with false alarms was available so therefore 24 hours is used to represent the DT in the model

as an approximation.
Cp =Cg 2?:1 Tf(i) 9)
Clo = Ce 2 (Tr (D + T Q) + Tra(D) (10)

4.3 Operations Costs
Technicians and appropriate vessels need to be used to complete resets and to replace parts. Each

failure mode is assigned a failure category. This category relates to the severity of the failure. A high
category failure indicates that large parts will need to be replaced requiring both a crew access vessel and a
crane vessel. It also requires a large logistics time and a crew in excess of 7. Conversely, low category
failures can be organised more quickly as they utilise only a crew access vessel and a small crew. If the
CM equipment allows for a significant reduction in replacement components then the fault class may also
be reduced.

The installation costs, C;, are given in Equation (11). The costs of vessel hire, Cy, are based on
Bjerkseter and Agotnes [39] and the labour costs per hour, per crew member, C., are £90 as used by
Williams, Crabtree and Hogg [11]. The total number of hours required to complete repairs are and logistic
hours required to mobilise the vessel are estimated from a commercial report. Vessels are hired by the day
but the crew are hired by the hour including travel time to the farm based on the distance from shore and
the speed of the vessel. The annual service scheduled serviced that is mentioned in Section 3.4 is included
in this variable for both the PM and CBM cost models.

10



Procuring large vessels significantly in advance or for long periods of time can reduce effective day
rate costs [45]. A percentage of the failures detected by the CM system are assigned to have been detected
over 6 months in advance for applicable subsystems where it is probable that this may occur and that
would require crane or large service vessels. These use a lower vessel cost, C;f, to give an alternative
operations costs, C;*, shown in Equation (12). The lower vessel cost is taken from the spread of values

shown in Bjerkseter and Agotnes [39].
=3 (G (@) + ) (11)
C1+ = ?:1(Cv(i) + CI-/'- () + CL(i)) (12)

4.4 Monitoring Systems
Condition monitoring systems incur costs for the procurement and installation of the CM system.

Some have further annual costs associated with maintenance, analysis and software. For this paper, generic
costs have been produced from an array of vendors to produce the values shown in Table 3. Several of
these costs have been given on the condition of anonymity from the vendor. The capital cost of the system
is added to the O&M costs for the first operational year. The annual costs are added to the costs for each

year of operation.

Table 3 Anonymised generic costs of commercially available CM and SHM systems

Subsystem Drive Train Blades Tower Foundation
CM Type Vibration Oil Acoustic Vibration Acoustic Optical Vibration Vibration
Capital Costs [£] 6,550 9,200 8150 10,900 38,400 12,300 4,350 14,050
Annual Costs [£] 570 0 0 770 0 0 80 4,070

5. Cost Benefit Analysis
The simulations in this paper use a wind farm consisting of 20 turbines of 3 MW size for an

operational life of 20 years. The capacity factor used in the model is 33.3% is based on the value from
Egmond aan Zee [33] as is the average distance to shore — 13 km.

The costs for turbine part replacement, installation costs, lost production (including false alarms) and
costs for monitoring systems are summed. A base case demonstrating only preventative maintenance is

used to compare the results of a CBM plan. Unless otherwise stated, every CM system has a detection rate
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of 80%, excluding the system for the vibration drive train which is as noted in Table 1. Likewise, the
percentage of faults that are detected more than 6 months in advance to access lower vessel costs is set at
10% of all detected faults unless otherwise noted.

5.1 Drive Train CM Systems
As discussed earlier, most studies find that vibration based CM systems for the drive train offer

return on investment (ROI). A ‘Drive Train CMS’ is defined as one that detects failures on the gearbox,
generator, the main bearing and output shafts. Other CM methods that can be used as a Drive Train CMS
include oil sensors and AE systems. The effects of these systems on the operating costs are examined in

Table 4.
Table 4 Drive train CM systems

Drive Train CMS Lifetime Saving Over PM
Vibration £12,000,000
Vibration & Oil Sensor £19,100,000
Vibration & AE £18,900,000
Vibration, Oil & AE £20,300,000

An example year of the first 3 years of O&M costs for the CBM strategy for the entire farm is
£6,600,000, consisting of £1.97m in spare parts (30%), £2.47m in lost production (37%) and £2.19m for
logistics costs (33%) including CM annual operating fees. This compares to £8,300,000 for the PM
strategy for the same year where all components of the model show higher costs.

In the model, a vibration CM system offers potential lifetime savings of approximately £6m over a
PM strategy. If either an oil sensor system or an AE system is used in addition to the vibration CM the
lifetime savings increase. This indicates that the additional O&M cost reductions found from adding CM
systems are larger than the costs of the CM systems themselves.

The probability of detection increases from 50% for the gearbox system with only a vibration CM
system to 98% for one with all three drive train systems. This results in an increase of capital costs for a 20
turbine wind farm from £131,000 to £478,000. However, the improved detection rates allow for an
approximate reduction in replacement part costs of 17% per annum. While overall LP remained similar,
the smaller repairs also allowed for significantly smaller logistics costs.

5.2 Structural Monitoring
Blade, tower and foundation SHM systems were added to a standard vibration based drive train CM

system. The effects of these systems on operating costs are shown in Table 5.
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Table 5 SHM Systems on Blades and Tower

SHM System & Drive Train Vib CM Lifetime Saving Over PM
Blades (Optical) £13,000,000
Blades (Vib) £12,900,000
Blades (AE) £12,600,000
Tower £11,800,000
Tower & Foundation £11,700,000
Tower, Foundation & Blades (Vib) £12,500,000
Foundation £11,800,000

Blade SHM systems offer further savings over a Drive Train CMS alone. The largest saving over a
PM strategy was when using an optical blade SHM system. This gave savings of £13,000,000 which is an
increase of 7% over the Drive Train CMS. If a SHM system to monitor the tower is added this increases
lifetime costs over solely using a Drive Train CM by 1.6%. In a scenario where a tower, foundation, blade
and Drive Train CM systems are utilised an increase of 4% in savings is observed compared to PM.

The ability of the CM and SHM systems to detect failures has a direct influence on the ROI of the
monitoring system. This is investigated in Figure 3. A vibration based monitoring system is placed on the
drive train, blades, tower and foundation. The detection rates for all the SHM systems excluding the Drive
Train CM is set at 60% and increased in increments to 99% and the resulting levelised lifetime savings
recorded.

At 60% the lifetime O&M saving was £12,300,000. This increased to £12,800,000, an increase of
4%, when the fault detection rate was set at 99% and followed a linear pattern for detection rates in
between. The higher quality a CM or SHM system is, that is one with a high detection rate, the more likely
it is to reduce the O&M costs for a wind farm.

5.3 Advanced Failure Warning
All of the previous simulations assume that 10% of the total detected faults by CM systems were

detected with greater than 6 months warning. This assumption is examined in Figure 4. The number of

faults detected in advance is increased from 10% to 50%. This gives an increase in savings of £250,000
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from £11.91m to £12.16m which is an increase of 2% for a scenario where only a Drive Train CMS is
used.

5.4 Additional Analysis
A report from GL Garrad Hassan, The Crown Estate and Scottish Enterprise gives more recent

offshore availability figures as between 90 and 95% [46]. This is much higher than the average figures
reported from Egmond aan Zee of 80% for the 3 years up to 2009. The simulation with the modified
Egmond aan Zee data gives a figure of 87%. This suggests that the failure rates used are too high for wider
conclusions to be made.

If only the reduced failure rates from the Weibell function are used with infant mortality rates
dropping for the first 3 years the availability increases to 91% with a PM strategy and 92% with a CBM
strategy. This increases to approximately 92% and 93% respectively with a reduced failure rate profile
with a further two years of learning. In this last scenario, savings where a vibration drive train CM system
is used becomes £8.6 million. As the costs for both the PM and CBM strategies has changed in this
scenario the savings between strategies are compared to the total levelised cost of the PM strategy, in this
case 16%. In the similar scenario listed in Table 4, £12.0 million of savings is 18% of the PM strategy cost.

Increasing the capacity factor of the wind farm to 50% increases the cost of LP. This pushes savings
to £13.7 million (17.5% of the PM strategy cost) for a vibration only drive train CM system. Conversely
reducing all the vessel hire costs to 80% of the standard day charter prices the savings reduce to £10.7
million (17%).

6. Discussion
Monitoring the gearbox and generator subsystems appear to offer the largest benefits to O&M costs.

These systems have large downtimes associated with major failures (>3000 hours), high repair costs
(>£100,000) and not insignificant failure rates (>0.1 annually). Drive Train Vibration CM has the
advantages of monitoring these subsystems and the main shaft at a relatively low cost. Acoustic emission
can monitor all these subsystems but at larger cost and arguably, AE systems may have a greater detection
rate than their vibration based counterparts. Oil sensors can diagnose a wide range of faults, some out with
the capabilities of either an AE or vibration CM. The combination of these three systems offers an
increased chance of detecting faults before causing shutdown and the reduction in replacement parts and
lost production appear to outweigh the investment costs. The model is currently not capable of defining
the different failure modes where one sensor type is better than another so both systems may have larger
ROI than initially indicated. Rotor blades and hub systems also have similar failure characteristics that

allow for monitoring to reduce O&M costs.
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Failure rates have an important impact on the model, as are the sources of component costs. O&M
models that have been developed for offshore wind use onshore numbers such as Williams, Crabtree and
Hogg [11] even though offshore has seen marked increases in failure rates [29] or expert judgement as in
Netland et al. [13]. The failure rates in this document have had to be modified to remove a serial defect
and the effectiveness of the gearbox replacement are unknown. It is hoped that as more information
becomes available about offshore wind farm operations, a more cohesive database of good quality
operational information could be used for O&M models such as these.

Due to the high reliability (annual failure rates of 0.01 for major failures [34]) and the limited
intervention associated with tower damage (approximately 600 hours), a SHM system appears to
marginally increase costs as seen in Section 5.2. However, the implemented approach neglects the tower
and offshore structure failure risk reduction and does not build upon a comprehensive structural integrity
management model to quantify the cost savings due to less inspections, which has been reviewed in
another work of the authors [47] .

Additional benefits of CM/SHM systems beyond the scope of the paper are ice detection and
reduction in insurance premiums. Insurance premiums can be reduced by a significant amount over the
lifetime by the use of CM/SHM systems and by avoiding scheduled maintenance that is stipulated by the
insurer if no CM/SHM is present.

7. Conclusions
A model has been produced that examines the effects of extending condition monitoring and

structural health monitoring systems on the operation and maintenance costs of an offshore wind farm to
beyond only a vibration based drive train system. A cost study of commercially available real time
operating CM/SHM systems has been completed and the results are utilized in the model. Multiple factors
of the CM systems were modelled including fault detection rate, advanced (6 month) fault detection and
false alarms. CM/SHM systems were added to various subsystems of a wind turbine and in some cases,
multiple CM systems were used on the same subsystem to increase the fault detection rate.

It was found that adding additional CM systems to the drive train, gearbox and generator and
increasing the fault detection rate offered reductions on the O&M costs outstripping the expense of the
additional monitoring systems. Blade monitoring systems increased O&M savings by 7% over using just a
drive train CM system.

The detection rate of the system had significant impact on the possible O&M savings if the cost for

the system did not increase. As the detection rate for a monitoring system for the blades, drive train and
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tower increased from 60% to 99% then the lifetime levelised savings increased by 4%. The same is true of
increasing the ability of the CM system to detect failures in advance failure.

Despite the found reduction of the O&M costs, both the CM and the SHM model can be extended to
account for further areas of potential benefits such as the reduction in insurance premiums with CM and

the reduction of structural risks and inspection times with SHM.
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