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ABSTRACT 

Ride-sourcing refers to an emerging urban mobility service that private car owners drive their 

own vehicles to provide for-hire rides. This paper analyzes the ride-sourcing market using an 

aggregate model where the matchings between customers and drivers are captured by an 

exogenous matching function. It is found that without any regulatory intervention a monopoly 

ride-sourcing platform will maximize the joint profit with its drivers. On the other hand, the first-

best solution is not sustainable when the matching function exhibits increasing returns to scale 

and the cost function of the platform is subject to economies of scale. Regardless of the 

examined market scenarios, the average waiting time of customers is proportional to the average 

searching time of drivers. We establish conditions for regulators to solely regulate the 

commission charged by the platform to guarantee the second best. We further investigate the 

competition of ride-sourcing platforms and find that competition does not necessarily lower the 

price level or improve social welfare. In the latter case, regulators may rather encourage the 

merger of the platforms and regulate them directly as a monopolist.  
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1. Introduction 

The number of smart mobile devices in the world has been rising steadily and a study 

suggests that nearly two-thirds of Americans now own at least one such device (Pew Research 

Center, 2015). These devices retrieve users’ geolocations, enable ubiquitous communications 

and allow instant peer-to-peer interaction, giving rise to a new class of firms—on-demand 

companies—which aim to effectively bring together consumers and suppliers of resources (e.g., 

houses and parking spaces) and services (e.g., home cleaning and computer programming) with 

very low transaction costs. These companies are shaking up their industries and reshaping our 

daily lives.  

As a typical example of on-demand economy, ride-sourcing companies such as Uber and 

Lyft are transforming the way we travel in cities. The companies provide ride-hailing apps and 

online platforms that intelligently source participating drivers to riders. A rider can monitor in 

real time the location of the coming vehicle and receive notification when it arrives. These apps 

are free to use but usually a commission is charged for each transaction/ride (15-20% of the fare 

paid by the rider). Thanks to their convenience and competitive prices, ride-sourcing services 

have successfully attracted many riders, eroding the traditional taxi market.  

Several terms exist for describing services provided by Uber-like companies, such as 

ridesharing, for-profit ridesharing, on-demand ridesharing, dynamic ridesharing (Anderson, 

2014; Rayle et al., 2014). Conventionally, ridesharing is not for profit. In contrast, the provision 

of Uber-like services is largely driven by financial motive. Therefore, the California Public 

Utilities Committee proposed to use ―Transportation Network Companies‖ to categorize Uber-

like companies. Considering these companies are essentially sourcing a ride from a driver pool, 

Rayle et al. (2014) suggested the term ―ride-sourcing‖ for such services. It is worth mentioning 

that major ride-sourcing companies also allow ride-splitting on their platforms to encourage 

multiple people to share a ride, e.g., UberPOOL, which may further blur the line between 

ridesharing and ride-sourcing. However, we choose to use ―ride-sourcing‖ in this paper to 

highlight its distinctive feature, i.e., private car owners drive their own vehicles to provide taxi-

like services for profit.  

Since their advent in 2009, ride-sourcing companies have enjoyed huge success, but also 

created many controversies. Because the regular taxi market is usually regulated in terms of 

price, entry and service quality while comparatively fewer regulatory requirements have been 

imposed on ride-sourcing companies (Frankena and Pautler, 1986; CPUC, 2013; CPUC., 2014), 

unfair competition is argued particularly by professional cab drivers and their employers, who 

have organized strikes and filed lawsuits around the world. Ride-sourcing companies have also 

brought headache to government officials and legislators. While many are still wondering what 

to do, some have decided to ban them or treat these services as illegal; others embrace them as a 

new type of transit provider or have passed ride-sourcing laws and regulations. Although these 

laws and regulations have some differences, they all essentially codify the insurance coverage, 

driver background check, and inspection protocols that ride-sourcing companies already have in 

place (Shaheen, 2014). There is no intervention on service fares or the size of the affiliated fleet 

(or the number of vehicles in service).  

The success of ride-sourcing platforms has cast doubts on the regulation of the taxi industry 

that is often criticized for limited supply (Badger, 2014). It challenges some of the premises for 

the traditional taxi regulation by significantly reducing information imperfection (Frankena and 

Pautler, 1986; Cairns and Liston-Heyes, 1996; ECMT, 2007). Features such as real-time driver-

rider matching and mutual rating (the reputation system) offered by the platforms enhance the 
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interaction between customers and drivers. Also, all trip-related fares are processed by built-in 

pricing and payment functions, which eliminate the chaos caused by soliciting and bargaining 

that often emerge after a taxi market is deregulated (ECMT, 2007). Last but not the least, some 

speculate that the ride-sourcing market is self-regulatory because the competition among 

multiple ride-souring platforms will lower the prices and reduce the market power of a particular 

predominant platform (Koopman et al., 2015). Should we simply deregulate the taxi industry and 

leave ride-sourcing companies alone, and then let the market decide the winners? What are the 

implications and welfare impacts of such a deregulation? Should we conduct a systematic reform 

of regulation of the ride-for-hire market? Presumably the reform needs to be tailored to specific 

cities considering their demographics, mobility options, patterns, and culture. Is there a unified 

theoretical framework to guide such a reform? Many such questions remain unanswered. 

To help solve the puzzles and controversies associated with ride-sourcing companies, this 

paper makes a preliminary attempt to provide a quantitative analysis on the market structure of 

ride-scouring services and explores effective regulation policies. In this paper, we consider 

hypothetical situations when ride-sourcing companies become self-sustainable and dominate the 

ride-for-hire market. We are subsequently interested in knowing whether and how to regulate the 

ride-sourcing market. Following Yang and Yang (2011), we develop an aggregate model with a 

Cobb-Douglas matching function to examine different market scenarios, properties and 

economic outcomes of a hypothetical ride-sourcing market with a single platform. In view of the 

potential market distortion, we investigate effective regulation policies that require minimal 

regulatory variables. The analysis is further extended to consider a duopoly market to examine 

the effects of platform competition. Analyzing the tradeoff in the pricing formula under the Nash 

equilibrium, we observe that competition does not necessarily lower the price level. Via a 

numerical analysis, we explore the conditions where competition is socially inefficient and a 

regulated monopoly market can be more efficient than a regulated duopoly one. 

The paper is organized as follows. The basic aggregate model for a hypothetical ride-

sourcing market along with some comparative statics is presented in the second section. The 

third section explores the pricing structure, solution properties of the single platform across 

different market scenarios as well as the regulation policies. In the fourth section, the discussion 

is extended to a duopoly market with a particular focus on the changes in price and social 

welfare. The paper then concludes with a summary of research findings and policy implications 

as well as a discussion of future research directions. 

2. Basic Model 

This section introduces an aggregate model that captures a hypothetical ride-sourcing market 

with a focus on the matchings between customers and drivers. The model is established by 

extending the work of Yang and Yang (2011). We firstly assume a hypothetical ride-sourcing 

market with a single platform, a group of customers and a group of affiliated drivers. The ride-

sourcing platform serves as an intermediary that matches customers with potential drivers. The 

platform decides the fare paid by a customer, i.e., F, and charges a commission, i.e., P, from the 

payment by the customer at each transaction; the driver receives the remaining payment, i.e., 

F P . It is assumed that the hypothetical ride-sourcing market is mature such that the platform 

will gain profit from providing the services. A few other things are worth noting here: 1) unlike 

ride-sourcing platforms, e-hailing platforms for traditional regulated taxi market do not have 

price-setting power (He and Shen, 2015); 2) although in practice ride-sourcing platforms charge 
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commission as a percentage of the fare, such a distinction is immaterial in the context of this 

paper; 3) congestion externality (caused by both ride-sourcing and regular vehicles) is not 

considered (Yang et al., 2005).  

2.1.Matching Function 

The matchings between customers and drivers are completed via a matching algorithm 

implemented at the ride-sourcing platform. Taking Uber as an example, it dispatches one of the 

vehicles within a coverage radius of a requesting customer. The dispatching is made to minimize 

the estimated waiting time for the customer (Ranney, 2015). At the aggregate level, we assume 

that a matching function (a production function) can be used to characterize such a process. Note 

that aggregate matching functions have been calibrated for traditional street-hailing (e.g., Yang 

et al., 2014) or radio-dispatch taxi market (e.g., Schroeter, 1983). Although being much more 

efficient with a larger matching area and more complete information of drivers and customers, 

the matching technology offered by a ride-sourcing platform is actually similar to the one 

adopted by radio-dispatch taxi companies. We thus assume that that aggregate matching 

functions may still be valid for representing the matching technology, which is validated by our 

agent-based simulation study.  

More specifically, we consider a stationary state where variables such as the numbers of 

waiting customers ( cN ) and vacant ride-sourcing vehicles ( vtN ) are time invariant. The 

matching function then relates the rate of matchings (more precisely, meetings) per hour ( c tm  ) 

to vtN  and cN  at any instant (Yang and Yang, 2011). Note vt t vtN w T where tw  is the average 

―searching‖ time for a driver before meeting a customer and vtT is the arrival rate of vacant 

vehicles per hour. c cN w Q , where cw  is the average customer waiting time and Q  is the 

customer demand per hour. The matching function can be formally written as: 

 

   , ,c t vt c t vt cm M N N M w T w Q    (1) 

 

where 0vtM N   , 0cM N    are assumed so that the increase of either vacant vehicles or 

waiting customers will increase the meeting rate.  

We define the elasticities of the matching function with respect to vtN and cN  as 1  and 2 , 

respectively. The elasticities reflect the matching technology of the ride-sourcing platform. We 

hereinafter assume them to be constant and within the range of [0, 1]. This assumption leads to a 

Cobb-Douglas matching function: 

 

   1 2c t vt cm A N N
 

   (2) 

 

where A  is a scaling parameter, which depends on the unit of the meeting rate and encapsulates 

other factors in the matching technology that are not fully captured by 1  and 2 . Moreover, the 

parameter can be interpreted to be related to the area of the ride-sourcing market and the cruising 

speed of vacant vehicles (we assume waiting customers remain stationary until being picked up). 



4 

To see this, consider the following customers’ average waiting time function, which is obtained 

by considering c t vtm Q T    at the stationary state together with Eqs. (1)-(2): 

 

     
11 2

22 2

1 1
c tw Q A w

 

 

  
  (3) 

 

Setting 2 1   yields: 

 

   1 1

1 1c

t vt
w

A Qw A N
 

   (4) 

 

The above implies that customers’ waiting time only depends on the number of vacant vehicles. 

This is true particularly when the supply of vacant vehicles is more than sufficient to serve the 

customers and there is no competition among customers over a particular vehicle. Further 

assuming 1 1   and 1 0.5  , Eq. (4) will be reduced to the waiting time functions derived by 

Douglas (1972) and Arnott (1996) for cruising and radio dispatching taxi market respectively 

where A  represents the area of the market divided by the running speed of vacant vehicles.  

The matching function is increasing, constant or decreasing returns to scale when the sum of 

1  and 2  is larger than, equal to or smaller than one (Yang and Yang, 2011). By analyzing the 

radio-dispatch taxi market in Minneapolis, U.S. and the overall taxi market in Hong Kong, 

China, respectively, both Schroeter (1983) and Yang et al. (2014) reported increasing-returns-to-

scale matching functions. The degree varies from 1.13 to 1.16. The increasing-returns-to-scale 

property is commonly seen in a queueing process that exists in many transportation systems 

(Mohring, 1972; Schroeter, 1983; Arnott, 1996; Yang and Yang, 2011). In a ride-sourcing 

market, drivers often cruise to ―hotspots‖ in order for being matched early. Higher densities of 

both customers and drivers increase the matching probability. After being matched, the matched 

driver will have to travel to pick up the customer, and the average travelling distance decreases 

with the increases in the numbers of customers and drivers. Due to the economy of density, the 

average waiting times of customers and drivers is expected to decrease more than linearly if both 

the numbers of customers and drivers increase. Consequently, the meeting rate increases more 

than linearly with the numbers of customers and drivers. This observation has also been 

confirmed in an agent-based simulation study we conducted. Therefore, the analyses hereinafter 

primarily focus on cases with an increasing-returns-to-scale matching function.  

2.2.Customer Demand 

Consider a stationary state where the hourly demand of customers (passengers) is Q . Each 

customer consumes exactly one trip and faces two transportation modes: the ride-sourcing 

service and alternative modes such as transit. The customer derives a deterministic utility 0V  

from completing the trip while incurring a generalized cost   for using the ride-sourcing service 

and C  for the other options. Note   is determined endogenously while C  is exogenously given 
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as a constant. With error terms ,R O   capturing unmeasurable attributes, the utility from 

utilizing each mode can thus be specified as follows: 

 

0R RU V      (5) 

0O OU V C     (6) 

 

where cF w l     , consisting of the trip fare ( F ), waiting time cost ( cw ) and in-vehicle 

travel time cost ( l ). This specification implicitly assumes that customers are homogenous in 

their values of waiting time (  ) and in-vehicle travel time ( ). Moreover, cw  is determined 

endogenously in Eq. (3) while l  represents the average trip time and is assumed constant. Each 

customer is assumed to choose the option that maximizes his utility. Consequently, the demand 

for the ride-sourcing service (Q ) will depend on the distribution of the error terms but can be 

specified as a decreasing function of the generalized cost: 

 

   cQ f f F w l       (7) 

 

where 0f    over the domain 0  .  

2.3.Comparative Statics 

At any instant of the stationary state, total vehicle equals the sum of the numbers of vacant 

vehicles vtN  and occupied vehicles oN , i.e., vt o tN N N Qw Ql    . The matching function 

essentially dictates the form of the waiting time function ( , )c tW Q w , as defined in Eq. (3). So far, 

we have identified the following three equations: 

 

( , )c c tw W Q w  (8) 

( )cQ f F w l     (9) 

( )tN Q w l   (10) 

 

The unknowns are Q, F, w
t
, w

c
 and N. Treating F and N as decision variables, we present some 

derivatives with respect to F and N as follows: 

 

1 2 2
1 c c

Q f

NF
f W f W

Q
 




   

 (11) 

2

1 2 2

1

1

c

c c

f W
Q Q

NN
f W f W

Q



 





   

 (12) 
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where 1 2 1
1 2

2 2

1
,

c c
c c

t

w w
W W

Q w

  

 

 
   . It can be shown that 

 

0, 0Q F Q N       (13) 

 

Similarly, we have: 

 

2

1tw Q
N

F Q F

 
 

 
 (14) 

1 2 2

c
c cw N Q

W W
F Q F

  
  

  
 (15) 

2 2

1tw N Q

N Q Q N

 
 

 
 (16) 

1 2 2 2

1c
c cw Q N Q

W W
N N Q Q N

   
   

   
 (17) 

 

 

where 1 2, , ,c c Q Q
W W

F N

 

 
are defined in Eqs. (11) and (12). 

3. Market Scenarios of Single Ride-Sourcing Platform 

In this section, three market scenarios with a single ride-sourcing platform are examined. The 

monopoly scenario captures the platform’s profit-maximizing behavior without any regulatory 

intervention. The first-best solution maximizes social welfare, but the platform and its drivers 

may be in deficit. We thus examine the second-best scenario by adding additional constraints to 

guarantee the reservation profits of the platform and drivers.  

3.1. Monopoly Scenario 

In this scenario, the ride-sourcing platform determines the trip fare and commission to attract 

both drivers and customers to the platform to facilitate their matchings in order to maximize the 

profit of the platform. Due to the static nature of our model, advanced pricing features such as 

surge pricing are not considered. The platform essentially provides a two-sided market and its 

decision making can be described as a leader-followers game where the monopoly platform 

serves as the leader who determines the trip fare F and the commission P  to maximize its profit 

while customers and drivers are the followers. The former decides whether to use the ride-

sourcing service while the latter decide whether to provide the service. With a free entry and 

sufficient labor supply, drivers will do so until their profit reaches zero. The platform’s problem 

can thus be written as follows: 
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(P1)  
0, 0, 0
max ( )P P

F P N
PQ C Q

  
   (18) 

              s.t.   0F P Q cN    (19) 

 

where ( )PC Q  is the cost function of the ride-sourcing platform and c captures the average hourly 

operation cost of a vehicle and the opportunity cost of the driver. For simplicity, we hereinafter 

do not consider non-negative constraints of decision variables and only focus on interior 

solutions. Define the Lagrangian function of P1 as follows: 

 

 PL F P Q cN        (20) 

 

The first-order necessary conditions (FONCs) of P1 yield: 

 

1    (21) 

  1 2

1

1
( )t t

P

Q
F C Q c w l cw

f

 



     

 (22) 

1

2

c

t

w
c

w





  (23) 

 

Eq.(21) indicates the profit of the drivers and that of the platform are substitutes while Eq. 

(23) shows cw  is proportional to tw  at optimality. Eq. (22) is the monopoly pricing formula. 

Define the price elasticity of demand as 0
F

f
Q

    .  It can be revised as: 

 

  1 2

1

1
( )t t

P

F
F C Q c w l cw

 

 

       (24) 

 

which follows the form of the Lerner formula (Lerner, 1934). The right-hand-side of the pricing 

formula in Eq. (22) consists of four terms: the marginal cost of the platform (  PC Q ), the 

average cost for a driver to serve a new customer ( ( )tc w l ), a ―matching externality‖ (

1 2

1

1 tcw
 



 
) and the monopoly mark-up (

Q

f



). The ―matching externality‖ is closely related 

to the returns to scale of the matching function. As will be shown shortly, the realized waiting (or 

searching) frictions are lower if the matching function is increasing returns to scale. The 

incoming customer will thus be charged lower compared to the cases when the matching 

function is constant or decreasing returns to scale. Such an externality also exists in the optimal 

pricing formulae in other investigated scenarios.   

When substituting P  in the objective function using Eq. (19), we have the following 

equivalent formulation to P1: 

 

(P2) 
0, 0

max ( )P
N F

FQ cN C Q
 

    (25) 
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          s.t. 0
cN

F
Q

   (26) 

 

which indicates the platform maximizes its joint profit with its drivers. In fact, Eq. (26) can be 

safely dropped if we assume the resulting profit   is nonnegative at optimality. (See Appendix 

A for more information). This implies that, albeit not owning any vehicle, the platform 

essentially behaves like a traditional cab company that has a monopoly on the ride-for-hire 

market and thus determines its price and fleet size to maximize its profit. 

3.2. First-Best Scenario 

The first-best scenario represents an ideal case where a social planner or the platform 

maximizes total social welfare instead of its own profit by deciding the trip fare and fleet size. 

The commission does not impact social welfare but the revenue sharing between drivers and the 

platform. Therefore, the welfare formulation is similar to that in the traditional taxi literature 

except the additional cost incurred by the platform (Yang and Yang, 2011). The corresponding 

maximization problem can be written as: 

 

(P3)  1

00, 0
max ( ) ( )

Q
c

P
F N

S f z dz Q w l cN C Q 

 
      (27) 

  

The FONC of the above problem leads to: 

 

  1 2

1

1
( ) 0t t

PF C Q c w l cw
 



       (28) 

1

2

c

t

w
c

w





  (29) 

 

In a regular taxi market where the taxi trip production is increasing returns to scale, the first-

best pricing only covers the cost when a taxi is occupied and thus drivers’ profit is negative 

(Douglas, 1972; Arnott, 1996; Cairns and Liston-Heyes, 1996). Utilizing Eq. (28), the joint 

hourly profit obtained by the ride-sourcing platform and its drivers is given as:  

 

 1 2

1

1
( ) ( ) ( )f b vt

P P PFQ cN C Q cN C Q Q C Q
 




          
 

 (30) 

 

Define the elasticity of the cost function as 
 

( )c P

P

Q
C Q

C Q
  . If 1 2 1    and 1c  , then 

0f b   . That is, if the matching function exhibits increasing returns to scale and the cost 

function of the platform shows economies of scale, the profits for the platform and drivers will 

be negative, making the first-best solution unsustainable.  
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3.3. Second-Best Scenario 

Since the profits for the platform and its drivers may be in deficit in the first-best scenario, 

we consider the following second-best pricing. 

 

(P4)  1

00, 0, 0
max ( ) ( )

Q
c

P
F N P

S f z dz Q w l cN C Q 

  
      (31) 

            s.t.  ( ) o

P PPQ C Q    (32) 

                  ( ) 0F P Q cN    (33) 

 

where o

P  represents the reservation profit of the platform and is nonnegative. Define 

( )P PPQ C Q   ,  D F P Q cN    , the Lagrangian function associated with P4 can be 

written as : 

 

 o

P P P D DL S          (34) 

 

The FONC will then give: 

 

( )P D     (35) 

1

2

c

t

w
c

w





  (36) 

 1 2

1

1
(Q) ( ) 0

1

t t

P

Q
F C c w l cw

f

  


 

       


 (37) 

 

As shown in Eq. (35), the Lagrangian multipliers associated with the reservation profit 

constraints are the same. We can thus sum up Eqs. (32) and (33) to bound the joint profit of the 

platform and its drivers. Eq. (37) follows the Ramsey pricing (Oum and Tretheway, 1988; Yang 

et al., 2005). It can be seen as a convex combination of the pricing formulas in the first-best and 

monopoly solutions. Further, the reservation profit constraints are binding given that the 

matching function exhibits increasing returns to scale. We summarize the results in the following 

proposition. 

 

Proposition 1. If 1 2 1    and 1c  , then o

P P  , 0D  . 

 

The proof of Proposition 1 is given in Appendix B. In our modeling framework, the 

commission P  serves as an instrument to split the revenue obtained by the platform and its 

drivers. Given a solution of F and N (and thus Q), P is appropriately defined by the reservation 

profit constraints. 

When the matching function shows increasing returns to scale, P4 is equivalent to the 

program that maximizes customers’ demand subject to the same constraints (Douglas, 1972; 

Vany, 1975; Frankena, 1983; Frankena and Pautler, 1986; Yang et al., 2002).  
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3.4. Discussions on the Single Platform 

3.4.1. Effects of Homogenous Value of Time 

We have investigated the optimality conditions of three different scenarios. Despite the 

difference in the pricing formula, the optimality conditions all unveil the fact:  

 

1

2

c

t

w
c

w





  (38) 

 

which means the average customer waiting time is proportional to the average driver searching 

time at optimality. Figure 1 illustrates an economic intuition, following Yang and Yang (2011). 

The meetings between customers and drivers can be viewed as the production of the ride-

sourcing platform with inputs cN  and vtN . The monopolist and the social planner essentially 

differ in the chosen meeting rates (realized demand levels). At each demand level, the optimal 

matching is characterized by cost-minimizing production of the ride-sourcing platform. 

Therefore, the proportional relationship in Eq. (38) results from the tangency of the matching 

function and the total external cost curve. The assumption on the homogenous value of time of 

the customers guarantees the external cost curve is a line, presenting a constant slope for all the 

scenarios examined
1
. When the heterogeneity of value of time is modelled, however, such a 

tangency condition generally does not hold (See Appendix C for a detailed discussion).  

 

 
Figure 1 Cost Minimization of the Matching Technology. 

                                                 
1 The effect of homogenous value of time is most evident when the matching function exhibits constant returns 

to scale. With the tangency condition, it is straightforward to show the average waiting and searching times are 

constant (Yang and Yang, 2011). The average waiting and searching times often serve as the ―quality‖ 

measurement. Consequently, the monopolist and social planner will provide the same ―service quality‖ if the 

customers are homogenous in their value of time (Spence, 1975; Yang and Yang, 2011). 
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3.4.2. Contract Solution Set and Properties 

The solution set for all the investigated cases are conceptually displayed in Figure 2. The 

monopoly and first-best solutions are marked as the end points M and S, respectively along a 

contract curve. The remaining points on the curve correspond to the second-best solution of 

varying joint profit levels between the platform and its drivers. Each point on the contract curve 

is characterized by the triple tangency of the joint profit contour, consumers’ surplus contour and 

social welfare contour (Spence, 1975). That is, for a given reservation profit, the associated point 

maximizes the total welfare and vice versa. 

 

 
Figure 2 Contract Solution Set for Single Ride-Sourcing Platform. 

 

Define the average joint profit as 
( )PFQ cN C Q

Q


 
 . It is intriguing to investigate the 

state where the increase of Q  will be mutually beneficial to all the participants, i.e., 0
d

dQ


  and 

0
cdw

dQ
  (Yang and Yang, 2011). Consider the process of gradually increasing Q  from the 

monopoly to the first-best solution, it is generally expected the total joint profit keeps decreasing 

(and so does the average joint profit, i.e. 0
d

dQ


 ) while the social welfare is strictly increasing

2
. 

In fact, the contract curve is characterized by Eqs. (8)-(10) together with Eq. (38). Total 

differentiating Eqs. (8) and (38) yields: 

                                                 
2 Parallel to Proposition 1 in Yang and Yang (2011), we can treat ,F Q  as decision variables and evaluate 

Q   and  cw Q . It can be shown the mutually beneficial situation occurs only when the matching function 

shows increasing returns to scale and the waiting time elasticity of demand is sufficiently large. However, such a 

solution is not on the contract curve and thus not of particular interest here.  
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1 2 1
1 2

2 2

1 c c
c c c t t

t

w w
dw W dQ W dw dQ dw

Q w

  

 

 
      (39) 

1 2

c tdw c dw    (40) 

 

Eliminating tdw  and re-arranging the terms, we have: 

 

 
1 2

1 2

1c cdw w

dQ Q

 

 

 



 (41) 

 

which is negative given the matching function shows increasing returns to scale. 

3.5. Regulation Policies 

As previously shown, the monopoly ride-sourcing market is suboptimal in terms of social 

welfare and thus regulation may be necessary. This section seeks for regulation strategies by 

assuming the regulator has complete information. We examine possible combinations of 

regulatory variables to identify the most efficient regulation strategy that induces the second-best 

and requires the minimum number of regulatory variables. The potential regulation variables 

include , ,P F N . 

Let , ,SB SB SBF N P  solve P4. Regulating all three variables definitely works. Since the break-

even constraint for drivers is binding at the second-best solution as given in Proposition 1, 

together with Eqs. (8)-(10), the nonlinear equation system has only two degrees of freedom (four 

equations and six unknowns). Therefore, regulating any two of these three variables at the 

second-best level should work.  

Below we show that properly regulating the commission charged by the platform can also 

yield the second best. To see this, recall that the second-best solution can also be achieved by 

maximizing the customer demand subject to the reservation profit constraint. If the commission 

is regulated, the proprietary ride-sourcing platform will maximize the customer demand, given 

that the cost function of the platform is assumed to exhibit economies of scale. Therefore, a 

proper choice of commission P  by the regulator would trigger the platform to maximize its 

profit to the reservation level, leading the final solution to coincide with the second-best one. 

Mathematically, when only P  is regulated at the second-best level, the FONC of P1 is given by 

1

2

c

t

w
c

w





  and ( ) 0SBF P Q cN   . Correspondingly we have 1

2

c

t

w
c

w





  and 

( ) 0SBF P Q cN    from the FONC of P4. Both systems of equations have two unknowns 

,N F and share the same equations. Therefore, they will have the same solution. 

However, regulating F or N only will not work.  
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Regulating F 

When only restricting SBF F , the FONC of P1 is given by ( ) /SB

P

Q
F C Q c

N

 


 and 

( ) 0SBF P Q cN   . Correspondingly from the FONC of P4, we have 

1
( ) /

1

SB

P

Q Q
F C Q c

N f

  
 
 and ( ) 0SBF P Q cN   . Both systems of equations have two 

unknowns: ,N P , but they differ in one equation and thus generally admit different solutions.  

Regulating N 

When only restricting SBN N , the FONC of P1 is given by 

1 2( )
SB

c c

P

Q N
F C Q W Q W

f Q
    


 and ( ) 0SBF P Q cN   . Correspondingly from the 

FONC of P4, we have 1 2( )
1

SB
c c

P

Q N
F C Q W Q W

f Q


 


   


 and ( ) 0SBF P Q cN   . 

Following the same argument as above, we conclude that regulating N only may not achieve the 

second best.  

 

In summary, we have the following proposition.  

 

Proposition 2. Assuming customers are homogenous in their value of time and the regulator has 

complete information, regulating the commission alone will achieve the second best if the 

matching function exhibits increasing returns to scale and the cost function of the ride-sourcing 

platform shows economies of scale. 

 

Admittedly, the discussion so far has been based on the assumption of homogenous value of 

time for the customers. If a continuous distribution is adopted to capture the heterogeneity in the 

value of time, merely regulating the commission may not be enough. The main reason is that the 

tangency condition given in Eq. (38) may no longer hold. The regulator may then have to 

regulate two variables to achieve the second best.  

4. Competing Platforms 

The above analyses on a hypothetical single platform shed some light on the properties of the 

ride-sourcing market. However, the real-world situation is more complicated since several ride-

sourcing platforms are often competing for the market (e.g., Uber and Lyft in the U.S.). Some 

proponents of ride-sourcing companies have stated that competition may lower down the price 

level and improve social welfare. In this section, we investigate such a statement in a duopoly 

ride-sourcing market. We consider that a driver will only work for a particular platform and a 

customer only uses one platform for a particular trip. It is not uncommon that a customer or 

driver installs more than one ride-sourcing apps. Such a multi-homing issue is not considered in 

this paper (Rochet and Tirole, 2003; Armstrong, 2006). 

With one more ride-sourcing platform, the utility function for a customer to choose each 

option is considered as: 
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0 , 1,2
i iR i RU V i      (42) 

0O OU V C     (43) 

 

All the other specifications are the same as the single platform case. The demand functions of the 

two platforms depend on the distribution of the error terms but can generally be represented as 

 1

1 1 2,Q f    and  2

2 1 2,Q f   . To facilitate the analysis, we make the following 

assumptions: 

Assumption 1. The own-price effect is negative: 1 1
1

1

0
Q

f



 


, 2 2
2

2

0
Q

f



 


. The cross-price 

effect is positive and symmetric: 2 12 1
1 2

1 2

0
Q Q

f f
 

 
   
 

.  Further, 1 1

1 2f f   and 2 2

2 1f f  . 

The above assumption generally holds for the demand functions of two competing firms.  

Similarly, we assume a Cobb-Douglas matching function for each ride-sourcing platform. To 

simplify our analysis, we further assume the same parameter set  1 2, ,A   as that in the single 

platform for each platform. Given the interpretation of the parameters in Section 2.1, we 

essentially assume that both platforms have the same geographic coverage of users, running 

speed of vehicles, and matching technology as the single platform. To summarize, we have the 

following assumption: 

 

Assumption 2. The matching function for each ride-sourcing platform follows the Cobb-

Douglas type with the same parameters as those being used for the single platform. Namely, 

   
1 2

1 1

1

vt c
Q A N N

 

 and    
1 2

2 2

2

vt c
Q A N N

 

 . 

4.1.Competition between Ride-Sourcing Platforms 

As seen previously, the commission , 1,2iP i   can be substituted into the objective function 

using the reservation profit constraint. It is positive with the assumption on the non-negativity of 

the joint profit between the platform and its drivers in a mature ride-sourcing market. We further 

assume both platforms choose  , , 1,2i iF N i  simultaneously for profit maximization and focus 

on the Nash equilibrium (NE). Let’s consider Platform 1: 

 

(P5)
1

1 1

1 1 1 1 1
0, 0

max ( )P
F N

FQ cN C Q
 

    (44) 

 

By setting 1

1

0
F





 and 1

1

0
N





, we have: 

 

 
1

1
1 1 1

1

P

Q
F C Q Q

F

   
  

 (45) 
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 
1

1
1 1

1

P

Q
F C Q c

N

   
  

 (46) 

 

Note that 1 1

1 1 11

Q

F








  
and

1

1 1 2 1

1 1 11

c
Q W Q

N

 






  
 , where 

1 1 2 2 1

1 2 1 2 2 1 2
1 2

2 21

f f f f f

f


 



, 

 
1 2 2

, 1,2i ic c i
i

i

N
W W i

Q

 

    
  

. Next, dividing Eq. (45) by Eq. (46) and substituting 1

1

Q

F




and 

1

1

Q

N




, we obtain: 

 
1

1

1

2

c

t

w
c

w





  (47) 

 

Similar to the single-platform scenario, the tangency condition still holds, i.e., the cost-

minimizing behavior of each competing platform yields a customer’s waiting time being 

proportional to a driver’s searching time. 

Given Eq. (47), one can verify  1 2

1

11
0, 1,2i it t

i

i

cw c w l i
Q

 



  
      

 
.  Define the 

price elasticity of  1 1 2,Q    as 1 1
1 1

1

0
F

f
Q

    . Eq. (45) can be spelled out as:  

 

 
1

1

1 1
1 1 1 1

1 1

P

F f
F C Q Q

 

 
     

 
 (48) 

 

It is expected that 1   and 1 1   for the platform(s) to charge positive trip fares. The pricing 

formula in Eq. (48) is of similar form to that in Eq. (24), apart from being multiplied by a scaling 

factor 1

1 1f  . It is strictly larger than one given 1

1 0f   and 1 2 2 1

2 1 2 2 1 2 0f f f f    . The ratio of 

price levels under duopoly and monopoly is given as follows: 

 

12

1 1 1 1

1
2 1

1
1 1

1

1

t
P

t
P

C cw cl
F

F fC cw cl



  


 

 


 




  
    

 

 (49) 

 

where the platform production cost is assumed linear, i.e.    
1 1 PP PC Q C Q C   . For a 

symmetric NE, it is expected 1Q Q . Similar to Eqs. (39)-(41), the average waiting and 

searching times increase as the decrease of the platform specific demand given the matching 

function has increasing returns to scale. It follows that 1t tw w  ( 1c cw w ), indicating more 
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matching frictions. Accordingly, the first component in the RHS of Eqn. (49) is no less than one 

while the second component is related to the price elasticities of demand. Its value is unclear 

without fully specifying the demand function. If 

1

1 1

1

f

 

 
  
 

, the price level under NE is strictly 

larger than that under the monopoly. Otherwise, the ratio of 1F  over F  remains indeterminate. 

Generally, one needs to explore the change of the price elasticity of demand and that of the 

matching friction. The conventional wisdom that competition lowers the price level does not 

stand if the increase of the former is dominated by the latter.  

4.2. Second Best for Dual Ride-Sourcing Platforms 

This section directly investigates the second-best outcome with the dual platforms. The first-

best solution can be obtained by setting the Lagrangian multiplier associated with the reservation 

profit constraint to zero in the optimality conditions of the second-best problem.  

Define  1 2,V   as the customers’ surplus from completing a trip. With certain regularity 

conditions (Sheffi, 1985), the following properties hold by construction: 

 

1 2

1 2

,
V V

Q Q
 

 
   

 
 (50) 

 

To simplify the derivation, we treat  , , 1,2i iN i   as the decision variables. 

Mathematically, , 1,2ic

i iF w l i      . The maximization program is formally written as: 

 

(P6)    
2

1 2
0, 0

1

max ,
ii i i P i

i

S V FQ cN C Q 
 



     
μ N

 (51) 

         s.t.   , 1,2
i i

o

i i i P i PFQ cN C Q i     (52) 

 

Define its Lagrangian function as follows: 

 

       
2 2

1 2

1 1

, , 1
i i

o

i i i i P i i P

i i

L V FQ cN C Q   
 

        μ N  (53) 

 

By setting 0, 1,2
i

L
i

N


 


, it is immediate to show: 

 

1

2

, 1,2
i

i

c

t

w
c i

w





   (54) 

 

which again follows the tangency condition. Next, setting 0, 1,2
i

L
i




 


 yields: 
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  1 2

1 1 2 1 11 f f Q        (55) 

  1 2

1 2 2 2 21 f f Q        (56) 

 

where   , 1,2
ii i P i i iF C Q Q i      . Substituting 2 in Eq. (55), we then focus on the pricing 

formula for platform 1: 

 

 
1

1 1
1 1 1 1 1 11

1 11
P

Q
F C Q Q

f


 


     


 (57) 

 

where 
   
   

2 2

2 1 1 2

1 2 1 1 2

1 2 1 2

1

1

Q f Q f

f f f f






. For more insight, further assume a symmetric solution where 

1 2Q Q  and 1 2

1 2f f . Then 1  is reduced to 
1

1

1 2

1 1

f

f f
 which is strictly larger than one given 

Assumption 1. Define the price elasticity of  1 1 2,Q    as 1 1
1 1

1

0
F

f
Q

    , Eq. (57) can be 

rewritten as: 

 

 
1

1 1
1 1 1 1 1

1 11
P

F
F C Q Q




 
   


 (58) 

 

The pricing formula for platform 2 can be obtained by symmetry. The formula structure is 

the same as that in the single platform case, except being adjusted by the factor 1 , which has its 

roots in platform collusion (a case where the two platforms cooperatively maximize the total 

profit). The fact that it is greater than one is by the nature of the pricing for substitute goods
3
. 

The first-best pricing formula for the dual platforms can be obtained by setting 0, 1,2i i  

. Similarly, the first-best solution is not sustainable if the matching function is assumed to exhibit 

increasing returns to scale and the cost function of the platform has economies of scale. The 

second-best pricing formula can be thought of the convex combination of the first-best and the 

collusion formulas.  

The solution sets obtained in the above scenarios can also be displayed over a contract curve 

that connects the social optimal (Point S) and NE solution (Point N) (Point C represents the 

solution that two platforms collude to maximize the joint profit. It corresponds to the monopoly 

solution). The remaining points on the contract curve represent a continuum of the second-best 

solutions characterized by different regulated profit levels. Define the average joint profit for 

                                                 
3  Assume a market without friction or externality. Define    1 2

1 1 2 2 1 2, , , Q f F F Q f F F to be demand 

functions for two competing firms. Further assume 1 2 1 2

1 2 2 10, 0, 0f f f f    ; the total cost for production is 

linear: 
1 2,cQ cQ . The collusion pricing formula under the symmetric solution is: 

1

1 1

1 1 2

1 1 1
 



F f
F c

f f
. 
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platform i , 1,2i i  , one can verify 0, 1,2
i

i

d
i

dQ


   for the solutions on the contract curve. 

, 1,2
ic

i

dw
i

dQ
  is strictly negative when the matching function shows increasing returns to scale. 

 

 
Figure 3 Contract Solution Set for Dual Ride-Sourcing Platforms. 

 

4.3.Welfare Changes between Single and Dual Platforms 

In this section, we attempt to investigate whether or not competition yields a more efficient 

market outcome and whether a regulated duopoly market is more efficient than a regulated 

monopoly market. To address the former, we compare the social welfare under the monopoly 

solution and duopoly solution. For the latter, we focus on the welfare change under the regulated 

second-best solutions.  

To proceed, we specify the demand function by assuming that the error terms of the utility 

functions are identically and independently Gumbel distributed for both the single (Eqs. (5)-(6)) 

and dual platforms
4
 (Eqs. (42)-(43)). Therefore, the demand functions for the single platform and 

the other transportation modes are: 

 

,
C

C C

e e
Q Q Q Q

e e e e

 

   

 

   
 

 
 (59) 

 

where 0  . For consistency, we assume the total base demand remains the same for both 

scenarios and the demand for the dual platforms are given as: 

 

                                                 
4 The error terms are likely dependent in the duopoly market. This assumption is made for the ease of welfare 

comparison.  
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1 2

1 2, ,
C

d

e e e
Q Q Q Q Q Q

    

  
  

 (60) 

 

where 1 2 Ce e e
        . 

In addition to specifying an increasing-return-to-scale matching function as highlighted in 

Assumption 2, we limit ourselves to the following aspects to further facilitate the comparison: 

 The solutions for the dual ride-sourcing platforms are symmetric. The related variables 

are marked by the subscript d. e.g. 1 2dQ Q Q  , 1 2dt t t
w w w  . 

 Total cost incurred by the platform is linear: ( )P PC Q C Q . 

4.3.1. Analytical Comparison 

Utilizing the assumption on symmetric solution and linear platform cost, the welfare change 

between the single and dual platforms for a given market scenario is as follows:  

  

   

   

1 1
ln 2 ln

2

d

d

C C

d s

t t
P Pd d

S S S e e e e Q

Q F c w l C Q F c w l C

   

 

    
        

 

         
  

 (61) 

 

The first two terms measure the change in the consumers’ surplus (Train, 2009) while the last 

two terms represent the change in producers’ surplus, i.e., the joint profit between the platform 

and its drivers. For the duopoly and monopoly solutions, it is anticipated 2 d dQ Q Q  . For 

welfare evaluation, one needs to trade off the potential increase of consumers’ surplus and the 

decrease from the joint profit.  

Consider the extreme case that dQ  approaches to 
2

Q
from the right. Then the change of 

consumers’ surplus is approximately zero. Eq. (61) is reduced to:  

 

 

 1 2

1

2

2 ln 2

d

d

t t

d d

t t

d

S Q F F c w w

Q c w w
 



     
 

  
    

  

 (62) 

One can verify 0S   when 
 

1

1 2

ln 2dt tw w
c



 
 


. That is, competition is welfare 

improving if the increased searching friction is bounded above by a constant. The same condition 

holds when evaluating the welfare change at the second-best solutions (e.g. at zero profit level), 

where the change of the social welfare is equal to that of the consumers’ surplus. Unfortunately, 

the explicit relationship between dtw and tw  (or equally dc
w and cw ) appears hard to obtain and 

neither has a closed form. We therefore resort to a numerical experiment to quantify the welfare 

changes. 
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4.3.2. Numerical Analysis 

Define  1 2, , , ,A C Q    to be the experimental parameter set. 1 2, , A   are directly 

included in the matching function while Q  and C  influence the base demand and realized 

demand splits. Since our focus is on the matching technology, the other parameters (e.g., ,c  ) 

are held constant. In fact, it can be shown 
1 2

0, 0, 0, 0, 0
t t t t tw w w w w

A Q C 

    
    

    
 for all the 

solutions on the contract curve (The derivation for the sign of 
tw

A




 is given in Appendix D for 

illustration). Marginal increase of each of these parameters reduces the matching friction and 

thus indicates more efficient matching technology.  

It is assumed 0 50V  ($/trip), 20  ($/hr), 20c  ($/hr), 1  (1/$), 6  ($/hr), 0.3l  (hr), 

2PC  ($/trip). For demonstration, we investigate two base demand levels: 100,000Q   and 

50,000(trip/hr) and the outside transportation costs: 19C   and 15 ($/trip). For each 

combination of Q  and C , a continuum of solutions are examined over a range of ( 1 2, , A  ). 

We explored three levels of returns to scale with 1 2 1.6, 1.4, 1.2   , respectively. For 

symmetry, 1 2,   are set equal. 

The welfare changes between duopoly and monopoly solutions are given in Figure 5. For a 

meaningful comparison, we assume the joint platform demand will account for 10%-90% of the 

total passenger demand in the equilibrium states. This in turn indicates that the difference 

between the generalized cost of using the ride-sourcing service and the outside options cannot be 

very large. Accordingly, two dot curves are introduced to bound the solution region. Each solid 

red curve represents the computed welfare change over a feasible range of A for a given elasticity 

pair ( 1 2,  ).  The little bar at the left end of the curve means the location where no solution is 

available for either problem P1 or P5 if we further reduce A. The welfare difference curve slopes 

upwards, indicating S increases as the increase of A . For a given A , the increase of elasticities 

( 1 2,  ) generally yields larger S .  
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Figure 4 Average Searching Time ( 1 2 0.7   and 100000Q  )  
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(a) 14, 50000C Q  (unit: $/ trip, trip/hr) 

 

 

(b) 14, 100000C Q   (unit: $/ trip, trip/hr) 

 

 

(c) 19, 100000C Q   (unit: $/ trip, trip/hr) 

 

Figure 5 Change in Social Welfare between Duopoly and Monopoly Solutions. 
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(a)  14, 50000C Q   (unit: $/trip, trip/hr) 

 

 

(b) 14, 100000C Q   (unit: $/trip, trip/hr) 

 

 

(c)  19, 100000C Q   (unit: $/ trip, trip/hr) 

 

Figure 6 Change of Consumers’ Surplus between Dual and Single Platforms at 

Second-Best Solutions (at Zero Profit Level). 
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In Figure 5(a), the changes of the total social welfare are positive but for the left end in the 

case of 1 2 0.7   . When the base demand increases from 50,000 to 100,000 (trip/hr), the 

total pattern moves upwards as seen in Figure 5(b). All the stable solutions in the region are 

characterized by 0S  , indicating competition between the platforms is welfare improving. 

However, when C  increases from 14 to 19 ($/trip) as shown in Figure 5(c), some left portion of 

all curves fall in the solution region where 0S  . It should be pointed out that the welfare 

difference curve is plotted over the interval (0.12, 0.3) of A , which is different from Figure 5(a) 

and (b). In the cases shown in Figure 5(c), there are more matching frictions. Figure 4 shows the 

average searching times under duopoly and monopoly solutions when 1 2 0.7    and 

100,000Q   (trip/hr). It can be observed that the average searching times for drivers are larger 

in duopoly than those in monopoly due to the decrease of platform-specific demands. For the 

cases presented in Figure 5(c) where competition is not efficient, the average search time is much 

higher, approximately 6-12 minutes. 

The welfare comparison between the regulated dual and single platforms is given in Figure 6. 

The general tendency is similar to that in Figure 5. In many cases, competition increases social 

welfare. However in Figure 6(c), all the meaningful solutions are characterized by 0S  . In 

those situations, a regulated monopoly platform will be superior to the regulated duopoly 

platforms in term of efficiency. 

Although the numerical example is made from the arbitrary specification of function forms 

and parameter values, its interpretation is straightforward. Competition may not improve the 

social welfare when the matching technology is less efficient. Given the assumption of the 

increasing returns to scale of the matching function, its efficiency is not all about the advanced 

algorithms used by the ride-sourcing platform but also the size of the market, i.e., the number of 

users. To derive effective policies, the regulatory agency may need to obtain a good estimate on 

customers’ demand function as well as the matching function. If the matching friction is large, 

the regulatory agency may rather encourage the merger of the ride-sourcing companies and then 

regulate them as a monopolist. 

5. Conclusion 

In this paper, we analyzed the ride-sourcing service using an aggregate model with the 

matchings between customers and drivers captured by an exogenous Cobb-Douglas matching 

function. We examined different market scenarios, solution properties and general economic 

outcomes of a hypothetical monopoly ride-sourcing market. It was found that without regulatory 

intervention the monopoly ride-sourcing platform would maximize the joint profits with its 

drivers. The first-best solution is not sustainable when the matching function is increasing returns 

to scale and the cost incurred by the platform exhibits economies of scale. Therefore, we further 

analyzed the second-best scenario with varying reservation profit levels for the ride-sourcing 

platform. In terms of market frictions, all the examined scenarios are characterized by a 

proportional relationship between the average waiting and searching times that implies the cost 

minimization of the matching production. In view of the market distortion, we demonstrated the 

feasibility of regulating two variables to achieve the second best. With the assumption of 

homogenous value of time of customers, we further showed regulating only the commission 

should guarantee the second best.  
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To address the effects from platform competition, we extended our analysis by considering a 

duopoly setting. It was found that competition may not necessarily lower down the price levels 

when the increase of the matching friction overrides that of price elasticity of demand after the 

introduction of the competing platform. We further investigated the effects of competition on the 

welfare change when the matching function is increasing returns to scale. Based on the 

sensitivity analysis, we observed that competition can reduce social welfare when the matching 

technology is less efficient, and the increased matching friction for each platform dominates the 

surplus generated by having one additional option. In this case, the regulator may rather 

encourage the merger of the platforms and regulate them directly as a monopolist.  

With the insights obtained from this paper, our future study will examine the impacts of ride-

sourcing platforms on the regular taxi industry by explicitly capturing the competition between 

the platforms and traditional cab companies. Rather than proposing regulations merely aimed at 

the ride-sourcing companies, we will consider a systematic reform of the regulation of the ride-

for-hire market to make the competition more socially efficient. The investigation of this paper 

will also be advanced by considering heterogeneities of customers and drivers, and congestion 

externalities of ride-sourcing vehicles. Lastly, although the Cobb-Douglas matching function is 

flexible enough to capture the matching technology, its calibration requires empirical data. 

Moreover, the changes of its parameters are hard to predict when the function is applied to a new 

setting. We thus plan to adopt a deductive approach to delineate the matching process to derive 

the matching function.  
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Appendix 

A. Relaxation of P2 

Let , ,F N P  solves P1 and the optimal platform profit is  , ,P F N P . Considering the 

equivalence of P1 and P2, we know ,F N solves P2 with the optimal joint profit  ,F N

. Note    , , ,P F N P F N   by construction. Let ,R RF N  solves the relaxation of P2 in 

which Eq. (26) is dropped and the optimal joint profit is  ,R R RF N . It follows that 

   , ,R R RF N F N  . Define R
R R

R

N
P F c

Q
  . Using the fact

  1 2

1

1
( )t t R

R P R R R

R

Q
F C Q cw c w l

f

 



     


, we can spell out RP  as: 

 

1 2

1

1
( )t R

R R P R

R

Q
P cw C Q

f

 



    


  (A1) 

 

As  ,F N  is assumed to be nonnegative, we have:  

 

 
2

1 2

1

1
, ( ) ( ) 0t R

R R R R R R P R P R

R

Q
F N cw Q Q C Q C Q

f

 




      


 (A2) 

 

which leads to: 

 

1 2

1

1 ( )
( )t R P R

R P R

R R

Q C Q
cw C Q

f Q

 


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

 (A3) 

 

Substituting the above inequality into Eq. (A1), we obtain ( ) 0R P R RP C Q Q  . Clearly, 

, ,R R RF N P  satisfies the constraints of P1 and thus is feasible. It follows that 

     , , , ,P R R R R R R R RF N P F N F N    . Therefore, the optimal solution of the 

relaxation of P2 solves P1. 

B. Proof of Proposition 1 

If 0  , then 0o

P P

P

L
 




  


 and 0D

D

L





 


 from the complementary slackness 

conditions 0, 0P D

P D

L L
 

 

 
 

 
. If 0  , then 



1 

1 2

1

1
( ) ( ) 0t

P Pcw Q QC Q C Q
 




      which conflicts with o

P  . Therefore,

o

P P  , 0D  . 

C. Effects from Customers’ Heterogeneous Value of Time 

We can assume a continuous distribution of   in the utility functions defined in Eqs. 

(5)-(6). Generally F and cw  in the demand function does not present a linear relationship 

and thus can be written as: 

  

 , cQ f F w  (A4) 

 

where 1 20, 0f f  . Substituting this demand function to all the investigated 

formulations (P1~P4), one can verify that the tangency condition for the monopoly, first-

best and second-best scenarios are replaced respectively by: 

 

1 1

2 2

1 c

t

f w

f c w




  (A5) 

 

1

2

1 c

t

Q w

I c w
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   (A6) 
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 (A7) 

where   2 , c

F

I f x w dx



  , 
cw

Q


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
,  1 P

Q
F C Q c

N


     
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 and 

 2 P

Q
F C Q Q

F


     
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. Note when calculating the consumers’ surplus, we fix the 

average waiting time at the equilibrium level and integrate under a hypothetical market 

demand curve (Cairns and Liston-Heyes, 1996; Yang et al., 2002).  

If 2 1f f (the case of homogenous value of waiting time), Eqs. (A5)-(A7) will 

reduce to the tangency condition.  

D. Sensitivity Analysis 

Expressing the Cob-Douglas type matching function utilizing the tangency condition, 

we have: 
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where 
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 Further, at equilibrium, 

   

 ln lnQ C Q Q      (A9) 

 

Without loss of generosity, we assume the dispersion parameter to be 1. Differentiating 

the above equations w.r.t A: 
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The specification of the generalized cost   depends on the investigated scenario. 

 

Case (1): Zero-profit second-best. 

  2

1
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     . Together with Eqs. (A10) and (A11): 
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Re-arranging the terms, we obtain: 
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It is straightforward to see that the numerator is negative. Next, we will show the sign of 

the denominator is positive. Given the assumption that the joint profit for the monopoly 

solution is nonnegative: 
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The asterisk denotes the monopoly solution. For the specified demand function

Q Q

Q Qf
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. Therefore we have: 
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When the demand increases from the monopoly to the second-best level, 

,t tw w Q Q   . Therefore, at the second-best: 
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That is, 
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 at the second-best. This result 

still holds for other second-best solutions with varying reservation profit levels.  

 

Case (2) Monopoly solution 
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rewritten as:  
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Substituting 
Q

A




as specified in Eq. (A10) into Eq. (A17) leads to: 
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The numerator of 
tw

A




 is positive. From Eq. (A15):  

 

1 2

1

11
t

Q Q
c

w Q

 







  
  (A19) 

 

Then 

 
 

2

1 2
1 22

1 1 2 1

1
0

1 t

Q Qc c Q Q Q Q

w Q QQ

 
 

   


 



    
     

   
(A20) 

 

which indicates 0
tw

A





 at the monopoly solution. Following a similar procedure, one 

can verify the sign of ,F Q . 

 


